
The Window
Object

A quick look at the Netscape document object model
diagram in Chapter 13 (Figure 13-1) reveals that the

window object is the outermost, most global container of all
document-related objects in the JavaScript world. All HTML
and JavaScript activity takes place inside a window. That
window may be a standard Windows, Mac, or Xwindows
application-style window, complete with scrollbars, toolbars
and other “chrome”; if you have Navigator 4 or Internet
Explorer 4 running in certain modes, the window may appear
in the guise of the underlying desktop itself. A frame is also a
window, even though it doesn’t have many accoutrements
beyond scrollbars. The window object is where everything
begins in JavaScript, and this chapter begins the in-depth
investigation of JavaScript objects with the window.

Of all the Navigator document model objects, the window
object has by far the most terminology associated with it.
This necessitates an abnormally long chapter to keep the
discussion in one place. Use the running footers as a
navigational aid through this substantial collection of
information.

Window Terminology
The window object is often a source of confusion when

you first learn about the document object model. A number
of synonyms for window objects muck up the works: top, self,
parent, and frame. Aggravating the situation is that these
terms are also properties of a window object. Under some
conditions, a window is its own parent, but if you define a
frameset with two frames, there is only one parent among a
total of three window objects. It doesn’t take long before the
whole subject can make your head hurt.

If you do not use frames in your Web applications, all of
these headaches never appear. But if frames are part of your
design plan, you should get to know how frames affect the
object model.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Scripting
communication
among multiple
frames

Creating and
managing new
windows

Controlling the size,
position, and
appearance of the
browser window

✦ ✦ ✦ ✦

168 Part III ✦ JavaScript Object and Language Reference

Frames
The application of frames has become a religious issue among page authors:

some swear by them, while others swear at them. I believe there can be compelling
reasons to use frames at times. For example, if you have a document that requires
considerable scrolling to get through, you may want to maintain a static set of
navigation controls visible at all times. By placing those controls — be they links
or image maps — in a separate frame, you have made the controls available for
immediate access, regardless of the scrolled condition of the main document.

Creating frames
The task of defining frames in a document remains the same whether or not

you’re using JavaScript. The simplest framesetting document consists of tags that
are devoted to setting up the frameset, as follows:

<HTML>
<HEAD>
<TITLE>My Frameset</TITLE>
</HEAD>
<FRAMESET>

<FRAME NAME=”Frame1” SRC=”document1.html”>
<FRAME NAME=”Frame2” SRC=”document2.html”>

</FRAMESET>
</HTML>

The preceding HTML document, which the user never sees, defines the frameset
for the entire browser window. Each frame must have a URL reference (specified
by the SRC attribute) for a document to load into that frame. For scripting
purposes, assigning a name to each frame with the NAME attribute greatly simplifies
scripting frame content.

The frame object model
Perhaps the key to successful frame scripting is understanding that the object

model in the browser’s memory at any given instant is determined by the HTML
tags in the currently loaded documents. All canned object model graphics, such as
Figure 13-1 in this book, do not reflect the precise object model for your document
or document set.

For a single, frameless document, the object model starts with just one window
object, which contains one document, as shown in Figure 14-1. In this simple
structure, the window object is the starting point for all references to any loaded
object. Because the window is always there — it must be there for a document to
load into — a reference to any object in the document can omit a reference to the
current window.

Figure 14-1: The simplest window-
document relationship

169Chapter 14 ✦ The Window Object

In a simple two-framed frameset model (Figure 14-2), the browser treats the
container of the initial, framesetting document as the parent window. The only
visible evidence that the document exists is that the framesetting document’s title
appears in the browser window title bar.

Figure 14-2: The parent and frames
are part of the object model.

Each <FRAME> tag inside the <FRAMESET> tag set creates another window object
into which a document is loaded. Each of those frames, then, has a document
object associated with it. From the point of view of a given document, it has a
single window container, just like the model shown in Figure 14-2. And although the
parent frame object is not visible to the user, it remains in the object model in
memory. The presence of the parent often makes it a convenient repository for
variable data that needs to be shared by multiple child frames or must persist
between loading of different documents inside a child frame.

In even more complex arrangements, as shown in Figure 14-3, a child frame itself
may load a framesetting document. In this situation, the differentiation between the
parent and top object starts to come into focus. The top window is the only one in
common with all frames in Figure 14-3. As you will see in a moment, when frames
need to communicate with other frames (and their documents), you must fashion
references to the distant object via the window object they all have in common.

Figure 14-3: Three generations of
window objects

170 Part III ✦ JavaScript Object and Language Reference

Referencing frames
The purpose of an object reference is to help JavaScript locate the desired

object in the object model currently held in memory. A reference is a road map for
the browser to follow, so that it can track down, say, the value of a particular text
field in a particular document. Therefore, when you construct a reference, think
about where the script appears in the object model and how the reference can
help the browser determine where it should go to find the distant object. In a two-
generation scenario such as the one shown in Figure 14-2, three intergenerational
references are possible:

✦ Parent-to-child

✦ Child-to-parent

✦ Child-to-child

Assuming that you need to access an object, function, or variable in the relative’s
frame, the following are the corresponding reference structures: frameName.
objFuncVarName; parent.objFuncVarName; parent.frameName.objFuncVarName.

The rule is this: Whenever a reference must point to another frame, begin the
reference with the window object that the two destinations have in common. To
demonstrate that rule on the complex model in Figure 14-3, if the left-hand child
frame’s document needs to reference the document at the bottom right of the map,
the reference structure is

top.frameName.frameName.document. ...

Follow the map from the top window object down through two frames to the final
document. JavaScript has to take this route, so your reference must help it along.

Top versus parent
After seeing the previous object maps and reference examples, you may be

wondering, Why not use top as the leading object in all trans-frame references?
From an object model point of view, you’ll have no problem doing that: A parent
in a two-generation scenario is also the top window. What you can’t count on,
however, is your framesetting document always being the top window object in
someone’s browser. Take the instance where a Web site loads other Web sites into
one of its frames. At that instant, the top window object belongs to someone else.
If you always specify top in references intended just for your parent window, your
references won’t work and will probably lead to script errors for the user. My
advice, then, is to use parent in references whenever you mean one generation
above the current document.

Preventing framing
You can use your knowledge of top and parent references to prevent your

pages from being displayed inside another Web site’s frameset. Your top-level
document must check whether it is loaded into its own top or parent window.
When a document is in its own top window, a reference to the top property of the
current window is equal to a reference to the current window (the window
synonym self seems most grammatically fitting here). If the two values are not

171Chapter 14 ✦ The Window Object

equal, you can script your document to reload itself as a top-level document. When
it is critical that your document be a top-level document, include the script in
Listing 14-1 in the head portion of your document:

Listing 14-1: Prevention from Getting “Framed”

<SCRIPT LANGUAGE="JavaScript">
if (top != self) {

top.location = location
}
</SCRIPT>

Your document may appear momentarily inside the other site’s frameset, but then
the slate is wiped clean, and your top-level document rules the browser window.

Switching from frames to frameless
Some sites load themselves in a frameset by default and offer users the option

of getting rid of the frames. You cannot dynamically change the makeup of a
frameset once it has loaded, but you can load the content page of the frameset into
the main window. Simply include a button or link whose action loads that
document into the top window object:

top.location = “mainBody.html”

A switch back to the frame version entails nothing more complicated than
loading the framesetting document.

Inheritance versus containment
Scripters who have experience in object-oriented programming environments

probably expect frames to inherit properties, methods, functions, and variables
defined in a parent object. That’s not the case in JavaScript. You can, however, still
access those parent items when you make a call to the item with a complete
reference to the parent. For example, if you want to define a deferred function in
the framesetting parent document that all frames can share, the scripts in the
frames would refer to that function with this reference:

parent.myFunc()

You can pass arguments to such functions and expect returned values.

Navigator 2 bug: Parent variables

Some bugs linger in Navigator 2 that cause problems when accessing variables in a par-
ent window from one of its children. If a document in one of the child frames unloads, a
parent variable value that depends on that frame may get scrambled or disappear. Using a
temporary document.cookie for global variable values may be a better solution. For
Navigator 3 and up, you should declare parent variables that are updated from child frames
as first-class string objects (with the new String() constructor) as described in Chapter 27.

172 Part III ✦ JavaScript Object and Language Reference

Frame synchronization
A pesky problem for some scripters’ plans is that including immediate scripts in

the framesetting document is dangerous — if not crash-prone in Navigator 2. Such
scripts tend to rely on the presence of documents in the frames being created by
this framesetting document. But if the frames have not yet been created and their
documents loaded, the immediate scripts will likely crash and burn.

One way to guard against this problem is to trigger all such scripts from the
frameset’s onLoad= event handler. This handler won’t trigger until all documents
have successfully loaded into the child frames defined by the frameset. At the
same time, be careful with onLoad= event handlers in the documents going into a
frameset’s frames. If one of those scripts relies on the presence of a document in
another frame (one of its brothers or sisters), you’re doomed to eventual failure.
Anything coming from a slow network or server to a slow modem can get in the
way of other documents loading into frames in the ideal order.

One way to work around this problem is to create a string variable in the parent
document to act as a flag for the successful loading of subsidiary frames. When
a document loads into a frame, its onLoad= event handler can set that flag to a
word of your choice to indicate that the document has loaded. A better solution,
however, is to construct the code so that the parent’s onLoad= event handler
triggers all the scripts that you want to run after loading. Depending on other
frames is a tricky business, but the farther the installed base of Web browsers gets
from Navigator 2, the less the associated risk. For example, beginning with
Navigator 3, if a user resizes a window, the document does not reload itself, as it
used to in Navigator 2. Even so, you still should test your pages thoroughly for any
residual effects that may accrue if someone resizes a window or clicks Reload.

Blank frames
Often, you may find it desirable to create a frame in a frameset but not put any

document in it until the user has interacted with various controls or other user
interface elements in other frames. Navigator has a somewhat empty document in
one of its internal URLs (about:blank). But with Navigator 2 and 3 on the
Macintosh, an Easter egg–style message appears in that window when it displays.
This URL is also not guaranteed to be available on non-Netscape browsers. If you
need a blank frame, let your framesetting document write a generic HTML
document to the frame directly from the SRC attribute for the frame, as shown in
the skeletal code in Listing 14-2. It requires no additional transactions to load an
“empty” HTML document.

Listing 14-2: Creating a Blank Frame

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
function blank() {

return "<HTML></HTML>"
}
//-->

173Chapter 14 ✦ The Window Object

</SCRIPT>
</HEAD>
<FRAMESET>

<FRAME NAME="Frame1" SRC="someURL.html">
<FRAME NAME="Frame2" SRC="javascript:'parent.blank()'">

</FRAMESET>
</HTML>

Viewing frame source code
Studying other scripters’ work is a major learning tool for JavaScript (or any

programming language). Beginning with Navigator 3, you can easily view the
source code for any frame, including those frames whose content is generated
entirely or in part by JavaScript. Click the desired frame to activate it (a subtle
border appears just inside the frame on some browser versions, but don’t be
alarmed if the border doesn’t appear). Then select Frame Source from the View
menu (or right-click submenu). You can also print or save a selected frame (from
the File menu).

Window Object
Properties Methods Event Handlers

closed alert() onBlur=

defaultStatus back() onDragDrop=

document blur() onFocus=

frames[] captureEvents() onLoad=

history clearInterval() onMove=

innerHeight clearTimeout() onResize=

innerWidth close() onUnload=

location confirm()

locationbar disableExternalCapture()

menubar enableExternalCapture()

name find()

onerror handleEvent()

opener forward()

outerHeight home()

outerWidth moveBy()

pageXOffset moveTo()

174 Part III ✦ JavaScript Object and Language Reference

Properties Methods Event Handlers

pageYOffset focus()

parent open()

personalbar print()

scrollbars prompt()

self releaseEvents()

status resizeBy()

statusbar resizeTo()

toolbar routeEvent()

top scroll()

window scrollBy()

scrollTo()

setInterval()

setTimeout()

stop()

Syntax
Creating a window:

windowObject = window.open([parameters])

Accessing window properties or methods:

window.property | method([parameters])
self.property | method([parameters])
windowObject.property | method([parameters])

About this object
The window object has the unique position of being at the top of the JavaScript

object hierarchy. This exalted location gives the window object a number of
properties and behaviors unlike those of any other object.

Chief among its unique characteristics is that because everything takes place in
a window, you can usually omit the window object from object references. You’ve
seen this behavior in previous chapters when I invoked document methods such
as document.write(). The complete reference is window.document.write().
But because the activity was taking place in the window that held the document
running the script, that window was assumed to be part of the reference. For
single-frame windows, this concept is simple enough to grasp.

As previously stated, among the list of properties for the window object is one
called self. This property is synonymous with the window object itself (which is

175Chapter 14 ✦ The Window Object

why it shows up in hierarchy diagrams as an object). Having a property of an
object that is the same name as the object may sound confusing, but this situation
is not that uncommon in object-oriented environments. I discuss the reasons why
you may want to use the self property as the window’s object reference in the
self property description that follows.

As indicated earlier in the syntax definition, you don’t always have to
specifically create a window object in JavaScript code. When you start your
browser, it usually opens a window. That window is a valid window object, even if
the window is blank. Therefore, when a user loads your page into the browser, the
window object part of that document is automatically created for your script to
access as it pleases.

Your script’s control over an existing (already open) window’s user interface
elements varies widely with the browser and browser version for which your
application is intended. With the exception of Navigator 4, the only change you
can make to an open window is to the status line at the bottom of the browser
window. With Navigator 4, however, you can control such properties as the size,
location, and “chrome” elements (toolbars and scrollbars, for example) on the fly.
Many of these properties can be changed beyond specific safe limits only if you
cryptographically sign the scripts (see Chapter 40) and the user grants permission
for your scripts to make those modifications.

Window properties are far more flexible on all browsers when your scripts
generate a new window (with the window.open() method): You can influence the
size, toolbar, or other view options of a window. Navigator 4 provides even more
options for new windows, including whether the window should remain at a fixed
layer among desktop windows and whether the window should even display a title
bar. Again, if an option can conceivably be used to deceive a user (for example,
hiding one window that monitors activity in another window), signed scripts and
user permission are necessary.

The window object is also the level at which a script asks the browser to
display any of three styles of dialog boxes (a plain alert dialog box, an OK/Cancel
confirmation dialog box, or a prompt for user text entry). Although dialog boxes
are extremely helpful for cobbling together debugging tools for your own use
(Chapter 45), they can be very disruptive to visitors who navigate through Web
sites. Because JavaScript dialog boxes are modal (that is, you cannot do anything
else in the browser — or anything at all on a Macintosh — until you dismiss the
dialog box), use them sparingly, if at all. Remember that some users may create
macros on their computers to visit sites unattended. Should such an automated
access of your site encounter a modal dialog box, it would be trapped on your
page until a human could intervene.

All dialog boxes generated by JavaScript in Netscape browsers identify
themselves as being generated by JavaScript (less egregiously so in Navigator 4).
This is primarily a security feature to prevent deceitful, unsigned scripts from
creating system- or application-style dialog boxes that convince visitors to enter
private information. It should also discourage dialog box usage in Web page
design. And that’s good, because dialog boxes tend to be disruptive.

176 Part III ✦ JavaScript Object and Language Reference

Why are dialog boxes window methods?

I find it odd that dialog boxes are generated as window methods rather than as methods
of the navigator object. These dialogs don’t really belong to any window. In fact, their
modality prevents the user from accessing any window.

To my way of thinking, these methods (and the ones that create or close windows) belong
to an object level one step above the window object in the hierarchy (which would include
the properties of the navigator object described in Chapter 25). I don’t lose sleep over this
setup, though. If the powers that be insist on making these dialog boxes part of the win-
dow object, that’s how my code will read.

Netscape’s JavaScript dialog boxes are not particularly flexible in letting you fill
them with text or graphic elements beyond the basics. In fact, you can’t even
change the text of the dialog buttons or add a button. With Navigator 4, however,
you can use signed scripts to generate a window that looks and behaves very
much like a modal dialog box. Into that window you can load any HTML you like.
Thus, you can use such a window as an entry form, preferences selector, or
whatever else makes user interface sense in your application. Internet Explorer 4,
on the other hand, has a separate method and set of properties specifically for
generating a modal dialog. The two scripted solutions are not compatible with
each other.

Properties
closed

Value: Boolean Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

When you create a subwindow with the window.open() method, you may need
to access object properties from that subwindow, such as setting the value of a
text field. Access to the subwindow is via the window object reference that is
returned by the window.open() method, as in the following code fragment:

var newWind = window.open(“someURL.html”,”subWind”)
...
newWind.document.entryForm.ZIP.value = “00000”

In this example, the newWind variable is not linked “live” to the window, but is
only a reference to that window. If the user should close the window, the newWind
variable still contains the reference to the now missing window. Thus, any script
reference to an object in that missing window will likely cause a script error. What

177Chapter 14 ✦ The Window Object

you need to know before accessing items in a subwindow is whether the window is
still open.

The closed property returns true if the window object has been closed either
by script or by the user. Any time you have a script statement that can be
triggered after the user has an opportunity to close the window, test for the
closed property before executing that statement.

As a workaround for Navigator 2, any property of a closed window reference
returns a null value. Thus, you can test whether, say, the parent property of the
new window is null: If so, the window has already closed. Internet Explorer 3, on
the other hand, triggers a scripting error if you attempt to access a property of a
closed window — there is no error-free way to detect whether a window is open or
closed in Internet Explorer 3. The window.closed property is implemented in
Internet Explorer 4.

Example
In Listing 14-3, I have created the ultimate cross-platform window opening and

closing sample. It takes into account the lack of the opener property in Navigator
2, the missing closed property in Navigator 2 and Internet Explorer 3, and even
provides an ugly but necessary workaround for Internet Explorer 3’s inability to
gracefully see if a subwindow is still open.

The script begins by initializing a global variable, newWind, which is used to
hold the object reference to the second window. This value needs to be global so
that other functions can reference the window for tasks such as closing. Another
global variable, isIE3, is a Boolean flag that will let the window closing routines
know whether the visitor is using Internet Explorer 3 (see details about the
navigator.appVersion property in Chapter 25).

For this example, the new window contains some HTML code written
dynamically to it, rather than loading an existing HTML file into it. Therefore, the
URL parameter of the window.open() method is left as an empty string. It is vital,
however, to assign a name in the second parameter to accommodate the Internet
Explorer 3 workaround for closing the window. After the new window is opened,
the script assigns an opener property to the object if one is not already assigned
(this is needed only for Navigator 2). After that, the script assembles HTML
to be written to the new window via one document.write() statement. The
document.close() method closes writing to the document — a different kind of
close than a window close.

A second function is responsible for closing the subwindow. To accommodate
Internet Explorer 3, the script appears to create another window with the same
characteristics as the one opened earlier in the script. This is the trick: If the
earlier window exists (with exactly the same parameters and a name other than an
empty string), Internet Explorer does not create a new window even with the
window.open() method executing in plain sight. To the user, nothing unusual
appears on the screen. Only if the user has closed the subwindow do things look
weird for Internet Explorer 3 users. The window.open() method momentarily
creates that subwindow. This is necessary because a “living” window object must
be available for the upcoming test of window existence (Internet Explorer 3
displays a script error if you try to address a missing window, while Navigator and
Internet Explorer 4 simply return friendly null values).

178 Part III ✦ JavaScript Object and Language Reference

As a final test, an if condition looks at two conditions: 1) if the window object
has ever been initialized with a value other than null (in case you click the window
closing button before ever having created the new window) and 2) if the window’s
closed property is null or false. If either condition is true, the close() method is
sent to the second window.

Listing 14-3: Checking Before Closing a Window

<HTML>
<HEAD>
<TITLE>window.closed Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// initialize global var for new window object
// so it can be accessed by all functions on the page
var newWind
// set flag to help out with special handling for window closing
var isIE3 = (navigator.appVersion.indexOf("MSIE 3") != -1) ? true :
false
// make the new window and put some stuff in it
function newWindow() {

var output = ""
newWind = window.open("","subwindow","HEIGHT=200,WIDTH=200")
// take care of Navigator 2
if (newWind.opener == null) {

newWind.opener = window
}
output += "<HTML><BODY><H1>A Sub-window</H1>"
output += "<FORM><INPUT TYPE='button' VALUE='Close Main Window'"
output +="onClick='window.opener.close()'></FORM></BODY></HTML>"
newWind.document.write(output)
newWind.document.close()

}
// close subwindow, including ugly workaround for IE3
function closeWindow() {

if (isIE3) {
// if window is already open, nothing appears to happen
// but if not, the subwindow flashes momentarily (yech!)
newWind = window.open("","subwindow","HEIGHT=200,WIDTH=200")

}
if (newWind && !newWind.closed) {

newWind.close()
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Open Window" onClick="newWindow()">

<INPUT TYPE="button" VALUE="Close it if Still Open" onClick="closeWindow()">
</FORM>
</BODY>
</HTML>

179Chapter 14 ✦ The Window Object

To complete the example of the window opening and closing, notice that the
subwindow is given a button whose onClick= event handler closes the main
window. In Navigator 2 and Internet Explorer 3, this occurs without complaint. But
in Navigator 3 and up and Internet Explorer 4, the user will likely be presented with
an alert asking to confirm the closure of the main browser window.
Related Items: window.open() method; window.close() method.

defaultStatus
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

After a document is loaded into a window or frame, the statusbar’s message
field can display a string that is visible any time the mouse pointer is not atop an
object that takes precedence over the statusbar (such as a link object or an image
map). The window.defaultStatus property is normally an empty string, but you
can set this property at any time. Any setting of this property will be temporarily
overridden when a user moves the mouse pointer atop a link object (see
window.status property for information about customizing this temporary
statusbar message).

Probably the most common time to set the window.defaultStatus property is
when a document loads into a window. You can do this as an immediate script
statement that executes from the Head or Body portion of the document or as part
of a document’s onLoad= event handler.

The defaultStatus property does not work well in Navigator 2 or Internet
Explorer 3, and experiences problems in Navigator 3, especially on the Macintosh
(where the property doesn’t change even after loading a different document into
the window). Many users simply don’t see the statusbar change during Web
surfing, so don’t put mission-critical information in the statusbar.

Example
Unless you plan to change the default statusbar text while a user spends time at

your Web page, the best time to set the property is when the document loads. In
Listing 14-4, notice how I also extract this property to reset the statusbar in an
onMouseOut= event handler. Setting the status property to empty also resets the
statusbar to the defaultStatus setting.

Listing 14-4: Setting the Default Status Message

<HTML>
<HEAD>
<TITLE>window.defaultStatus property</TITLE>
<SCRIPT LANGUAGE="JavaScript">

(continued)

Note

180 Part III ✦ JavaScript Object and Language Reference

Listing 14-4 Continued

window.defaultStatus = "Welcome to my Web site."
</SCRIPT>
</HEAD>
<BODY>
<A HREF="http://home.netscape.com" onMouseOver="window.status = 'Go to
your browser Home page.';return true" onMouseOut="window.status =
'';return true">Home<P>
<A HREF="http://home.netscape.com" onMouseOver="window.status = 'Visit
Netscape\'s Home page.';return true" onMouseOut="window.status =
window.defaultStatus;return true">Netscape
</BODY>
</HTML>

If you need to display single or double quotes in the statusbar (as in the second
link in Listing 14-4), use escape characters (\’ and \”) as part of the strings being
assigned to these properties.

Related Items: window.status property.

document
Value: Object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

I list the document property here primarily for completeness. A window object
contains a single document object (although in Navigator 4, a window may also contain
layers, each of which has a document object, as described in Chapter 19). The value of
the document property is the document object, which is not a displayable value.
Instead, you use the document property as you build references to properties and
methods of the document and to other objects contained by the document, such as a
form and its elements. To load a different document into a window, use the location
object (see Chapter 15). The document object is described in detail in Chapter 16.

Related Items: document object.

frames
Value: Window object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

181Chapter 14 ✦ The Window Object

In a multiframe window, the top or parent window contains any number of
separate frames, each of which acts like a full-fledged window object. The frames
property (note the plural use of the word as a property name) plays a role when a
statement must reference an object located in a different frame. For example, if a
button in one frame is scripted to display a document in another frame, the
button’s event handler must be able to tell JavaScript precisely where to display
the new HTML document. The frames property assists in that task.

To use the frames property to communicate from one frame to another, it
should be part of a reference that begins with the parent or top property. This
lets JavaScript make the proper journey through the hierarchy of all currently
loaded objects to reach the desired object. To find out how many frames are
currently active in a window, use this expression:

parent.frames.length

This expression returns a number indicating how many frames are defined by
the parent window. This value does not, however, count further nested frames,
should a third generation of frame be defined in the environment. In other words,
no single property exists that you can use to determine the total number of frames
in the browser window if multiple generations of frames are present.

The browser stores information about all visible frames in a numbered
(indexed) array, with the first frame (that is, the topmost <FRAME> tag defined in
the framesetting document) as number 0:

parent.frames[0]

Therefore, if the window shows three frames (whose indexes would be
frames[0], frames[1], and frames[2], respectively), the reference for retrieving
the title property of the document in the second frame is

parent.frames[1].document.title

This reference is a road map that starts at the parent window and extends to
the second frame’s document and its title property. Other than the number of
frames defined in a parent window and each frame’s name (top.frames[i].name),
no other values from the frame definitions are directly available from the frame
object via scripting.

Using index values for frame references is not always the safest tactic, however,
because your frameset design may change over time, in which case the index
values will also change. Instead, you should take advantage of the NAME attribute of
the <FRAME> tag, and assign a unique, descriptive name to each frame. Then you
can use a frame’s name as an alternative to the indexed reference. For example, in
Listing 14-5, two frames are assigned with distinctive names. To access the title of
a document in the JustAKid2 frame, the complete object reference is

parent.JustAKid2.document.title

with the frame name (case-sensitive) substituting for the frames[1] array
reference. Or, in keeping with JavaScript flexibility, you can use the object name in
the array index position:

parent.frames[“JustAKid2”].document.title

182 Part III ✦ JavaScript Object and Language Reference

The supreme advantage to using frame names in references is that no matter
how the frameset may change over time, a reference to a named frame will always
find that frame, although its index value (that is, position in the frameset) may
change.

Example
Listings 14-5 and 14-6 demonstrate how JavaScript treats values of frame

references from objects inside a frame. The same document is loaded into each
frame. A script in that document extracts info about the current frame and the
entire frameset. Figure 14-4 shows the results after loading the HTML document in
Listing 14-3.

Listing 14-5: Framesetting Document for Listing 14-6

<HTML>
<HEAD>
<TITLE>window.frames property</TITLE>
</HEAD>
<FRAMESET COLS="50%,50%">

<FRAME NAME="JustAKid1" SRC="lst14-06.htm">
<FRAME NAME="JustAKid2" SRC="lst14-06.htm">

</FRAMESET>
</HTML>

A call to determine the number (length) of frames returns 0 from the point of
view of the current frame referenced. That’s because each frame here is a window
that has no nested frames within it. But add the parent property to the reference,
and the scope zooms out to take into account all frames generated by the parent
window’s document.

Listing 14-6: Showing Various window Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function gatherWindowData() {

var msg = ""
msg += "From the point of view of this frame:
"
msg += "window.frames.length: " + window.frames.length + "
"
msg += "window.name: " + window.name + "<P>"
msg += "From the point of view of the framesetting

document:
"
msg += "parent.frames.length: " + parent.frames.length + "
"
msg += "parent.frames[0].name: " + parent.frames[0].name
return msg

}
</SCRIPT>
</HEAD>

183Chapter 14 ✦ The Window Object

<BODY>
<SCRIPT LANGUAGE="JavaScript">
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

Figure 14-4: Property readouts from both frames loaded from Listing 14-5

The last statement in the example shows how to use the array syntax
(brackets) to refer to a specific frame. All array indexes start with 0 for the first
entry. Because the document asks for the name of the first frame
(parent.frames[0]), the response is JustAKid1 for both frames.

Related Items: window.parent property; window.top property.

history
Value: Object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

See the discussion of the history object in Chapter 15.

184 Part III ✦ JavaScript Object and Language Reference

innerHeight
innerWidth
outerHeight
outerWidth

Value: Integer Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Navigator 4 lets scripts adjust the height and width of any window, including the
main browser window. This can be helpful when your page shows itself best with
the browser window sized to a particular height and width. Rather than relying on
the user to size the browser window for optimum viewing of your page, you can
dictate the size of the window (although the user can always manually resize the
main window). And because you can examine the operating system of the visitor
via the navigator object (see Chapter 25), you can size a window to adjust for the
differences in font and form element rendering on different platforms.

Netscape provides two different points of reference for measuring the height
and width of a window: inner and outer. Both are measured in pixels. The inner
measurements are that of the active document area of a window (sometimes
known as a window’s content region). If the optimum display of your document
depends on the document display area being a certain number of pixels high
and/or wide, the innerHeight and innerWidth properties are the ones to set.

In contrast, the outer measurements are of the outside boundary of the entire
window, including whatever “chrome” is showing in the window: scrollbars,
statusbar, and so on. Setting the outerHeight and outerWidth is generally done
in concert with a reading of screen object properties (Chapter 25). Perhaps the
most common usage of the outer properties is to set the browser window to fill the
available screen area of the visitor’s monitor.

A more efficient way of modifying both outer dimensions of a window is with the
window.resizeTo() method. The method takes width and height as parameters,
thus accomplishing a window resizing in one statement. Be aware that resizing a
window does not adjust the location of a window. Therefore, just because you set
the outer dimensions of a window to the available space returned by the screen
object doesn’t mean that the window will suddenly fill the available space on the
monitor. Application of the window.moveTo() method is necessary to ensure the
top-left corner of the window is at screen coordinates 0,0.

Despite the freedom that these properties afford the page author, Netscape has
built in a minimum size limitation for scripts that are not cryptographically signed.
You cannot set these properties such that the outer height and width of the
window is smaller than 100 pixels on a side. This is to prevent an unsigned script
from setting up a small or nearly invisible window that monitors activity in other
windows. With signed scripts, however, windows can be made smaller than 100-by-
100 pixels with the user’s permission.

185Chapter 14 ✦ The Window Object

Example
In Listing 14-7, a number of buttons let you see the results of setting the

innerHeight, innerWidth, outerHeight, and outerWidth properties.

Listing 14-7: Setting Window Height and Width

<HTML>
<HEAD>
<TITLE>Window Sizer</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// store original outer dimensions as page loads
var originalWidth = window.outerWidth
var originalHeight = window.outerHeight
// generic function to set inner dimensions
function setInner(width, height) {

window.innerWidth = width
window.innerHeight = height

}
// generic function to set outer dimensions
function setOuter(width, height) {

window.outerWidth = width
window.outerHeight = height

}
// restore window to original dimensions
function restore() {

window.outerWidth = originalWidth
window.outerHeight = originalHeight

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Setting Inner Sizes

<INPUT TYPE="button" VALUE="600 Pixels Square"
onClick="setInner(600,600)">

<INPUT TYPE="button" VALUE="300 Pixels Square"
onClick="setInner(300,300)">

<INPUT TYPE="button" VALUE="Available Screen Space"
onClick="setInner(screen.availWidth, screen.availHeight)">

<HR>
Setting Outer Sizes

<INPUT TYPE="button" VALUE="600 Pixels Square"
onClick="setOuter(600,600)">

<INPUT TYPE="button" VALUE="300 Pixels Square"
onClick="setOuter(300,300)">

<INPUT TYPE="button" VALUE="Available Screen Space"
onClick="setOuter(screen.availWidth, screen.availHeight)">

(continued)

186 Part III ✦ JavaScript Object and Language Reference

Listing 14-7 Continued

<HR>
<INPUT TYPE="button" VALUE="Cinch up for Win95"
onClick="setInner(273,304)">

<INPUT TYPE="button" VALUE="Cinch up for Mac"
onClick="setInner(273,304)">

<INPUT TYPE="button" VALUE="Restore Original" onClick="restore()">

</FORM>
</BODY>
</HTML>

As the document loads, it saves the current outer dimensions in global
variables. One of the buttons restores the windows to these settings. Two parallel
sets of buttons set the inner and outer dimensions to the same pixel values so you
can see the effects on the overall window and document area when a script
changes the various properties.

Because Navigator 4 displays different-looking buttons in different platforms (as
well as other elements), the two buttons contain script instructions to size the
window to best display the window contents. Unfortunately, no measure of the
active area of a document is available, so the dimension values were determined
by trial and error before being hard-wired into the script.

Related Items: window.resizeTo() method; window.moveTo() method; screen
object; navigator object.

location
Value: Object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

See the discussion of the location object in Chapter 15.

locationbar
menubar
personalbar
scrollbars
statusbar
toolbar

Value: Object Gettable: Yes Settable: Yes (with signed scripts)

187Chapter 14 ✦ The Window Object

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Beyond the rectangle of the content region of a window (where your documents
appear), the Netscape browser window displays an amalgam of bars and other
features known collectively as chrome. All browsers can elect to remove these
chrome items when creating a new window (as part of the third parameter of the
window.open() method), but until signed scripts were available in Navigator 4,
these items could not be turned on and off in the main browser window or any
existing window.

Navigator 4 promotes these elements to first-class objects contained by the
window object. Figure 14-5 points out where each of the six bars appears in a fully
chromed window. The only element that is not part of this scheme is the window’s
title bar. You can create a new window without a title bar (with a signed script),
but you cannot hide and show the title bar on an existing window.

Figure 14-5: Window chrome items

Chrome objects have but one property: visible. Reading this Boolean value
(possible without signed scripts) lets you inspect the visitor’s browser window for
the elements currently engaged. There is no intermediate setting or property for
the expanded/collapsed state of the toolbar, locationbar, and personalbar.

Menubar
Toolbar PersonalbarLocationbar ScrollbarStatusbar

188 Part III ✦ JavaScript Object and Language Reference

Changing the visibility of these items on the fly alters the relationship between
the inner and outer dimensions of the browser window. If you must carefully size a
window to display content, you should adjust the chrome elements before sizing
the window. Before you start changing chrome visibility on your page visitors,
weigh the decision carefully. Experienced users have fine-tuned the look of their
browser windows to just the way they like them. If you mess with that look, you
might anger your visitors. Fortunately, changes you make to a chrome element’s
visibility are not stored to the user’s preferences. However, the changes you make
survive an unloading of the page. If you change the settings, be sure you first save
the initial settings and restore them with an onUnload= event handler.

The Macintosh menubar is not part of the browser’s window chrome. Therefore,
its visibility cannot be adjusted from a script.

Example
In Listing 14-8, you can experiment with the look of a browser window with any

of the chrome elements turned on and off. To run this script, you must either sign
the scripts or turn on codebase principals (see Chapter 40). Java must also be
enabled to use the signed script statements.

As the page loads, it stores the current state of each chrome element. One
button for each chrome element triggers the toggleBar() function. This function
inverts the visible property for the chrome object passed as a parameter to the
function. Finally, the Restore button returns visibility to their original settings.
Notice that the restore() function is also called by the onUnload= event handler
for the document.

Listing 14-8: Controlling Window Chrome

<HTML>
<HEAD>
<TITLE>Bars Bars Bars</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// store original outer dimensions as page loads
var originalLocationbar = window.locationbar.visible
var originalMenubar = window.menubar.visible
var originalPersonalbar = window.personalbar.visible
var originalScrollbars = window.scrollbars.visible
var originalStatusbar = window.statusbar.visible
var originalToolbar = window.toolbar.visible

// generic function to set inner dimensions
function toggleBar(bar) {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")

bar.visible = !bar.visible

netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserWrite")
}
// restore settings
function restore() {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")

Note

189Chapter 14 ✦ The Window Object

window.locationbar.visible = originalLocationbar
window.menubar.visible = originalMenubar
window.personalbar.visible = originalPersonalbar
window.scrollbars.visible = originalScrollbars
window.statusbar.visible = originalStatusbar
window.toolbar.visible = originalToolbar

netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserWrite")
}
</SCRIPT>
</HEAD>
<BODY onUnload="restore()">
<FORM>
Toggle Window Bars

<INPUT TYPE="button" VALUE="Location Bar"
onClick="toggleBar(window.locationbar)">

<INPUT TYPE="button" VALUE="Menu Bar"
onClick="toggleBar(window.menubar)">

<INPUT TYPE="button" VALUE="Personal Bar"
onClick="toggleBar(window.personalbar)">

<INPUT TYPE="button" VALUE="Scrollbars"
onClick="toggleBar(window.scrollbars)">

<INPUT TYPE="button" VALUE="Status Bar"
onClick="toggleBar(window.statusbar)">

<INPUT TYPE="button" VALUE="Tool Bar"
onClick="toggleBar(window.toolbar)">

<HR>
<INPUT TYPE="button" VALUE="Restore Original Settings"
onClick="restore()">

</FORM>
</BODY>
</HTML>

Related Items: window.open() method.

name
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

All window objects can have names assigned to them. Names are particularly
useful for working with frames, because a good naming scheme for a multiframe
environment can help you determine precisely which frame you’re working with in
references coming from other frames.

190 Part III ✦ JavaScript Object and Language Reference

The main browser window, however, has no name attached to it by default. Its
value is an empty string. There aren’t many reasons to assign a name to the
window, because JavaScript and HTML provide plenty of other ways to refer to the
window object (the top property, the _top constant for TARGET attributes, and the
opener property from subwindows).

If you want to attach a name to the main window, you can do so by setting the
window.name property at any time. But be aware that because this is a window
property, the life of its value extends beyond the loading and unloading of any
given document. Chances are that your scripts would use the reference in only one
document or frameset. Unless you restore the default empty string, your
programmed window name will be present for any other document that loads later.
My suggestion in this regard is to assign a name in a window’s or frameset’s
onLoad= event handler and then reset it to empty in a corresponding onUnload=
event handler:

<BODY onLoad=”self.name = ‘Main’” onUnload=”self.name = “”>

You can see an example of this application in Listing 14-14, where setting a
parent window name is helpful for learning the relationships among parent and
child windows.
Related Items: window.open() method; top property.

onerror
Value: Null, Undefined, or Function Object Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Although script error dialog boxes are a scripter’s best friend (if you’re into
debugging, that is), they can be confusing for users who have never seen such
dialog boxes. JavaScript lets you turn off the display of script error windows as
someone executes a script on your page. The question is: When should you turn
off these dialog boxes?

Script errors generally mean that something is wrong with your script. The error
may be the result of a coding mistake or, conceivably, a bug in JavaScript (perhaps
on a platform version of the browser you haven’t been able to test). When such
errors occur, often the script won’t continue to do what you intended. Hiding the
script error from yourself during development would be foolhardy, because you’d
never know whether unseen errors are lurking in your code. It can be equally
dangerous to turn off error dialog boxes for users who may believe that the page is
operating normally, when, in fact, it’s not. Some data values may not be calculated
or displayed correctly.

That said, I can see some limited instances of when you’d like to keep such
dialog windows from appearing. For example, if you know for a fact that a platform-

191Chapter 14 ✦ The Window Object

specific bug trips the error message without harming the execution of the script,
you may want to prevent that error alert dialog box from appearing in the files
posted to your Web site. You should do this only after extensive testing to ensure
that the script ultimately behaves correctly, even with the bug or error.

When the browser starts, the window.onerror property is <undefined>. In this
state, all errors are reported via the normal JavaScript error window. To turn off
error dialog boxes, set the window.onerror property to null:

window.onerror = null

You may recognize this syntax as looking like a property version of an event
handler described earlier in this chapter. For Netscape browsers, however, no
onError= event handler exists that you specify in an HTML tag associated with the
window object. The error event just happens. (Internet Explorer 4 lets you add an
onError= event handler to just about every object tag, but these are ignored by
Netscape browsers.)

To restore the error dialog boxes, perform a soft or hard reload of the
document. Clicking on the Reload button turns them back on.

You can, however, assign a custom function to the window.onerror property.
This function then handles errors in a more friendly way under your script control.
I prefer an even simpler way: Let a global onerror() function do the job.
Whenever error dialog boxes are turned on (the default behavior), a script error
(or Java applet or class exception) invokes the onerror() function, passing three
parameters:

✦ Error message

✦ URL of document causing the error

✦ Line number of the error

You can essentially trap for all errors and handle them with your own interface
(or no user alert dialog box at all). The last line of this function must be return
true if you do not want the JavaScript script error dialog box to appear.

If you are using LiveConnect to communicate with a Java applet or call up Java
class methods directly from your scripts, you can use an onerror() function to
handle any exception that Java may throw. A Java exception is not necessarily a
mistake kind of error: some methods assume that the Java code will trap for
exceptions to handle special cases (for example, reacting to a user’s denial of
access when prompted by a signed script dialog). See Chapter 40 for an example of
trapping for a specific Java exception via an onerror() function.

Example
In Listing 14-9, one button triggers a script that contains an error. I’ve added an

onerror() function to process the error so it opens a separate window, filling in a
textarea form element (see Figure 14-6). A Submit button is also provided to mail
the bug information to a support center e-mail address from Navigator only — an
example of how to handle the occurrence of a bug in your scripts. In case you have
not yet seen a true JavaScript error dialog box, change the last line of the
onerror() function to return false, then reload the document and trip the error.

192 Part III ✦ JavaScript Object and Language Reference

Listing 14-9: Controlling Script Errors

<HTML>
<HEAD>
<TITLE>Error Dialog Control</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
// function with invalid variable value
function goWrong() {

var x = fred
}
// turn off error dialogs
function errOff() {

window.onerror = null
}
// turn on error dialogs with hard reload
function errOn() {

location.reload()
}
function onerror(msg, URL, lineNum) {

var errWind = window.open("","errors","HEIGHT=270,WIDTH=400")
var wintxt = "<HTML><BODY BGCOLOR=RED>"
wintxt += "An error has occurred on this page. Please

report it to Tech Support."
wintxt += "<FORM METHOD=POST ENCTYPE-’text-plain'

ACTION=mailTo:support3@dannyg.com>"
wintxt += "<TEXTAREA COLS=45 ROWS=8 WRAP=VIRTUAL>"
wintxt += "Error: " + msg + "\n"
wintxt += "URL: " + URL + "\n"
wintxt += "Line: " + lineNum + "\n"
wintxt += "Client: " + navigator.userAgent + "\n"
wintxt += "---\n"
wintxt += "Please describe what you were doing when the error

occurred:"
wintxt += "</TEXTAREA><P>"
wintxt += "<INPUT TYPE=SUBMIT VALUE='Send Error Report'>"
wintxt += "<INPUT TYPE=button VALUE='Close'

onClick='self.close()'>"
wintxt += "</FORM></BODY></HTML>"
errWind.document.write(wintxt)
errWind.document.close()
return true

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myform">
<INPUT TYPE="button" VALUE="Cause an Error" onClick="goWrong()"><P>
<INPUT TYPE="button" VALUE="Turn Off Error Dialogs" onClick="errOff()">
<INPUT TYPE="button" VALUE="Turn On Error Dialogs" onClick="errOn()">
</FORM>
</BODY>
</HTML>

193Chapter 14 ✦ The Window Object

Figure 14-6: An example of a
self-reporting error window

Turn off the dialog box by setting the window.onerror property to null. I
provide a button that performs a hard reload, which, in turn, resets the
window.onerror property to its default value. With error dialog boxes turned off,
the onerror() function does not fire.
Related Items: location.reload() method; debugging scripts (Chapter 45).

opener
Value: Window object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔

Many scripters make the mistake of thinking that a new browser window
created with the window.open() method has a child-parent relationship similar to
the one that frames have with their parents. That’s not the case at all. New
browser windows, once created, have a very slim link to the window from whence
they came: via the opener property. The purpose of the opener property is to
provide scripts in the new window with valid references back to the original
window. For example, the original window may contain some variable values or
general-purpose functions that a new window at this Web site will want to use. The
original window may also have form elements whose settings either are of value to
the new window or get set by user interaction in the new window.

Because the value of the opener property is a true window object, you can
begin references with the property name. Or, you may use the more complete
window.opener or self.opener reference. But the reference must then include
some object or property of that original window, such as a window method or a
reference to something contained by that window’s document.

194 Part III ✦ JavaScript Object and Language Reference

Although this property was new for Navigator 3 (and was one of the rare
Navigator 3 features to be included in Internet Explorer 3), you can make your
scripts backward compatible to Navigator 2. For every new window you create,
make sure it has an opener property as follows:

var newWind = window.open()
if (newWind.opener == null) {

newWind.opener = self
}

For Navigator 2, this step adds the opener property to the window object
reference. Then, no matter which version of JavaScript-enabled Navigator the user
has, the opener property in the new window’s scripts points to the desired original
window.

When a script that generates a new window is within a frame, the opener
property of the subwindow points to that frame. Therefore, if the subwindow
needs to communicate with the main window’s parent or another frame in the
main window, you have to very carefully build a reference to that distant object.
For example, if the subwindow needs to get the checked property of a checkbox in
a sister frame of the one that created the subwindow, the reference would be

opener.parent.sisterFrameName.document.formName.checkboxName.checked

It is a long way to go, indeed, but building such a reference is always a case of
mapping out the path from where the script is to where the destination is, step
by step.

Example
To demonstrate the importance of the opener property, let’s take a look at how

a new window can define itself from settings in the main window (Listing 14-10).
The doNew() function generates a small subwindow and loads the file in Listing 14-
11 into the window. Notice the initial conditional statements in doNew() to make
sure that if the new window already exists, it comes to the front by invoking the
new window’s focus() method. You can see the results in Figure 14-7. Because the
doNew() function in Listing 14-10 uses window methods and properties not
available in Internet Explorer 3, this example does not work correctly in Internet
Explorer 3.

Listing 14-10: Contents of a Main Window Document That
Generates a Second Window

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
var myWind
function doNew() {

if (!myWind || myWind.closed) {
myWind = window.open("lst14-

11.htm","subWindow","HEIGHT=200,WIDTH=350")
} else{

195Chapter 14 ✦ The Window Object

// bring existing subwindow to the front
myWind.focus()

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="input">
Select a color for a new window:
<INPUT TYPE="radio" NAME="color" VALUE="red" CHECKED>Red
<INPUT TYPE="radio" NAME="color" VALUE="yellow">Yellow
<INPUT TYPE="radio" NAME="color" VALUE="blue">Blue
<INPUT TYPE="button" NAME="storage" VALUE="Make a Window"
onClick="doNew()">
<HR>
This field will be filled from an entry in another window:
<INPUT TYPE="text" NAME="entry" SIZE=25>
</FORM>
</BODY>
</HTML>

The window.open() method doesn’t provide parameters for setting the new
window’s background color, so I let the getColor() function in the new window
do the job as the document loads. The function uses the opener property to find
out which radio button on the main page is selected.

Listing 14-11: References to the opener Property

<HTML>
<HEAD>
<TITLE>New Window on the Block</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function getColor() {

// shorten the reference
colorButtons = self.opener.document.forms[0].color
// see which radio button is checked
for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[i].value

}
}
return "white"

}
</SCRIPT>
</HEAD>
<SCRIPT LANGUAGE="JavaScript">
document.write("<BODY BGCOLOR='" + getColor() + "'>")
</SCRIPT>
<H1>This is a new window.</H1>
<FORM>

(continued)

196 Part III ✦ JavaScript Object and Language Reference

Listing 14-11 Continued

<INPUT TYPE="button" VALUE="Who's in the Main window?"
onClick="alert(self.opener.document.title)"><P>
Type text here for the main window:
<INPUT TYPE="text" SIZE=25
onChange="self.opener.document.forms[0].entry.value = this.value">
</FORM>
</BODY>
</HTML>

In the getColor() function, the multiple references to the radio button array
would be very long. To simplify the references, the getColor() function starts out
by assigning the radio button array to a variable I’ve arbitrarily called
colorButtons. That shorthand now stands in for lengthy references as I loop
through the radio buttons to determine which button is checked and retrieve its
value property.

Figure 14-7: The main and subwindows, inextricably linked via the window.opener
property

A button in the second window simply fetches the title of the opener window’s
document. Even if another document loads in the main window in the meantime,
the opener reference still points to the main window: Its document object,
however, will change.

197Chapter 14 ✦ The Window Object

Finally, the second window contains a text object. Enter any text you like there
and either tab or click out of the field. The onChange= event handler updates the
field in the opener’s document (provided that document is still loaded).

Related Items: window.open() method; window.focus() method.

outerHeight
outerWidth

See innerHeight and innerWidth, earlier.

pageXOffset
pageYOffset

Value: Integer Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

The top-left corner of the content (inner) region of the browser window is an
important geographical point for scrolling documents. When a document is
scrolled all the way to the top and flush left in the window (or when a document is
small enough to fill the browser window without displaying scrollbars), the
document’s location is said to be 0,0, meaning zero pixels from the top and zero
pixels from the left. If you were to scroll the document, some other coordinate
point of the document would be under that top-left corner. That measure is called
the page offset, and the pageXOffset and pageYOffset properties let you read the
pixel value of the document at the inner window’s top-left corner: pageXOffset is
the horizontal offset, and pageYOffset is the vertical offset.

The value of these measures becomes clear if you design navigation buttons in
your pages to carefully control paging of content being displayed in the window.
For example, you might have a two-frame page in which one of the frames features
navigation controls, while the other displays the primary content. The navigation
controls take the place of scrollbars, which, for aesthetic reasons, are turned off in
the display frame. Scripts connected to the simulated scrolling buttons can
determine the pageYOffset value of the document and then use the
window.scrollTo() method to position the document precisely to the next
logical division in the document for viewing.

Example
The script in Listing 14-12 is an unusual construction that creates a frameset

and creates the content for each of the two frames all within a single HTML
document (see “Frame Object” later in this chapter for more details). The purpose
of this example is to provide you with a playground to get familiar with the page

198 Part III ✦ JavaScript Object and Language Reference

offset concept and how the values of these properties correspond to physical
activity in a scrollable document.

In the left frame of the frameset are two fields that are ready to show the pixel
values of the right frame’s pageXOffset and pageYOffset properties. The content
of the right frame is a 30-row table of fixed width (800 pixels). Mouse click events
are captured by the document level (see Chapter 39), allowing you to click any
table or cell border or outside the table to trigger the showOffsets() function in
the right frame. That function is a simple script that displays the page offset values
in their respective fields in the left frame.

Listing 14-12: Viewing the page XOffset and page
YOffset Properties

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function leftFrame() {

var output = "<HTML><BODY><H3>Page Offset Values</H3><HR>\n"
output += "<FORM>PageXOffset:<INPUT TYPE='text' NAME='xOffset'

SIZE=4>
\n"
output += "PageYOffset:<INPUT TYPE='text' NAME='yOffset'

SIZE=4>
\n"
output += "</FORM></BODY></HTML>"
return output

}

function rightFrame() {
var output = "<HTML><HEAD><SCRIPT LANGUAGE='JavaScript'>\n"
output += "function showOffsets() {\n"
output += "parent.readout.document.forms[0].xOffset.value =

self.pageXOffset\n"
output += "parent.readout.document.forms[0].yOffset.value =

self.pageYOffset\n}\n"
output += "document.captureEvents(Event.CLICK)\n"
output += "document.onclick = showOffsets\n"
output += "<\/SCRIPT></HEAD><BODY

onClick='showOffsets()'><H3>Content Page</H3>\n"
output += "Scroll the page and click on a table border to view

page offset values.
<HR>\n"
output += "<TABLE BORDER=5 WIDTH=800>"
var oneRow = "<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell

3</TD><TD>Cell 4</TD><TD>Cell 5</TD>"
for (var i = 1; i <= 30; i++) {

output += "<TR><TD>Row " + i + "</TD>" + oneRow +
"</TR>"

}
output += "</TABLE></BODY></HTML>"
return output

}
</SCRIPT>

199Chapter 14 ✦ The Window Object

</HEAD>
<FRAMESET COLS="30%,70%">

<FRAME NAME="readout" SRC="javascript:parent.leftFrame()">
<FRAME NAME="display" SRC="javascript:parent.rightFrame()">

</FRAMESET>
</HTML>

To gain an understanding of how the offset values work, scroll the window
slightly in the horizontal direction and notice that the pageXOffset value
increases; the same goes for the pageYOffset value as you scroll down.
Remember that these values reflect the coordinate in the document that is
currently under the top-left corner of the window (frame) holding the document.

Related Items: window.innerHeight property; window.innerWidth property;
window.scrollBy() method; window.scrollTo() method.

parent
Value: Window object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The parent property (and the top property that follows) comes into play
primarily when a document is to be displayed as part of a multiframe window. The
HTML documents that users see in the frames of a multiframe browser window are
distinct from the document that specifies the frameset for the entire window. That
document, though still in the browser’s memory (and appearing as the URL in the
location field of the browser), is not otherwise visible to the user (except in the
Document Source view).

If scripts in your visible documents need to reference objects or properties of
the frameset window, you can reference those frameset window items with the
parent property (do not, however, expand the reference by preceding it with the
window object, as in window.parent.propertyName). In a way, the parent
property seems to violate the object hierarchy because, from a single frame’s
document, the property points to a level seemingly higher in precedence. If you
didn’t specify the parent property or instead specified the self property from
one of these framed documents, the object reference is to the frame only, rather
than to the outermost framesetting window object.

A nontraditional but perfectly legal way to use the parent object is as a means
of storing temporary variables. Thus, you could set up a holding area for individual
variable values or even an array of data. These values can then be shared among
all documents loaded into the frames, including when documents change inside
the frames. You have to be careful, however, when storing data in the parent on the
fly (that is in response to user action in the frames). Variables can revert to their

200 Part III ✦ JavaScript Object and Language Reference

default values (that is, the values set by the parent’s own script) if the user resizes
the browser window.

A child window can also call a function defined in the parent window. The
reference for such a function is

parent.functionName([parameters])

At first glance, it may seem as though the parent and top properties point to the
same framesetting window object. In an environment consisting of one frameset
window and its immediate children, that’s true. But if one of the child windows was,
itself, another framesetting window, then you wind up with three generations of
windows. From the point of view of the “youngest” child (for example, a window
defined by the second frameset), the parent property points to its immediate parent,
whereas the top property points to the first framesetting window in this chain.

On the other hand, a new window created via the window.open() method has
no parent-child relationship to the original window. The new window’s top and
parent point to that new window. You can read more about these relationships in
the “Frames” section earlier in this chapter.

Example
To demonstrate how various window object properties refer to window levels

in a multiframe environment, use your browser to load the Listing 14-13 document.
It, in turn, sets each of two equal-size frames to the same document: Listing 14-14.
This document extracts the values of several window properties, plus the
document.title properties of two different window references.

Listing 14-13: Framesetting Document for Listing 14-14

<HTML>
<HEAD>
<TITLE>The Parent Property Example</TITLE>
<SCRIPT LANGUAGE="JavaScript">
self.name = "Framesetter"
</SCRIPT>
</HEAD>
<FRAMESET COLS="50%,50%" onUnload="self.name = ''">

<FRAME NAME="JustAKid1" SRC="lst14-14.htm">
<FRAME NAME="JustAKid2" SRC="lst14-14.htm">

</FRAMESET>
</HTML>

Listing 14-14: Revealing Various Window-Related Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function gatherWindowData() {

var msg = ""

201Chapter 14 ✦ The Window Object

msg = msg + "top name: " + top.name + "
"
msg = msg + "parent name: " + parent.name + "
"
msg = msg + "parent.document.title: " + parent.document.title +

"<P>"
msg = msg + "window name: " + window.name + "
"
msg = msg + "self name: " + self.name + "
"
msg = msg + "self.document.title: " + self.document.title
return msg

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

In the two frames (Figure 14-8), the references to the window and self object
names return the name assigned to the frame by the frameset definition
(JustAKid1 for the top frame, JustAKid2 for the bottom frame). In other words,
from each frame’s point of view, the window object is its own frame. References to
self.document.x refer only to the document loaded into that window frame. But
references to the top and parent windows (which are one and the same in this
example) show that those object properties are shared among both frames.

Figure 14-8: After the document in Listing 14-14 loads into the two frames established
by Listing 14-13, parent and top properties are shared by both frames.

202 Part III ✦ JavaScript Object and Language Reference

A couple other fine points are worth highlighting. First, the name of the
framesetting window is set as the Listing 14-13 loads, rather than in response to an
onLoad= event handler in the <FRAMESET> tag. The reason for this is that the name
must be set in time for the documents loading in the frames to get that value. If I
had waited until the frameset’s onLoad= event handler, the name wouldn’t be set
until after the frame documents had loaded. Second, I restore the parent window’s
name to an empty string when the framesetting document unloads. This is to
prevent future pages from getting confused about the window name.

Related Items: window.frames property; window.self property; window.top
property.

personalbar
scrollbar

See locationbar.

self
Value: Window object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Just as the window object reference is optional, so too is the self property
when the object reference points to the same window as the one containing the
reference. In what may seem to be an unusual construction, the self property
represents the same object as the window. For instance, to obtain the title of the
document in a single-frame window, you can use any of the following three
constructions:

window.document.title
self.document.title
document.title

Although self is a property of a window, you should not combine the
references within a single-frame window script (for example, don’t begin a
reference with window.self). Specifying the self property, though optional for
single-frame windows, can help make an object reference crystal clear to someone
reading your code (and to you, for that matter). Multiple-frame windows are where
you need to pay particular attention to this property.

JavaScript is pretty smart about references to a statement’s own window.
Therefore, you can generally omit the self part of a reference to a same-window
document element. But when you intend to display a document in a multiframe
window, complete references (including the self prefix) to an object make it much
easier on anyone who reads or debugs your code to track who is doing what to
whom. You are free to retrieve the self property of any window. The value that

203Chapter 14 ✦ The Window Object

comes back is an entire window object — a copy of all data that makes up the
window (including properties and methods).

Example
Listing 14-15 uses the same operations as Listing 14-4, but substitutes the self

property for all window object references. The application of this reference is
entirely optional, but it can be helpful for reading and debugging scripts if the
HTML document is to appear in one frame of a multiframe window — especially if
other JavaScript code in this document refers to documents in other frames. The
self reference helps anyone reading the code know precisely which frame was
being addressed.

Listing 14-15: Using the self Property

<HTML>
<HEAD>
<TITLE>self Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
self.defaultStatus = "Welcome to my Web site."
</SCRIPT>
</HEAD>
<BODY>
<A HREF="http://home.netscape.com" onMouseOver="self.status = 'Go to
your browser Home page.';return true" onMouseOut="self.status =
'';return true">Home<P>
<A HREF="http://home.netscape.com" onMouseOver="self.status = 'Visit
Netscape\'s Home page.';return true" onMouseOut="self.status =
self.defaultStatus;return true">Netscape
</BODY>
</HTML>

Related Items: window.frames property; window.parent property; window.top
property.

status
Value: String Gettable: No Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

At the bottom of the browser window is a statusbar. Part of that bar includes an
area that normally discloses the document loading progress or the URL of a link
that the mouse is pointing to at any given instant. You can control the temporary
content of that field by assigning a text string to the window object’s status
property (Figure 14-9). You should adjust the status property only in response to

204 Part III ✦ JavaScript Object and Language Reference

events that have a temporary effect, such as a link or image map area object’s
onMouseOver= event handler. When the status property is set in this situation, it
overrides any other setting in the statusbar. If the user then moves the mouse
pointer away from the object that changes the statusbar, the bar returns to its
default setting (which may be empty on some pages).

Figure 14-9: The statusbar can be set to display a custom message when the pointer
rolls over a link.

Use this window property as a friendlier alternative to displaying the URL of a
link as a user rolls the mouse around the page. For example, if you’d rather use
the statusbar to explain the nature of the destination of a link, put that text into
the statusbar in response to the onMouseOver= event handler. But be aware that
experienced Web surfers like to see URLs down there. Therefore, consider
creating a hybrid message for the statusbar that includes both a friendly
description followed by the URL in parentheses. In multiframe environments, you
can set the window.status property without having to worry about referencing
the individual frame.

Example
In Listing 14-16, the status property is set in a handler embedded in the

onMouseOver= attribute of two HTML link tags. Notice that the handler requires a
return true statement (or any expression that evaluates to return true) as the
last statement of the handler. This statement is required or the status message will
not display.

205Chapter 14 ✦ The Window Object

Listing 14-16: Links with Custom Statusbar Messages

<HTML>
<HEAD>
<TITLE>window.status Property</TITLE>
</HEAD>
<BODY>
<A HREF="http://www.dannyg.com" onMouseOver="window.status = 'Go to my
Home page. (www.dannyg.com)'; return true">Home<P>
<A HREF="http://home.netscape.com" onMouseOver="window.status = 'Visit
Netscape Home page. (home.netscape.com)'; return true">Netscape
</BODY>
</HTML>

As a safeguard against platform-specific anomalies that affect the behavior of
onMouseOver= event handlers and the window.status property, you should also
include an onMouseOut= event handler for links and client-side image map area
objects. Such onMouseOut= event handlers should set the status property to an
empty string. This setting ensures that the statusbar message returns to the
defaultStatus setting when the pointer rolls away from these objects. If you
want to write a generalizable function that handles all window status changes, you
can do so, but word the onMouseOver= attribute carefully so that the event
handler evaluates to return true. Listing 14-17 shows such an alternative.

Listing 14-17: Handling Status Message Changes

<HTML>
<HEAD>
<TITLE>Generalizable window.status Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function showStatus(msg) {

window.status = msg
return true

}
</SCRIPT>
</HEAD>
<BODY>
<A HREF="http://home.netscape.com" onMouseOver="return showStatus('Go
to my Home page.')" onMouseOut="return showStatus('')">Home<P>
<A HREF="http://home.netscape.com" onMouseOver="return
showStatus('Visit Netscape Home page.')" onMouseOut="return
showStatus('')">Netscape
</BODY>
</HTML>

Notice how the event handlers return the results of the showStatus() method
to the event handler, allowing the entire handler to evaluate to return true.

206 Part III ✦ JavaScript Object and Language Reference

One final example of setting the statusbar (shown in Listing 14-18) also
demonstrates how to create a scrolling banner in the statusbar.

Listing 14-18: Creating a Scrolling Banner

<HTML>
<HEAD>
<TITLE>Message Scroller</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
var msg = "Welcome to my world..."
var delay = 150
var timerId
var maxCount = 0
var currCount = 1

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {

maxCount = 3 * msg.length
}
window.status = msg
// keep track of how many characters have scrolled
currCount++
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1)
// test whether we've reached maximum character count
if (currCount >= maxCount) {

timerID = 0 // zero out the timer
window.status = "" // clear the status bar
return // break out of function

} else {
// recursive call to this function
timerId = setTimeout("scrollMsg()", delay)

}
}
// -->
</SCRIPT>
</HEAD>
<BODY onLoad="scrollMsg()">
</BODY>
</HTML>

Because the statusbar is being set by a standalone function (rather than by an
onMouseOver= event handler), you do not have to append a return true
statement to set the status property. The scrollMsg() function uses more
advanced JavaScript concepts, such as the window.setTimeout() method (covered
later in this chapter) and string methods (covered in Chapter 27). To speed the pace
at which the words scroll across the statusbar, reduce the value of delay.

207Chapter 14 ✦ The Window Object

Many Web surfers (myself included) don’t care for these scrollers that run
forever in the statusbar. They can also crash earlier browsers, because the
setTimeout() method eats application memory in Navigator 2. Use scrolling bars
sparingly or design them to run only a few times after the document loads.

Setting the status property with onMouseOver= event handlers has had a
checkered career along various implementations in Navigator. A script that sets
the statusbar is always in competition against the browser itself, which uses the
statusbar to report loading progress. Bugs also prevent the bar from clearing itself,
even when an onMouseOut= event handler sets it to an empty string. The situation
improves with each new browser version, but be prepared for anomalies among
visitors using older scriptable browsers.

Related Items: window.defaultStatus property; onMouseOver= event handler;
onMouseOut= event handler; link object.

statusbar
toolbar

See locationbar.

top
Value: Window object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The window object’s top property refers to the topmost window in the
JavaScript hierarchy. For a single-frame window, the reference is to the same object
as the window itself (including the self and parent property), so do not include
window as part of the reference. In a multiframe window, the top window is the one
that defines the first frameset (in case of nested framesets). Users don’t ever really
see the top window in a multiframe environment, but the browser stores it as an
object in its memory. The reason is that the top window has the road map to the
other frames (if one frame should need to reference an object in a different frame),
and its children frames can call upon it. Such a reference looks like

top.functionName([parameters])

For more about the distinction between the top and parent properties, see the
in-depth discussion about scripting frames at the beginning of this chapter. See
also the example of the parent property for listings that demonstrate the values of
the top property.

Related Items: window.frames property; window.self property; window.parent
property.

Note

208 Part III ✦ JavaScript Object and Language Reference

window
Value: Window object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Listing the window property as a separate property may be more confusing than
helpful. The window property is the same object as the window object. You do not
need to use a reference that begins with window.window. Although the window
object is assumed for many references, you can use window as part of a reference
to items in the same window or frame as the script statement that makes that
reference. You should not, however, use window as a part of a reference involving
items higher up in the hierarchy (top or parent).

Methods
alert(message)

Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

An alert dialog box is a modal window that presents a message to the user with
a single OK button to dismiss the dialog box. As long as the alert dialog box is
showing, no other application or window can be made active. The user must
dismiss the dialog box before proceeding with any more work in the browser or on
the computer.

The single parameter to the alert() method can be a value of any data type,
including representations of some unusual data types whose values you don’t
normally work with in JavaScript (such as complete objects). This makes the alert
dialog box a handy tool for debugging JavaScript scripts. Anytime you want to
monitor the value of an expression, use that expression as the parameter to a
temporary alert() method in your code. The script proceeds to that point and
then stops to show you the value. (See Chapter 45 for more tips on debugging
scripts.)

What is often disturbing to application designers is that all JavaScript-created
modal dialog boxes (via the alert(), confirm(), and prompt() methods) identify
themselves as being generated by JavaScript or the browser (Internet Explorer 4).
The look is particularly annoying in browsers before Navigator 4 and Internet
Explorer 4, because the wording appears directly in the dialog box’s content area,
rather than in the title bar of the dialog box. The purpose of this identification is to

209Chapter 14 ✦ The Window Object

act as a security precaution against unscrupulous scripters who might try to spoof
system or browser alert dialog boxes inviting a user to reveal passwords or other
private information. These identifying words cannot be overwritten or eliminated
by your scripts. If you want more control over a window, generate a separate
browser window with window.open(). Unless you use signed scripts to create an
always raised window, that new window will not be a modal dialog box and could
get hidden behind a larger window. Syntax for Internet Explorer 4’s special dialog-
style window is not part of Navigator 4.

Because the alert() method is of a global nature (that is, no particular frame
in a multiframe environment derives any benefit from laying claim to the alert
dialog box), a common practice is to omit all window object references from the
statement that calls the method. Restrict the use of alert dialog boxes in your
HTML documents and site designs. The modality of the windows is disruptive to
the flow of a user’s navigation around your pages. Communicate with users via
forms or by writing to separate document window frames.

Example
The parameter for the example in Listing 14-19 is a concatenated string. It joins

together two fixed strings and the value of the browser’s appName property.
Loading this document causes the alert dialog box to appear, as shown in several
configurations in Figure 14-10. The JavaScript Alert: line cannot be deleted
from the dialog box in earlier browsers, nor can the title bar be changed in
Navigator 4 or Internet Explorer 4.

Listing 14-19: Displaying an Alert Dialog Box

<HTML>
<HEAD>
<TITLE>window.alert() Method</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
alert("You are running the " + navigator.appName + " browser.")
</SCRIPT>
</BODY>
</HTML>

Figure 14-10: Results of the alert() method in Listing 14-19 in Navigator 3
and Navigator 4 for Windows 95

Related Items: window.confirm() method; window.prompt() method.

210 Part III ✦ JavaScript Object and Language Reference

back()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

The Back button’s behavior has gone through transformations since Navigator
2. Some authors like the changes, others do not. In Navigator 2, the history object
(and all navigation methods associated with it) assumed the entire browser
window would change with a click of the Back or Forward button in the toolbar.
With the increased popularity of frames, this mechanism didn’t work well if one
frame remained static while documents flew in and out of another frame:
navigation had to be on a frame-by-frame basis, and that’s how the Back and
Forward buttons worked in Navigator 3 and now in Navigator 4.

From Navigator 3 onward, each window object (including frames) maintains its
own history. Unfortunately, JavaScript doesn’t observe this until you get to
Navigator 4, and thus for a lot of browsers out there (including Internet Explorer 3
and Internet Explorer 4), the history navigation methods control the global history.
The purpose of the window.back() method is to offer a scripted version of the
global back and forward navigation buttons, while allowing the history object to
control navigation strictly within a particular window or frame — as it should. For
more information about version compatibility and the back and forward
navigation, see the history object in Chapter 15.

Example
Listing 14-20 is a framesetting document for a back() and forward() method

laboratory to help you understand the differences between window and history
navigation. All the work is done in the document shown in Listing 14-21.

Listing 14-20: Navigation Lab Frameset

<HTML>
<HEAD>
<TITLE>Back and Forward</TITLE>
</HEAD>
<FRAMESET COLS="45%,55%">

<FRAME NAME="controller" SRC="lst14-21.htm">
<FRAME NAME="display" SRC="lst14-03.htm">

</FRAMESET>
</HTML>

The top portion of Listing 14-21 contains simple links to other example files
from this chapter. A click on any link loads a different document into the right-
hand frame to let you build some history inside the frame.

211Chapter 14 ✦ The Window Object

Listing 14-21: Navigation Lab Control Panel

<HTML>
<HEAD>
<TITLE>Lab Controls</TITLE>
</HEAD>
<BODY>
Load a series of documents into the right frame by clicking some of
these links (make a note of the sequence you click on):<P>
Listing 14-4

Listing 14-5

Listing 14-9

Listing 14-10

<HR>
<FORM NAME="input">
Click on the various buttons below to see the results in this
frameset:<P>

Substitute for toolbar buttons -- <TT>window.back()</TT> and
<TT>window.forward()</TT>:<INPUT TYPE="button" VALUE="Back"
onClick="window.back()"><INPUT TYPE="button" VALUE="Forward"
onClick="window.forward()"><P>

<TT>history.back()</TT> and <TT>history.forward()</TT> for
righthand frame:<INPUT TYPE="button" VALUE="Back"
onClick="parent.display.history.back()"><INPUT TYPE="button"
VALUE="Forward" onClick="parent.display.history.forward()"><P>

<TT>history.back()</TT> for this frame:<INPUT TYPE="button"
VALUE="Back" onClick="history.back()"><P>

</FORM>
</BODY>
</HTML>

At the bottom are three sets of navigation buttons. All scripting is performed
directly in the button event handlers. The button first pair is tied to the
window.back() and window.forward() methods. These work only in Navigator 4.
The others are tied to histories of each frame. When you reach the end of a history
list (by clicking either of the history.back() buttons), navigation ceases,
because that frame is out of history. But the window.back() button is connected
to the browser’s global history (the one you see in the Go menu) and can keep
going back until the entire frameset of Listing 14-20 is gone. The behavior of the
history methods is different outside of Navigator 4.

Related Items: window.forward() method; history.back() method;
history.forward() method; history.go() method.

212 Part III ✦ JavaScript Object and Language Reference

blur()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

The opposite of window.focus() is window.blur(), which pushes the
referenced window to the back of all other open windows. If other Navigator
windows, such as the Mail or News windows, are open, the window receiving the
blur() method is placed behind these windows as well. As with the
window.focus() method, make sure that your references signify the correct
window. See Listing 14-30 for an example of window.blur() in action.

Related Items: window.open() method; window.focus() method;
window.opener property.

captureEvents(eventTypeList)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

In Navigator 4, an event filters down from the window object and eventually
reaches its intended target. For example, if you click a button, the click event first
reaches the window object; then it goes to the document object; and eventually (in
a split second) it reaches the button, where an onClick= event handler is ready to
act on that click.

The Netscape mechanism allows window, document, and layer objects to
intercept events and process them prior to reaching their intended targets (or
preventing them from reaching their destinations entirely). But for one of these
outer containers to grab an event, your script must instruct it to capture the type
of event your application is interested in preprocessing. If you want the window
object to intercept all events of a particular type, use the window.captureEvents()
method to turn that facility on.

This method takes one or more event types as parameters. An event type is a
constant value built inside Navigator 4’s event object. One event type exists for
every kind of event handler you see in all of Navigator 4’s document objects. The
syntax is the event object name (Event) and the event name in all uppercase
letters. For example, if you want the window to intercept all click events, the
statement is

window.captureEvents(Event.CLICK)

213Chapter 14 ✦ The Window Object

For multiple events, add them as parameters, separated by the pipe (|) character:

window.captureEvents(Event.MOUSEDOWN | Event.KEYPRESS)

Once an event type is captured by the window object, it must have a function
ready to deal with the event. For example, perhaps the function looks through all
Event.MOUSEDOWN events and looks to see if the right mouse button was the one
that triggered the event and what form element (if any) is the intended target.
The goal is to perhaps display a popup-menu (as a separate layer) for a right-
click. If the click comes from the left mouse button, the event is routed to its
intended target.

To associate a function with a particular event type captured by a window
object, assign a function to the event. For example, to assign a custom
doClickEvent() function to click events captured by the window object, use the
following statement:

window.onclick=doClickEvent

Note that the function name is assigned only as a reference name (no quotes or
parentheses), not like an event handler within a tag. The function itself is like any
function, but it has the added benefit of automatically receiving the event object as
a parameter. To turn off event capture for one or more event types, use the
window.releaseEvent() method. See Chapter 33 for details of working with
events in this manner.

Example
The page in Listing 14-22 is an exercise in capturing and releasing click events in

the window layer. Whenever the window is capturing click events, the flash()
function runs. In that function, the event is examined so that only if the Control
key is also being held down and the name of the button starts with “button” does
the document background color flash red. For all click events (that is, those
directed at objects on the page capable of their own onClick= event handlers),
the click is processed with the routeEvent() method to make sure the target
buttons execute their own onClick= event handlers.

Listing 14-22: Capturing Click Events in the Window

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
// function to run when window captures a click event
function flash(e) {

if (e.modifiers == Event.CONTROL_MASK &&
e.target.name.indexOf("button") == 0) {

document.bgColor = "red"
setTimeout("document.bgColor = 'white'", 500)

}
// let event continue to target
routeEvent(e)

}
// default setting to capture click events

(continued)

214 Part III ✦ JavaScript Object and Language Reference

Listing 14-22 Continued

window.captureEvents(Event.CLICK)
// assign flash() function to click events captured by window
window.onclick = flash
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<FORM NAME="buttons">
Turn window click event capture on or off (Default is "On")<P>
<INPUT NAME="captureOn" TYPE="button" VALUE="Capture On"
onClick="window.captureEvents(Event.CLICK)">
<INPUT NAME="captureOff" TYPE="button" VALUE="Capture Off"
onClick="window.releaseEvents(Event.CLICK)">
<HR>
Ctrl+Click on a button to see if clicks are being captured by the
window (background color will flash red):<P>

<INPUT NAME="button1" TYPE="button" VALUE="Informix"
onClick="alert('You clicked on Informix.')">
<INPUT NAME="button2" TYPE="button" VALUE="Oracle"
onClick="alert('You clicked on Oracle.')">
<INPUT NAME="button3" TYPE="button" VALUE="Sybase"
onClick="alert('You clicked on Sybase.')">

</FORM>
</BODY>
</HTML>

When you try this page, also turn off window event capture. Now only the
buttons’ onClick= event handlers execute, and the page does not flash red.

Related Items: window.disableExternalCapture() method;
window.enableExternalCapture() method; window.handleEvent() method;
window.releaseEvents() method; window.routeEvent() method.

clearInterval(intervalIDnumber)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

Use the window.clearInterval() method to turn off an interval loop action
started with the window.setInterval() method. The parameter is the ID number
returned by the setInterval() method. A common application for the JavaScript
interval mechanism is animation of an object on a page. If you have multiple

215Chapter 14 ✦ The Window Object

intervals running, each has its own ID value in memory. You can turn off any
interval by its ID value. Once an interval loop stops, your script cannot resume
that interval: It must start a new one, which will generate a new ID value.

Example
See Listings 14-43 and 14-44 for an example of how setInterval() and

clearInterval() are used together on a page.

Related Items: window.setInterval() method; window.setTimeout() method;
window.clearTimeout() method.

clearTimeout(timeoutIDnumber)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Use the window.clearTimeout() method in concert with the
window.setTimeout() method, as described later in this chapter, when you want
your script to cancel a timer that is waiting to run its expression. The parameter for
this method is the ID number that the window.setTimeout() method returns when
the timer starts ticking. The clearTimeout() method cancels the specified
timeout. A good practice is to check your code for instances where user action may
negate the need for a running timer — and to stop that timer before it goes off.

Example
The page in Listing 14-23 features one text field and two buttons (Figure 14-11).

One button starts a count-down timer coded to last one minute (easily modifiable);
the other button interrupts the timer at any time while it is running. When the
minute is up, an alert dialog box lets you know.

Listing 14-23: A Count-Down Timer

<HTML>
<HEAD>
<TITLE>Count Down Timer</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
var running = false
var endTime = null
var timerID = null

function startTimer() {
running = true
now = new Date()

(continued)

216 Part III ✦ JavaScript Object and Language Reference

Listing 14-13 Continued

now = now.getTime()
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1)
showCountDown()

}

function showCountDown() {
var now = new Date()
now = now.getTime()
if (endTime - now <= 0) {

stopTimer()
alert("Time is up. Put down your pencils.")

} else {
var delta = new Date(endTime - now)
var theMin = delta.getMinutes()
var theSec = delta.getSeconds()
var theTime = theMin
theTime += ((theSec < 10) ? ":0" : ":") + theSec
document.forms[0].timerDisplay.value = theTime
if (running) {

timerID = setTimeout("showCountDown()",1000)
}

}
}

function stopTimer() {
clearTimeout(timerID)
running = false
document.forms[0].timerDisplay.value = "0:00"

}
//-->
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE="button" NAME="startTime" VALUE="Start 1 min. Timer"
onClick="startTimer()">
<INPUT TYPE="button" NAME="clearTime" VALUE="Clear Timer"
onClick="stopTimer()"><P>
<INPUT TYPE="text" NAME="timerDisplay" VALUE="">
</FORM>
</BODY>
</HTML>

Notice that the script establishes three variables with global scope in the
window: running, endTime, and timerID. These values are needed inside multiple
functions, so they are initialized outside of the functions.

217Chapter 14 ✦ The Window Object

Figure 14-11: The count-down timer page as it displays the time remaining

In the startTimer() function, you switch the running flag on, meaning that
the timer should be going. Using some date functions (Chapter 29), you extract the
current time in milliseconds and add the number of milliseconds for the next
minute (the extra multiplication by one is the place where you can change the
amount to the desired number of minutes). With the end time stored in a global
variable, the function now calls another function that compares the current and
end times and displays the difference in the text field.

Early in the showCountDown() function, check to see if the timer has wound
down. If so, you stop the timer and alert the user. Otherwise, the function
continues to calculate the difference between the two times and formats the time
in mm:ss format. As long as the running flag is set to true, the function sets the
one-second timeout timer before repeating itself. To stop the timer before it has
run out (in the stopTimer() function), the most important step is to cancel the
timeout running inside the browser. The clearTimeout() method uses the global
timerID value to do that. Then the function turns off the running switch and
zeros out the display.

When you run the timer, you may occasionally notice that the time skips a
second. It’s not cheating. It just takes slightly more than one second to wait for the
timeout and then finish the calculations for the next second’s display. What you’re
seeing is the display catching up with the real time left.

Related Items: window.setTimeout().

218 Part III ✦ JavaScript Object and Language Reference

close()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The window.close() method closes the browser window referenced by the
window object. Most likely, you will use this method to close subwindows created
from a main document window. If the call to close the window comes from a
window other than the new subwindow, the original window object must maintain a
record of the subwindow object. You accomplish this by storing the value returned
from the window.open() method in a global variable that will be available to other
objects later (for example, a variable not initialized inside a function). If, on the
other hand, an object inside the new subwindow calls the window.close()
method, the window or self reference is sufficient.

Be sure to include a window as part of the reference to this method. Failure to
do so causes JavaScript to regard the statement as a document.close() method,
which has different behavior (see Chapter 16). Only the window.close() method
can close the window via a script. Closing a window, of course, forces the window
to trigger an onUnload= event handler before the window disappears from view;
but once you’ve initiated the window.close() method, you cannot stop it from
completing its task.

While I’m on the subject of closing windows, a special case exists when a
subwindow tries to close the main window (via a statement such as self.opener.
close()) when the main window has more than one entry in its session history.
As a safety precaution against scripts closing windows they did not create,
Navigator 3 and later ask the user whether he or she wants the main window to
close (via a Navigator-generated JavaScript confirm dialog box). This security
precaution cannot be overridden except in Navigator 4 via a signed script when
the user grants permission to control the browser (Chapter 40).

Example
See Listing 14-3 (for the window.closed property), which provides an

elaborate, cross-platform, bug-accommodating example of applying the
window.close() method across multiple windows.

Related Items: window.open(); document.close().

confirm(message)
Returns: True or false.

219Chapter 14 ✦ The Window Object

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

A confirm dialog box presents a message in a modal dialog box along with OK
and Cancel buttons. Such a dialog box can be used to ask a question of the user,
usually prior to a script performing actions that will not be undoable. Querying a
user about proceeding with typical Web navigation in response to user interaction
on a form element is generally a disruptive waste of the user’s time and attention.
But for operations that may reveal a user’s identity or send form data to a server, a
JavaScript confirm dialog box may make a great deal of sense. Users can also
accidentally click buttons, so you should provide avenues for backing out of an
operation before it executes.

Because this dialog box returns a Boolean value (OK = true; Cancel = false),
you can use this method as a comparison expression or as an assignment
expression. In a comparison expression, you nest the method within any other
statement where a Boolean value is required. For example

if (confirm(“Are you sure?”)) {
alert(“OK”)

} else {
alert(“Not OK”)

}

Here, the returned value of the confirm dialog box provides the desired Boolean
value type for the if...else construction (Chapter 31).

This method can also appear on the right side of an assignment expression, as in

var adult = confirm(“You certify that you are over 18 years old?”)
if (adult) {

statements for adults
} else {

statements for children
}

You cannot specify other alert icons or labels for the two buttons in JavaScript
confirm dialog box windows.

Be careful how you word the question in the confirm dialog box. In Navigator 2
and 3, the buttons are labeled OK and Cancel in Windows browsers; the Mac
versions, however, label the buttons Yes and No. If your visitors may be using
older Mac Navigators, be sure your questions are logically answered with both sets
of button labels. In Navigator 4, all platforms are the same (OK and Cancel).

Example
The example in Listing 14-24 shows the user interface part of how you can use a

confirm dialog box to query a user before clearing a table full of user-entered data.
The JavaScript Application line in the title bar, as shown in Figure 14-12, or
the JavaScript Confirm legend in earlier browser versions cannot be removed
from the dialog box.

Caution

220 Part III ✦ JavaScript Object and Language Reference

Listing 14-24: The Confirm Dialog Box

<HTML>
<HEAD>
<TITLE>window.confirm() Method</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function clearTable() {

if (confirm("Are you sure you want to empty the table?")) {
alert("Emptying the table...") // for demo purposes
//statements that actually empty the fields

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE="button" NAME="clear" VALUE="Reset Table"
onClick="clearTable()">
</FORM>
</BODY>
</HTML>

Figure 14-12: A JavaScript confirm dialog
box (Navigator 4 Windows 95 format)

Related Items: window.alert(); window.prompt(); form.submit() method.

disableExternalCapture()

enableExternalCapture()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Security restrictions prevent one frame from monitoring events in another
frame (when a different domain is in that second frame) unless the user has
granted permission to a signed script. Controlling this cross-frame access

221Chapter 14 ✦ The Window Object

requires two special window object methods: enableExternalCapture() and
disableExternalCapture().

Putting these methods to work is a little trickier than manipulating the regular
window.captureEvents() method. You have to turn on external capture in the
frame doing the capture, but then set captureEvents() and the event handler in
the frame whose events you want to capture. Moreover, when a new document
loads into the second frame, you must set the captureEvents() and event
handler for that frame again. See Chapter 40 for details about signed scripts.

Example
A framesetting document in Listing 14-25 loads two frames that let you

experiment with both local and external event capture. You must either code sign
the page or turn on codebase principals (see Chapter 40) to use this example. In
the left frame is the control panel (Listing 14-26) for the laboratory. In the right
frame I load Netscape’s home page to provide a page with a different domain than
your local disk or Web server. You can see what this frameset looks like in Figure
14-13.

Listing 14-25: Frameset for Capture Laboratory

<HTML>
<HEAD>
<TITLE>window.frames property</TITLE>
</HEAD>
<FRAMESET COLS="40%,60%">

<FRAME NAME="controls" SRC="lst14-26.htm">
<FRAME NAME="display" SRC="http://home.netscape.com">

</FRAMESET>
</HTML>

The control panel is an extension of the one used to demonstrate the
window.captureEvents() method earlier in this chapter. In addition to the local
window event capture, this new version adds a function that toggles external event
capture on and off. To help differentiate the results of the local and external click
event capture, the local capture flashes the control panel color in red; the external
capture flashes in yellow.

Listing 14-26: Control Panel for Capture Laboratory

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2" ARCHIVE="lst14-26.jar" ID="main">
// function to run when window captures a click event
function flashRed(e) {

if (e.modifiers == Event.CONTROL_MASK &&

(continued)

222 Part III ✦ JavaScript Object and Language Reference

Listing 14-26 Continued

e.target.name.indexOf("button") == 0) {
document.bgColor = "red"
setTimeout("document.bgColor = 'white'", 500)

}
// let event continue to target
routeEvent(e)

}
function flashYellow(e) {

if (e.target.href) {
document.bgColor = "yellow"
setTimeout("document.bgColor = 'white'", 500)

}
// let event continue to target
routeEvent(e)

}
function setExternal(on) {

if (on) {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
window.enableExternalCapture()
parent.display.captureEvents(Event.CLICK)
parent.display.onclick=flashYellow

} else {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
window.disableExternalCapture()

}
}

// default setting to capture click events
window.captureEvents(Event.CLICK)
// assign flash() function to click events captured by window
window.onclick = flashRed
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white"
onUnload="netscape.security.PrivilegeManager.disablePrivilege('Universal
BrowserWrite')" ID="handler">
<FORM NAME="buttons">
Turn window click event capture on or off (Default is "On")<P>
<INPUT NAME="captureOn" TYPE="button" VALUE="Capture On"
onClick="window.captureEvents(Event.CLICK)">
<INPUT NAME="captureOff" TYPE="button" VALUE="Capture Off"
onClick="window.releaseEvents(Event.CLICK)">
<HR>
Turn window click event EXTERNAL capture on or off (Default is
"Off")<P>
<INPUT NAME="captureOn" TYPE="button" VALUE="External Capture On"
onClick="setExternal(true)">

223Chapter 14 ✦ The Window Object

<INPUT NAME="captureOff" TYPE="button" VALUE="External Capture Off"
onClick="setExternal(false)">
<HR>
Ctrl+Click on a button to see if clicks are being captured by the
window (background color will flash red):<P>

<INPUT NAME="button1" TYPE="button" VALUE="Informix"
onClick="alert('You clicked on Informix.')">
<INPUT NAME="button2" TYPE="button" VALUE="Oracle"
onClick="alert('You clicked on Oracle.')">
<INPUT NAME="button3" TYPE="button" VALUE="Sybase"
onClick="alert('You clicked on Sybase.')">

</FORM>
</BODY>
</HTML>

When the frameset initially loads, only the local window event capture is turned
on, as before. The two statements at the end of the <SCRIPT> tag take care of that,
including the one that directs all click events from the control panel window to the
flashRed() function. In the <SCRIPT> tag, I put the attributes relating to signed
scripts as a reminder that if this page were to be deployed on a server, the
<SCRIPT> tag and every event handler in the document would require an ID
attribute (see Chapter 40 for details). For the sake of readability, I have omitted the
ID attributes for most of the event handlers, assuming that you will be trying this
example with the help of codebase principals enabled.

The setExternal() function is a single function that toggles the external
capture based on the Boolean value it receives as an argument. To turn on external
capture, the script first invokes the Java method that requests
UniversalBrowserWrite permission from the user (no error handling is built into
this example to accommodate permission denial). Next,
enableExternalCapture() is set for the control panel window: the one with the
scripts that will be doing the processing of events from the second frame.

The remaining two statements are directed at the other frame. They engage
event capturing over there for click events and direct those events to the
flashYellow() function defined here in the control panel. JavaScript takes care of
making the connections that force those external events to run a local function.

When you load this frameset and start clicking around, turn on the external
capture, and click any link in the right frame. The control panel should flash yellow
momentarily. If that link navigated to another page, you must turn on external
capture again; but if the link navigated to an anchor on the same page, the next click
will flash the yellow again. All the while, Ctrl+clicking on the lower three control
panel buttons causes the background to flash red. Study the code carefully in Listing
14-26 and click around the laboratory frames to see how the two frames are handled.

Related Items: window.captureEvents() method; event object; signed scripts.

224 Part III ✦ JavaScript Object and Language Reference

Figure 14-13: The local and external event capture laboratory

find([“searchString” [, matchCaseBoolean,
searchUpBoolean]])

Returns: Boolean value for nondialog searches.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

The window.find() method gives you a good amount of control over searching
for a text string within a document contained by a window or frame. The action of
this method mimics the powers of the browser’s Find dialog box, accessible from
the Find button in the toolbar.

The easiest way to deploy this command is without any parameters. This
displays the browser’s Find dialog box, just as if the user had clicked the Find
button in the toolbar. If you want a search function available in a window lacking a
toolbar, this is the way to go. With no parameters, this function does not return a
value.

You can, however, go further to put the search facility more under script control.
At the minimum, you can specify a search string as a parameter to the function. The
search is based on simple string matching, and is not in any way connected with
the regular expression kind of search (see Chapter 30). If the search finds a match,

225Chapter 14 ✦ The Window Object

the browser scrolls to that matching word, and highlights the word, just like using
the browser’s own Find dialog box. The function also returns a Boolean true when
a match is found. This function does not allow you to bypass the scrolling and
physical highlighting of the found string. If no match is found in the document or no
more matches occur in the current search direction (the default direction is from
top to bottom), the function returns false. This lets you control how the lack of a
match is alerted to the user or what action the script should take.

Two optional parameters to the scripted find action let you specify whether the
search should be case-sensitive and whether the search direction should be
upward from the bottom of the document. These choices are identical to the ones
that appear in the browser’s Find dialog. Default behavior is case-insensitive
searches from top to bottom. If you specify any one of these two optional
parameters, you must specify both of them.

Internet Explorer 4 also has a text search facility, but it is implemented in an
entirely different way (using its TextRange object and findText() method). The
visual behavior also differs in that it does not highlight and scroll to a matching
string in the text.

Example
Listing 14-27 is a framesetting document for an interface that permits

experimentation with the window.find() method. The top frame is a control panel
for searching in a copy of the Bill of Rights that appears in the bottom frame.

Listing 14-27: Find() Method Frameset

<HTML>
<HEAD>
<TITLE>window.find() method</TITLE>
</HEAD>
<FRAMESET ROWS="25%,75%">

<FRAME NAME="controls" SRC="lst14-28.htm">
<FRAME NAME="display" SRC="bofright.htm">

</FRAMESET>
</HTML>

All the action takes place in Listing 14-28, which is the control panel for text
searches in the lower frame.

Listing 14-28: Find() Method Control Panel

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
// function to run when window captures a click event
function findIt(form) {

var matchString = form.searchTxt.value

(continued)

226 Part III ✦ JavaScript Object and Language Reference

Listing 14-28 Continued

var showDialog = form.dialog.checked
var caseSensitive = form.sensitive.checked
var backward = form.bkward.checked
var wind = parent.display
var success = true

if (showDialog) {
wind.find()

} else {
if (!matchString) {

alert("Enter a search string in the field.")
} else {

success = wind.find(matchString,caseSensitive,backward)
}

}
if (!success) {

alert("No (more) matches found.")
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="controls">
<INPUT NAME="finder" TYPE="button" VALUE="Find..."
onClick="findIt(this.form)">
<INPUT NAME="searchTxt" TYPE="text">

<INPUT NAME="dialog" TYPE="checkbox"
onClick="this.form.sensitive.checked = false; this.form.bkward.checked
= false">Show Find dialog

<INPUT NAME="sensitive" TYPE="checkbox"
onClick="this.form.dialog.checked = false">Match case

<INPUT NAME="bkward" TYPE="checkbox" onClick="this.form.dialog.checked
= false">Search up

</FORM>
</BODY>
</HTML>

The control panel contains one text field for input of a string to search for.
Three checkboxes let you set whether the browser’s Find dialog should appear or
the search should be entirely under script control with the two optional
parameters. The Find button triggers the findIt() function, which assembles
find() methods based on the checkbox settings and field input.

In the find() function, I first extract all the settings and assign them to
individual variables. This is primarily for readability later in the function
(eliminating all the long references in statements). Notice that the window being
targeted for the search is the display frame, not the current window where the
controls are.

227Chapter 14 ✦ The Window Object

To start playing with this example, enter the word “article” into the text box and
click the Find button. Continue clicking as the highlighted instances of found text
come into view. When you reach the end of the document, the function’s alert
dialog box tells you there are no more matches to be found (at least in the current
direction). Activate the “Search up” checkbox and then start finding in the
opposite direction. If you activate the “Match case” checkbox, no matches will be
found, since the word “article” is in all uppercase letters in the document.

Related Items: None.

focus()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

The minute you create another window for the user in your Web site
environment, you must pay attention to window layer management. With browser
windows so easily activated by the slightest mouse click, a user can lose a smaller
window behind a larger one in a snap. Most inexperienced Navigator users won’t
think to pull down the Window or Communicator menu to see whether the smaller
window is still open and then activate it from the menu. If that subwindow is
important to your site design, then you should present a button or other device in
each window that enables users to safely switch between windows. The
window.focus() method brings the referenced window to the front of all the
windows.

Rather than supply a separate button on your page to bring a hidden window
forward, you should build your window-opening functions in such a way that if the
window is already open, the function automatically brings that window forward, as
shown in the example that follows. This removes the burden of window
management from your visitors.

The key to success with this method is making sure that your references to the
desired windows are correct. Therefore, be prepared to use the window.opener
property to refer to the main window if a subwindow needs to bring the main
window back into focus. If your windowing environment consists of three or more
windows, you have to make sure that you assign a unique name to each window
and then use those names if subwindows need to communicate with other
subwindows.

Example
To show how both the window.focus() method and its opposite,

window.blur(), operate, Listing 14-29 creates a two-window environment. From
each window, you can bring the other window to the front. The main window uses
the object returned by window.open() to assemble the reference to the new
window. In the subwindow (whose content is created entirely on the fly by
JavaScript), self.opener is summoned to refer to the original window, while self

228 Part III ✦ JavaScript Object and Language Reference

is used to direct the blur() method to the subwindow itself. Blurring one window
and focusing on another window both have the same result of sending the window
to the back of the pile.

Listing 14-29: The window.focus() and window.blur() Methods

<HTML>
<HEAD>
<TITLE>Focus() and Blur()</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
// declare global variable name
var newWindow = null
function makeNewWindow() {

// check if window already exists
if (!newWindow || newWindow.closed) {

// store new window object in global variable
newWindow = window.open("","","width=250,height=250")
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>Another Sub

Window</TITLE></HEAD>"
newContent += "<BODY bgColor='salmon'><H1>A Salmon-Colored

Subwindow.</H1>"
newContent += "<FORM><INPUT TYPE='button' VALUE='Bring Main

to Front' onClick='self.opener.focus()'>"
newContent += "<FORM><INPUT TYPE='button' VALUE='Put Me in

Back' onClick='self.blur()'>"
newContent += "</FORM></BODY></HTML>"
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close()

} else {
// window already exists, so bring it forward
newWindow.focus()
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" NAME="newOne" VALUE="Show New Window"
onClick="makeNewWindow()">
</FORM>
</BODY>
</HTML>

A key ingredient to the success of the makeNewWindow() function in Listing 14-
29 is the first conditional expression. Because newWind is initialized as a null value
when the page loads, that is its value the first time through the function. But after
the subwindow is opened the first time, newWind is assigned a value (the
subwindow object) that remains intact even if the user closes the window. Thus,
the value doesn’t revert to null by itself. To catch the possibility that the user has

229Chapter 14 ✦ The Window Object

closed the window, the conditional expression also sees if the window is closed. If
it is, a new subwindow is generated, and that new window’s reference value is
reassigned to the newWind variable. On the other hand, if the window reference
exists and the window is not closed, that subwindow is brought to the front with
the focus() method.

Related Items: window.open() method; window.blur() method; window.opener
property.

forward()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

The Forward button’s behavior has followed the same evolution as the Back
button’s since Navigator 2. In Navigator 2, the history object (and all navigation
methods associated with it) assumed the entire browser window would change
with a click of the Back or Forward button in the toolbar. With the increased
popularity of frames, this mechanism didn’t work well if one frame remained static
while documents flew in and out of another frame: navigation had to be on a frame-
by-frame basis, and that’s how the Back and Forward buttons worked in Navigator
3 and now in Navigator 4.

From Navigator 3 onward, each window object (including frames) maintains its
own history. Unfortunately, JavaScript doesn’t observe this until you get to
Navigator 4, and thus for a lot of browsers out there (including Internet Explorer 3
and Internet Explorer 4), the history navigation methods control the global history.
The purpose of the window.forward() method is to offer a scripted version of the
global forward navigation, while allowing the history object to control navigation
strictly within a particular window or frame — as it should. For more information
about version compatibility and the back and forward navigation, see the history
object in Chapter 15.

Example
See the Navigation laboratory example in Listing 14-20 and 14-21 to see the

differences among the various navigation methods.

Related Items: window.back() method; history object.

handleEvent(event)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

230 Part III ✦ JavaScript Object and Language Reference

When you explicitly capture events in the window, document, or layer object (by
invoking the captureEvents() method for that object), you can control where the
events go after their initial capture. To let an event continue to its original target
(for example, a button that was clicked by a user), you use the routeEvent()
method. But if you want to redirect an event (or class of events) to a particular
event handler elsewhere in the document, use the handleEvent() method.

Every object that has event handlers associated with it also has a
handleEvent() method. Thus, if you are capturing click events in a window, you
can redirect the events to, say, a particular button or link on the page because
both of those objects know what to do with click events. Consider the following
code excerpt:

<SCRIPT LANGUAGE=”JavaScript1.2”>
// function to run when window captures a click event
function doClicks(e) {

// send all clicks to the first link in the document
document.links[0].handleEvent(e)

}
// set window to capture click events
window.captureEvents(Event.CLICK)
// assign doClick() function to click events captured by window
window.onclick = doClicks
</SCRIPT>

The window is set up to capture all click events and invoke the doClicks()
function each time the user clicks on a clickable item in the window. In the
doClicks() function is a single statement that instructs the first link in the
document to handle the click event being passed as a parameter. The link must
have an onClick= event handler defined for this to be meaningful. Because the
event object is passed along, the link’s event handler can examine event properties
(for example, location of the click) and perhaps alter some of the link’s properties
before letting it perform its linking task. The preceding example is really showing
how to use handleEvent() with a link object, rather than a window object. There
is little opportunity for other objects to capture events that normally go to the
window, but this method is part of every event-aware object.

Example
See Chapter 33 for details and in-depth examples of working with the event

object.

Related Items: window.captureEvents() method; window.releaseEvents()
method; window.routeEvent() method; event object.

home()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

231Chapter 14 ✦ The Window Object

Like many of the window methods new to Navigator 4, the window.home()
method provides a scripted way of replicating the action of a toolbar button: the
Home button. The action navigates the browser to whatever URL is set in the
browser preferences for home page location. Even if you have the starting page set
to a blank page, both the Home button and the window.home() method go to the
URL. You cannot control the default home page of a visitor’s browser. Therefore, I
recommend that you use this method only if you provide an alternative interface
to the toolbar you have turned off (with a signed script).

Related Items: window.back() method; window.forward() method;
window.toolbar property.

moveBy(deltaX,deltaY)
moveTo(x,y)

Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

JavaScript (starting with Navigator 4) can adjust the location of a browser
window on the screen. This applies to the main window or any subwindow
generated by script. The only security restriction that applies is moving the
window off screen entirely: you need a signed script and the user’s permission to
hide a window this way.

You can move a window to an absolute position on the screen or adjust it along
the horizontal and/or vertical axis by any number of pixels, irrespective of the
absolute pixel position. The coordinate space for the x (horizontal) and y (vertical)
position is the entire screen, with the top-left corner representing 0,0. The point of the
window you set with the moveBy() and moveTo() methods is the very top-left corner
of the outer edge of the browser window. Therefore, when you move the window to
point 0,0, that sets the window flush with the top-left corner of the screen.

If you try to adjust the position of the window such that any edge falls beyond
the screen area, the window remains at the edge of the screen — unless you are
using a signed script and have the user’s permission to adjust the window partially
or completely offscreen. It is dangerous to move the only visible browser window
entirely off screen, because the user has no way to get it back into view without
quitting and relaunching Navigator 4.

The difference between the moveTo() and moveBy() methods is that one is an
absolute move, while the other is relative. Parameters you specify for moveTo()
are the precise horizontal and vertical pixel counts on the screen where you want
the upper-left corner of the window to appear. In contrast, the parameters for
moveBy() indicate how far to adjust the window location in either direction. If you
want to move the window 25 pixels to the right, you must still include both
parameters, but the y value will be zero:

window.moveBy(25,0)

232 Part III ✦ JavaScript Object and Language Reference

To move to the left, the first parameter must be a negative number.

Example
Several examples of using the window.moveTo() and window.moveBy()

methods are shown in Listing 14-30. The page presents four buttons, each of which
performs a different kind of browser window movement.

Listing 14-30: Window Boogie

<HTML>
<HEAD>
<TITLE>Window Gymnastics</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
// function to run when window captures a click event
function moveOffScreen() {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")

var maxX = screen.width
var maxY = screen.height
window.moveTo(maxX+1, maxY+1)
setTimeout("window.moveTo(0,0)",500)

netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserWrite")
}
// moves window in a circular motion
function revolve() {

var winX = (screen.availWidth - window.outerWidth) / 2
var winY = 50
window.resizeTo(300,200)
window.moveTo(winX, winY)

for (var i = 1; i < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5
winY += Math.sin(i * (Math.PI/18)) * 5
window.moveTo(winX, winY)

}
}
// moves window in a horizontal zig-zag pattern
function zigzag() {

window.resizeTo(300,200)
window.moveTo(0,80)
var incrementX = 2
var incrementY = 2
var floor = screen.availHeight - outerHeight
var rightEdge = screen.availWidth - outerWidth
for (var i = 0; i < rightEdge; i += 2) {

window.moveBy(incrementX, incrementY)
if (i%60 == 0) {

incrementY = -incrementY
}

}
}
// resizes window to occupy all available screen real estate
function maximize() {

233Chapter 14 ✦ The Window Object

window.moveTo(0,0)
window.outerWidth = screen.availWidth
window.outerHeight = screen.availHeight

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="buttons">
Window Gymnastics<P>

<INPUT NAME="offscreen" TYPE="button" VALUE="Disappear a Second"
onClick="moveOffScreen()">
<INPUT NAME="circles" TYPE="button" VALUE="Circular Motion"
onClick="revolve()">
<INPUT NAME="bouncer" TYPE="button" VALUE="Zig Zag"
onClick="zigzag()">
<INPUT NAME="expander" TYPE="button" VALUE="Maximize"
onClick="maximize()">

</FORM>
</BODY>
</HTML>

The first button requires that you have codebase principals turned on (see
Chapter 40) to take advantage of what would normally be a signed script. The
moveOffScreen() function momentarily moves the window entirely out of view.
Notice how the script determines the size of the screen before deciding where to
move the window. After the journey off screen, the window comes back into view
at the upper-left corner of the screen.

If using the Web sometimes seems like going around in circles, then the second
function, revolve(), should feel just right. After reducing the size of the window
and positioning it near the top center of the screen (notice the calculation to
determine the x coordinate for centering the window horizontally), the script uses
a bit of math to position the window along 36 places around a perfect circle (at 10-
degree increments). This is an example of how to dynamically control a window’s
position based on math calculations.

To demonstrate the moveBy() method, the third function, zigzag(), uses a for
loop to increment the coordinate points to make the window travel in a sawtooth
pattern across the screen. The x coordinate continues to increment linearly until
the window is at the edge of the screen (also calculated on the fly to accommodate
any size monitor). The y coordinate must increase and decrease as that parameter
changes direction at various times across the screen.

In the fourth function, you see some practical code (finally) that demonstrates
how best to maximize the browser window to fill the entire available screen space
on the visitor’s monitor. Notice that instead of using the resizeTo() method, I set
the outerHeight and outerWidth properties of the window. These settings are
less bug prone than the resizeTo() method.

Related Items: window.outerHeight property; window.outerWidth property;
window.resizeBy() method; window.resizeTo() method.

234 Part III ✦ JavaScript Object and Language Reference

open(“URL”, “windowName” [, “windowFeatures”])
Returns: A window object representing the newly created window; null if
method fails.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

With the window.open() method, a script provides a Web site designer with an
immense range of options for the way a second or third Web browser window
looks on the user’s computer screen. Moreover, most of this control can work with
all JavaScript-enabled browsers without the need for signed scripts. Because the
interface elements of a new window are easier to envision, I cover those aspects of
the window.open() method parameters first.

The optional windowFeatures parameter is one string, consisting of a comma-
separated list of assignment expressions (behaving something like HTML tag
attributes). If you omit this third parameter, JavaScript creates the same type of
new window you’d get from the New Web Browser menu choice in the File menu.
But you can control which window elements appear in the new window with the
third parameter. Remember this important rule: If you specify any of the method’s
original set of third parameter values, all of those features are turned off unless the
parameters specify the features to be switched on. Table 14-1 lists the attributes
you can control for a newly created window in all browsers.

Table 14-1
window.open() Method Attributes Controllable via Script

Attribute Value Description

toolbar Boolean “Back,” “Forward,” and other buttons in the row

location Boolean Field displaying the current URL

directories Boolean “What’s New” and other buttons in the row

status Boolean Statusbar at bottom of window

menubar* Boolean Menubar at top of window

scrollbars Boolean Displays scrollbars if document is larger than window

resizable** Boolean Interface elements that allow resizing by dragging

copyhistory Boolean Duplicates Go menu history for new window

width pixelCount Window outer width in pixels

height pixelCount Window outer height in pixels

* Not on Macintosh because the menubar is not in the browser window; when off in Navigator 4, displays an
abbreviated Mac menubar.

** Macintosh windows are always resizable.

235Chapter 14 ✦ The Window Object

Boolean values for true can be either yes, 1, or just the feature name by itself;
for false, use a value of no or 0. If you omit any Boolean attributes, they are
rendered as false. Therefore, if you want to create a new window that shows only
the toolbar and statusbar and is resizable, the method looks like this:

window.open(“newURL”,”NewWindow”, “toolbar,status,resizable”)

A new window that does not specify the height and width is set to the default
size of the browser window that the browser creates from a File menu’s New Web
Browser command. In other words, a new window does not automatically inherit
the size of the window making the window.open() method call. A new window
created via a script is positioned somewhat arbitrarily, depending on the operating
system platform of the browser. Generally, though, the position is at or near the
top-left corner of the screen, just as a new Web browser window would be; window
position is not scriptable except in Navigator 4.

Speaking of Navigator 4, this browser version includes a suite of extra features
for the window.open() method. Those parameters deemed to be security risks
require signed scripts and the user’s permission before they are recognized. If the
user fails to grant permission, the secure parameter is ignored. Table 14-2 shows
the extra window features provided by Navigator 4.

Table 14-2
Extra window.open() Method Attributes in Navigator 4

Attribute Value Description

alwaysLowered* Boolean Always behind other browser windows

alwaysRaised* Boolean Always in front of other browser windows

dependent Boolean Subwindow closes if the opener window closes

hotkeys Boolean If true, disables menu shortcuts (except Quit and
Security Info) when menubar is turned off

innerHeight** pixelCount Content region height; same as old height property

innerWidth** pixelCount Content region width; same as old width property

outerHeight** pixelCount Visible window height

outerWidth** pixelCount Visible window width

screenX** pixelCount Horizontal position of top-left corner on screen

screenY** pixelCount Vertical position of top-left corner on screen

titlebar* Boolean Title bar and all other border elements

z-lock* Boolean Window layer is fixed below browser windows

* Requires a signed script

** Requires a signed script to size or position a window beyond safe threshold

A couple of these new attributes have different behaviors on different operating
system platforms, due to the way the systems manage their application windows.

236 Part III ✦ JavaScript Object and Language Reference

For example, the alwaysLowered, alwaysRaised, and z-locked styles can exist in
layers that range behind Navigator 4’s own windows in the Windows 95 platform;
on the Mac, however, such windows are confined to the levels occupied by
Navigator 4. The difference is that Windows 95 allows windows from multiple
applications to interleave each other, while the Mac keeps each application’s
windows in contiguous layers.

To apply signed scripts to opening a new window with the secure window
features, you must enable UniversalBrowserWrite privileges like you do for
other signed scripts (see Chapter 40). A code fragment that generates an
alwaysRaised style window follows:

<SCRIPT LANGUAGE=”JavaScript” ARCHIVE=”myJar.jar” ID=”1”>
function newRaisedWindow() {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)

var newWindow =
window.open(“”,””,”HEIGHT=100,WIDTH=300,alwaysRaised”)

netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
var newContent = “<HTML><BODY> On top of spaghetti!””
newContent += “<FORM><CENTER><INPUT TYPE=’button’ VALUE=’OK’”
newContent +=

“onClick=’self.close()’></CENTER></FORM></BODY></HTML>”
newWindow.document.write(newContent)
newWindow.document.close()

}
</SCRIPT>

You can experiment with the look and behavior of new windows with any
combination of attributes with the help of the script in Listing 14-31. This page
presents a table of all new window Boolean attributes and creates a new 300-by-300
pixel window based on your choices. This page assumes that if you are using
Navigator 4 you have codebase principals turned on for signed scripts (see
Chapter 40). The interface for this laboratory is shown in Figure 14-14.

Be careful with turning off the title bar and hotkeys. With the title bar off, the
content appears to float in space, because absolutely no borders are displayed.
With hotkeys still turned on, you can use Ctrl+W to close this borderless window
(except on the Mac, for which the hotkeys are always disabled with the title bar
off). This is how you can turn a computer into a kiosk by sizing a window to the
screen’s dimensions and setting the window options to “titlebar=no,
hotkeys=no,alwaysRaised=yes”.

Listing 14-31: New Window Laboratory

<HTML>
<HEAD>
<TITLE>window.open() Options</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var isNav4 = (navigator.appName == "Netscape" &&
navigator.appVersion.charAt(0) == 4) ? true : false

function makeNewWind(form) {

237Chapter 14 ✦ The Window Object

if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
}
var attr = "HEIGHT=300,WIDTH=300"
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == "checkbox") {
attr += "," + form.elements[i].name + "="
attr += (form.elements[i].checked) ? "yes" : "no"

}
}
var newWind = window.open("bofright.htm","subwindow",attr)
if (isNav4) {

netscape.security.PrivilegeManager.disablePrivilege("CanvasAccess")
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Select new window options:
<TABLE BORDER=2>
<TR>

<TD COLSPAN=2 BGCOLOR="yellow" ALIGN="middle">All Browsers
Features:</TD>
</TR>
<TR>

<TD><INPUT TYPE="checkbox" NAME="toolbar">toolbar</TD>
<TD><INPUT TYPE="checkbox" NAME="location">location</TD>

</TR>
<TR>

<TD><INPUT TYPE="checkbox" NAME="directories">directories</TD>
<TD><INPUT TYPE="checkbox" NAME="status">status</TD>

</TR>
<TR>

<TD><INPUT TYPE="checkbox" NAME="menubar">menubar</TD>
<TD><INPUT TYPE="checkbox" NAME="scrollbars">scrollbars</TD>

</TR>
<TR>

<TD><INPUT TYPE="checkbox" NAME="resizable">resizable</TD>
<TD><INPUT TYPE="checkbox" NAME="copyhistory">copyhistory</TD>

</TR>
<TR>

<TD COLSPAN=2 BGCOLOR="yellow" ALIGN="middle">Communicator
Features:</TD>
</TR>
<TR>

<TD><INPUT TYPE="checkbox"
NAME="alwaysLowered">alwaysLowered</TD>

<TD><INPUT TYPE="checkbox" NAME="alwaysRaised">alwaysRaised</TD>
</TR>

(continued)

238 Part III ✦ JavaScript Object and Language Reference

Listing 14-31 Continued

<TR>
<TD><INPUT TYPE="checkbox" NAME="dependent">dependent</TD>
<TD><INPUT TYPE="checkbox" NAME="hotkeys" CHECKED>hotkeys</TD>

</TR>
<TR>

<TD><INPUT TYPE="checkbox" NAME="titlebar" CHECKED>titlebar</TD>
<TD><INPUT TYPE="checkbox" NAME="z-lock">z-lock</TD>

</TR>
<TR>

<TD COLSPAN=2 ALIGN="middle"><INPUT TYPE="button" NAME="forAll"
VALUE="Make New Window" onClick="makeNewWind(this.form)"></TD>
</TR>
</TABLE>

</FORM>
</BODY>
</HTML>

Figure 14-14: A new window attribute laboratory interface

Getting back to the other parameters of window.open(), the middle parameter
is the name for the new window. Don’t confuse this parameter with the document’s
title, which would normally be set by whatever HTML text determines the content
of the window. A window name must be the same style of one-word identifier you

239Chapter 14 ✦ The Window Object

use for other object names and variables. This name is also an entirely different
entity than the window object that the open() method returns. You don’t use the
name in your scripts. At most, the name can be used for TARGET attributes of links
and forms.

A script generally populates a window with one of two kinds of information:

✦ An existing HTML document whose URL is known beforehand

✦ An HTML page created on the fly

To create a new window that displays an existing HTML document, supply the
full URL as the first parameter of the window.open() method. If your page is
having difficulty loading a URL into a new page (except as noted in the sidebar “A
Navigator 2 bug workaround”), try specifying the complete URL of the target
document (instead of just the filename).

Leaving the first parameter as an empty string forces the window to open with a
blank document, ready to have HTML written to it by your script (or loaded
separately by another statement that sets that window’s location to a specific
URL). If you plan to write the content of the window on the fly, assemble your
HTML content as one long string value and then use the document.write()
method to post that content to the new window. If you plan to append no further
writing to the page, also include a document.close() method at the end to tell
the browser that you’re finished with the layout (so that the Layout:Complete or
Document:Done message appears in the statusbar, if your new window has one).

A call to the window.open() method returns a value of the new window’s object
if the window opens successfully. This value is vitally important if your script
needs to address elements of that new window (such as when writing to its
document). When a script creates a new window, the default window object (which
the script normally points to) still contains the document that holds the script.
The new window does not, even though it may be on top. Therefore, to further
manipulate items within the new window, you need a reference to that new window
object. After the new window is open, however, no parent-child relationship exists
between the windows.

To handle references to the subwindow properly, you should always assign the
result of a window.open() method to a global variable. Before writing to the new
window the first time, test the variable to make sure that it is not a null value —
the window may have failed to open because of low memory, for instance. If
everything is okay, you can use that variable as the beginning of a reference to any
property or object within the new window. For example

newWindow = window.open(“”,””)
if (newWindow != null) {

newWindow.document.write(“<HTML><HEAD><TITLE>Hi!</TITLE></HEAD>”)
}

If you initialize the new window’s variable as a global variable (see Chapter 34),
any value that the variable receives (even if it gets the value while inside a
function) remains in effect as long as the original document stays loaded in the
first window. You can come back to that value in another script handler (perhaps
some button that closes the subwindow) by making the proper reference to the
new window.

240 Part III ✦ JavaScript Object and Language Reference

A Navigator 2 bug workaround

If you’re concerned about backward compatibility with Navigator 2, you should be aware
of a bug in the Macintosh and UNIX flavors of the browser. In those versions, if you include
a URL as a parameter to window.open(), Navigator opens the window but does not load
the URL. A second call to the window.open() method is required. Moreover, the second
parameter must be an empty string if you add any third-parameter settings. Here is a sam-
ple listing you can adapt for your own usage:

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// workaround for window.open() bug on X and Mac platforms
function makeNewWindow() {

var newWindow =
window.open(“http://www.dannyg.com”,””,”status,height=200,width=300”)

if (navigator.appVersion.charAt(0) == “2” &&
navigator.appName == “Netscape”) {

newWindow =
window.open(“http://www.dannyg.com”,””,”status,height=200,width=300”)

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”newOne” VALUE=”Create New Window”
onClick=”makeNewWindow()”>
</FORM>
</BODY>
</HTML>

This workaround can also be used without penalty in Windows versions of Navigator 2 and
Navigator 3.

When scripts in the subwindow need to communicate with objects and scripts
in the originating window, you must make sure that the subwindow has an opener
property if the level of JavaScript in the visitor’s browser doesn’t automatically
supply one. See the discussion about the window.opener property earlier in this
chapter.

Invoking multiple window.open() methods with the same window name
parameter (the second parameter) does not create additional copies of that
window in Netscape browsers (although it does in Internet Explorer 3). JavaScript
prevents you from creating two windows with the same name. Nor does a
window.open() method bring an existing window of that name to the front of the
window layers: Use window.focus() for that.

241Chapter 14 ✦ The Window Object

Example
In Listing 14-32, I install a button that generates a new window of a specific size

that has only the statusbar turned on. The script here shows all the elements
necessary to create a new window that has all the right stuff on most platforms.
The new window object reference is assigned to a global variable, newWindow.
Before a new window is generated, the script looks to see if the window has never
been generated before (in which case newWindow would be null) or, for newer
browsers, the window is closed. If either condition is true, the window is created
with the open() method. Otherwise, the existing window is brought forward with
the focus() method (Navigator 3 and up; Internet Explorer 4).

As a safeguard against older browsers, the script manually adds an opener
property to the new window if one is not already assigned by the open() method.
The current window object reference is assigned to that property.

To build the string that is eventually written to the document, I use the += (add-
by-value) operator, which appends the string on the right side of the operator to
the string stored in the variable on the left side. In this example, the new window is
handed an <H1>-level line of text to display.

Listing 14-32: Creating a New Window

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var newWindow
function makeNewWindow() {

if (!newWindow || newWindow.closed) {
newWindow = window.open("","","status,height=200,width=300")
if (!newWindow.opener) {

newWindow.opener = window
}
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>One Sub

Window</TITLE></HEAD>"
newContent += "<BODY><H1>This window is brand new.</H1>"
newContent += "</BODY></HTML>"
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close layout stream

} else {
// window's already open; bring to front
newWindow.focus()

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" NAME="newOne" VALUE="Create New Window"
onClick="makeNewWindow()">

(continued)

242 Part III ✦ JavaScript Object and Language Reference

Listing 14-32 Continued

</FORM>
</BODY>
</HTML>

If you need to create a new window for the lowest common denominator of
scriptable browser, you will have to omit the focus() method and the
window.closed property from the script (as well as add the bug workaround
described earlier). Or you may prefer to forego a subwindow for all browsers
below a certain level. For example, Navigator 3 and up provide a solid foundation
for new window features available for Internet Explorer users only from Version 4.
But also see Listing 14-3 (in the window.closed property discussion) for other
ideas about cross-platform authoring for subwindows.

Related Items: window.close() method; window.blur() method;
window.focus() method; window.closed property.

print()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Like several other new window methods for Navigator 4, print() provides a
scripted way of invoking the Print button in the toolbar, whether the toolbar is
visible or not. Printing, however, is a little different, because a user — and now a
script — can specify that the entire browser window be printed or just a particular
frame. If you build a reference to the print() method with a reference to a frame,
then just that frame will be printed. To prevent a rogue print() command from
tying up a printer without the user’s permission, the print() method goes only so
far as to present the browser’s print dialog box. The user must still click the OK or
Print button (depending on the operating system) to send the window or frame
content to the printer.

Example
Listing 14-33 is a frameset that loads Listing 14-34 into the top frame and a copy

of the Bill of Rights into the bottom frame.

Listing 14-33: Print Frameset

<HTML>
<HEAD>
<TITLE>window.print() method</TITLE>

243Chapter 14 ✦ The Window Object

</HEAD>
<FRAMESET ROWS="25%,75%">

<FRAME NAME="controls" SRC="lst14-34.htm">
<FRAME NAME="display" SRC="bofright.htm">

</FRAMESET>
</HTML>

Two buttons in the top control panel (Listing 14-34) let you print the whole
frameset or just the lower frame. To print the entire frameset, the reference
includes the parent window; to print the lower frame, the reference is directed at
the parent.display frame.

Listing 14-34: Printing Control

<HTML>
<HEAD>
<TITLE>Print()</TITLE>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" NAME="printWhole" VALUE="Print Entire Frameset"
onClick="parent.print()"><P>
<INPUT TYPE="button" NAME="printFrame" VALUE="Print Bottom Frame Only"
onClick="parent.display.print()"><P>
</FORM>
</BODY>
</HTML>

If you don’t like some facet of the printed output, blame the browser’s print
engine, and not JavaScript. The print() method merely invokes the browser’s
regular printing routines. Pages whose content is generated entirely by JavaScript
print only in Navigator 3 and later (and Internet Explorer 4). A page containing
some HTML and some JavaScript-generated content prints only the HTML portion.

Related Items: window.back() method; window.forward() method;
window.home() method; window.find() method.

prompt(message, defaultReply)
Returns: String of text entered by user or null.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The third kind of dialog box that JavaScript can display includes a message from
the script author, a field for user entry, and two buttons (OK and Cancel, or Yes

244 Part III ✦ JavaScript Object and Language Reference

and No on Mac versions of Navigator 2 and 3). The script writer can supply a
prewritten answer so a user confronted with a prompt dialog box can click OK (or
press Enter) to accept that answer without further typing. Supplying both
parameters to the window.prompt() method is important. Even if you don’t want
to supply a default answer, enter an empty string as the second parameter:

prompt(“What is your postal code?”,””)

If you omit the second parameter, JavaScript inserts the string <undefined> into
the dialog box’s field. This will be disconcerting to most Web page visitors.

The value returned by this method is a string in the dialog box’s field when the
user clicks on the OK button. If you’re asking the user to enter a number,
remember that the value returned by this method is a string. You may need to
perform data-type conversion with the parseInt() or parseFloat() functions
(see Chapter 28) to use the returned values in math calculations.

When the user clicks on the prompt dialog box’s OK button without entering
any text into a blank field, the returned value is an empty string (“”). Clicking on
the Cancel button, however, makes the method return a null value. Therefore, the
scripter must test for the type of returned value to make sure that the user entered
some data that can be processed later in the script, as in

var entry = prompt(“Enter a number between 1 and 10:”,””)
if (entry != null) {

statements to execute with the value
}

This script excerpt assigns the results of the prompt dialog box to a variable
and executes the nested statements if the returned value of the dialog box is not
null
(if the user clicked on the OK button). The rest of the statements then have to
include data validation to make sure that the entry was a number within the
desired range (see Chapter 37).

It may be tempting to use the prompt dialog box as a handy user input device.
But, like the other JavaScript dialog boxes, the modality of the prompt dialog box
is disruptive to the user’s flow through a document and can also trap automated
macros that some users activate to capture Web sites. In forms, HTML fields are
better user interface elements for attracting user text entry. Perhaps the safest way
to use a prompt dialog box is to have it appear when a user clicks a button
element on a page — and then only if the information you require of the user can
be provided in a single prompt dialog box. Presenting a sequence of prompt dialog
boxes is downright annoying to users.

Example
The function that receives values from the prompt dialog box in Listing 14-35

(see the dialog box in Figure 14-15) does some data-entry validation (but certainly
not enough for a commercial site). It first checks to make sure that the returned
value is neither null (Cancel) nor an empty string (the user clicked on OK without
entering any values). See Chapter 37 for more about data-entry validation.

245Chapter 14 ✦ The Window Object

Listing 14-35: The Prompt Dialog Box

<HTML>
<HEAD>
<TITLE>window.prompt() Method</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function populateTable() {

var howMany = prompt("Fill in table for how many factors?","")
if (howMany != null && howMany != "") {

alert("Filling the table for " + howMany) // for demo
//statements that validate the entry and
//actually populate the fields of the table

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE="button" NAME="fill" VALUE="Fill Table..."
onClick="populateTable()">
</FORM>
</BODY>
</HTML>

Figure 14-15: The prompt dialog box displayed
from Listing 14-35 (Windows 95 format)

Notice one important user interface element in Listing 14-35. Because clicking on
the button leads to a dialog box that requires more information from the user, the
button’s label ends in an ellipsis (or, rather, three periods acting as an ellipsis
character). The ellipsis is a common courtesy to let users know that a user interface
element leads to a dialog box of some sort. As in similar situations in Windows 95
and Macintosh programs, the user should be able to cancel out of that dialog box
and return to the same screen state that existed before the button was clicked.

Related Items: window.alert() method; window.confirm() method.

246 Part III ✦ JavaScript Object and Language Reference

releaseEvents(eventTypeList)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

If your scripts have enabled event capture for the window object (or document
or layer, for that matter), you can turn off that capture with the releaseEvents()
method. This does not inhibit events from reaching their intended target. In fact,
by releasing capture from a higher object, released events don’t bother stopping at
those higher objects anymore. Parameters for the releaseEvents() method are
one or more event types. Each event type is its own entity, so if your window
captures three event types at one point, you can release some or all of those event
types as the visitor interacts with your page. For example, if the page loads and
captures three types of events, as in

window.captureEvents(Event.CLICK | Event.KEYPRESS | Event.CHANGE)

you can later turn off window event capture for all but the click event:

window.releaseEvents(Event.KEYPRESS | Event.CHANGE)

The window will still capture and process click events, but keyPress and change
events go directly to their target objects.

Related Items: window.captureEvents() method; window.routeEvent() method.

resizeBy(deltaX,deltaY)

resizeTo(outerwidth,outerheight)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Starting with Navigator 4, scripts can control the size of the current browser
window on the fly. While you can set the individual inner and outer width and
height properties of a window, the resizeBy() and resizeTo() methods let you
adjust both axis measurements in one statement. In both instances, all adjustments
affect the lower-right corner of the window: To move the top-left corner, use the
window.moveBy() or window.moveTo() methods.

Each resize method requires a different kind of parameter. The resizeBy()
method adjusts the window by a certain number of pixels along one or both axes.
Therefore, it is not concerned with the specific size of the window beforehand —

247Chapter 14 ✦ The Window Object

only by how much each axis is to change. For example, to increase the current
window size by 100 pixels horizontally and 50 pixels vertically, the statement
would be

window.resizeBy(100, 50)

Both parameters are required, but if you only want to adjust the size in one
direction, set the other to zero. This would be the same as adding a value to one of
the outer window measurement properties. You may also shrink the window by
using negative values for either or both parameters.

There is greater need for the resizeTo() method, especially when you know
that on a particular platform the window needs adjustment to a specific width and
height to best accommodate that platform’s display of form elements. Parameters
for the resizeTo() method are the actual pixel width and height of the outer
dimension of the window — the same as the window.outerWidth and
window.outerHeight properties. In practice, I have found that the resizeTo()
method behaves less accurately than setting the individual properties. If you need
to maximize the browser window to the user’s monitor, use the script segment
shown in the window.outerHeight property discussion.

For both methods, you are limited to the viewable area of the screen unless the
page uses signed scripts (see Chapter 40). With signed scripts and the users
permission, you can adjust windows beyond the available screen borders.

Example
You can experiment with the resize methods with the page in Listing 14-36.

Two parts of a form let you enter values for each method. The one for
window.resize() also lets you enter a number of repetitions to better see the
impact of the values. Enter zero and negative values to see how those affect the
method.

Listing 14-36: Window Resize Methods

<HTML>
<HEAD>
<TITLE>Window Resize Methods</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function doResizeBy(form) {

var x = parseInt(form.resizeByX.value)
var y = parseInt(form.resizeByY.value)
var count = parseInt(form.count.value)
for (var i = 0; i < count; i++) {

window.resizeBy(x, y)
}

}
function doResizeTo(form) {

var x = parseInt(form.resizeToX.value)
var y = parseInt(form.resizeToY.value)
window.resizeTo(x, y)

}
</SCRIPT>
</HEAD>

(continued)

248 Part III ✦ JavaScript Object and Language Reference

Listing 14-36 Continued

<BODY>
<FORM>
Enter the x and y increment, plus how many times the window should
be resized by these increments:

Horiz:<INPUT TYPE="text" NAME="resizeByX" SIZE=4>
Vert:<INPUT TYPE="text" NAME="resizeByY" SIZE=4>
How Many:<INPUT TYPE="text" NAME="count" SIZE=4>
<INPUT TYPE="button" NAME="ResizeBy" VALUE="Show resizeBy()"
onClick="doResizeBy(this.form)">
<HR>
Enter the desired width and height of the current window:

Width:<INPUT TYPE="text" NAME="resizeToX" SIZE=4>
Height:<INPUT TYPE="text" NAME="resizeToY" SIZE=4>
<INPUT TYPE="button" NAME="ResizeTo" VALUE="Show resizeTo()"
onClick="doResizeTo(this.form)">
</FORM>
</BODY>
</HTML>

Related Items: window.outerHeight property; window.outerWidth property;
window.moveTo() method.

routeEvent(event)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

If you turn on event capturing in the window, document, or layer object (via their
respective captureEvents() methods), the event handler you assign to those
events really captures those events, preventing them from ever reaching their
intended targets. For some page designs, this is intentional, as it allows the higher-
level object to handle all events of a particular type. But if your goal is to perform
some preprocessing of events before they reach their destination, you need a way to
pass that event along its regular path. That’s what the routeEvent() method is for.

Perhaps a more common reason for capturing events at the window (or similar)
level is to look for special cases, such as when someone Ctrl+clicks on an element.
In this case, even though the window event handler receives all click events, it
performs further processing only when the event.modifiers property indicates
the Ctrl key is also pressed and the event.target property reveals the item being
clicked is a link rather than a button. All other instances of the click event are
routed on their way to their destinations. The event object knows where it’s going,
so your routeEvent() method doesn’t have to worry about that.

249Chapter 14 ✦ The Window Object

The parameter for the routeEvent() method is the event object that is passed
to the function that processes the high-level event, as shown here:

function flashRed(e) {
[statements that filter specific events to flash background color red]
routeEvent(e)

}

The event object, e, comes into the function and is passed unmodified to the
object that was clicked.

Example
The window.routeEvent() method is used in the example for

window.captureEvents(), Listing 14-22.

Related Items: window.captureEvents() method; window.releaseEvents()
method; window.handleEvent() method; event object.

scroll(horizontalCoord, verticalCoord)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Although you can control precious little about the look of an existing window
via JavaScript, you can adjust the way a document scrolls inside a window or
frame. On the surface, the window.scroll() method sounds like a practical
power within scripts. Due to the way various platforms render fonts and other
visual elements on the screen, the window.scroll() method works best when
you use absolute positioning of Dynamic HTML. Unless you know the precise pixel
location of a desired element to bring into view, the method won’t be particularly
valuable as an internal navigation device (navigating to anchors with the location
object is more precise in this situation).

If you are designing for Navigator 4 and do not require backward compatibility
to Navigator 3 or Internet Explorer 4, use the window.scrollTo() method instead
of the window.scroll() method. Both methods perform the same operation, but
the new method better fits into the latest direction of the Netscape object model.

The window.scroll() method takes two parameters, the horizontal (x) and
vertical (y) coordinates of the document that is to be positioned at the top-left
corner of the window or frame. You must realize that the window and document
have two similar, but independent, coordinate schemes. From the window’s point of
view, the top-left pixel (of the active area) is point 0,0. All documents also have a 0,0
point: the very top-left of the document. The window’s 0,0 point doesn’t move, but
the document’s 0,0 point can move — via manual or scripted scrolling. Although
scroll() is a window method, it seems to behave more like a document method, as
the document appears to reposition itself within the window. Conversely, you can
also think of the window moving to bring its 0,0 point to the designated coordinate
of the document.

Note

250 Part III ✦ JavaScript Object and Language Reference

Although you can set values to ones that go beyond the maximum size of the
document or to negative values, the results vary from platform to platform. For the
moment, the best usage of the window.scroll() method is as a means of
adjusting the scroll to the very top of a document (window.scroll(0,0)) when
you want the user to be at a base location in the document. For vertical scrolling
within a text-heavy document, an HTML anchor may be a better alternative for
now (though it doesn’t readjust horizontal scrolling).

Example
To demonstrate the scroll() method, Listing 14-37 defines a frameset with a

document in the top frame (Listing 14-38) and a control panel in the bottom frame
(Listing 14-39). A series of buttons and text fields in the control panel frame directs
the scrolling of the document. I’ve selected an arbitrary, large GIF image to use in
the example. To see results of some horizontal scrolling values, you may need to
shrink the width of the browser window until a horizontal scrollbar appears in the
top frame.

Listing 14-37: A Frameset for the scroll() Demonstration

<HTML>
<HEAD>
<TITLE>window.scroll() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<FRAME SRC="lst14-38.htm" NAME="display">
<FRAME SRC="lst14-39.htm" NAME="control">

</FRAMESET>
</HTML>

Listing 14-38: The Image to Be Scrolled

<HTML>
<HEAD>
<TITLE>Arch</TITLE>
</HEAD>

<BODY>
<H1>A Picture is Worth...</H1>
<HR>
<CENTER>
<TABLE BORDER=3>
<CAPTION ALIGN=bottom>A Splendid Arch</CAPTION>
<TD>

</TD></TABLE></CENTER>
</BODY>
</HTML>

251Chapter 14 ✦ The Window Object

Listing 14-39: Controls to Adjust Scrolling of the Upper Frame

<HTML>
<HEAD>
<TITLE>Scroll Controller</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
function scroll(x,y) {

parent.frames[0].scroll(x,y)
}
function customScroll(form) {

parent.frames[0].scroll(parseInt(form.x.value),parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
<H2>Scroll Controller</H2>
<HR>
<FORM NAME="fixed">
Click on a scroll coordinate for the upper frame:<P>
<INPUT TYPE="button" VALUE="0,0" onClick="scroll(0,0)">
<INPUT TYPE="button" VALUE="0,100" onClick="scroll(0,100)">
<INPUT TYPE="button" VALUE="100,0" onClick="scroll(100,0)">
<P>
<INPUT TYPE="button" VALUE="-100,100" onClick="scroll(-100,100)">
<INPUT TYPE="button" VALUE="20,200" onClick="scroll(20,200)">
<INPUT TYPE="button" VALUE="1000,3000" onClick="scroll(1000,3000)">
</FORM>
<HR>
<FORM NAME="custom">
Enter an Horizontal
<INPUT TYPE="text" NAME="x" VALUE="0" SIZE=4>
and Vertical
<INPUT TYPE="text" NAME="y" VALUE="0" SIZE=4>
value. Then
<INPUT TYPE="button" VALUE="click to scroll"
onClick="customScroll(this.form)">
</FORM>
</BODY>
</HTML>

Notice that in the customScroll() function, JavaScript must convert the string
values from the two text boxes to integers (with the parseInt() method) for the
scroll() method to accept them. Nonnumeric data can produce very odd results.
Also be aware that although this example shows how to adjust the scroll values in
another frame, you can set such values in the same frame or window as the script,
as well as in subwindows, provided that you use the correct object references to
the window.

Related Items: window.scrollBy() method; window.scrollTo() method.

252 Part III ✦ JavaScript Object and Language Reference

scrollBy(deltaX,deltaY)
scrollTo(x,y)

Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Navigator 4 provides a related pair of window scrolling methods. The
window.scrollTo() method is the new version of the window.scroll() method.
The two work identically to position a specific coordinate point of a document at
the top-left corner of the inner window region.

In contrast, the window.scrollBy() method allows for relative positioning of
the document. Parameter values indicate by how many pixels the document
should scroll in the window (horizontally and vertically). Negative numbers are
allowed if you want to scroll to the left and/or upward. The scrollBy() method
comes in handy if you elect to hide the scrollbars of a window or frame and offer
other types of scrolling controls for your users. For example, to scroll down one
screenful of a long document, you can use the window.innerHeight to determine
what the offset from the current position would be:

window.scrollBy(0, window.innerHeight)

To scroll upward, use a negative value for the second parameter:

window.scrollBy(0, -window.innerHeight)

Scrolling the document in the Macintosh exhibits some buggy behavior. At times
it appears as though you are allowed to scroll well beyond the document edges. In
truth, the document has stopped at the border, but the window or frame may not
have refreshed properly.

Example
To work with the scrollTo() method, you can use Listings 14-37 through 14-39

(the window.scroll() method) but substitute window.scrollTo() for
window.scroll(). The results should be the same. For scrollBy(), the example
starts with the frameset in Listing 14-40. It loads the same content document as the
window.scroll() example (Listing 14-38), but the control panel (Listing 14-41)
provides input to experiment with the scrollBy() method.

Listing 14-40: Frameset for ScrollBy Controller

<HTML>
<HEAD>
<TITLE>window.scrollBy() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">

Note

253Chapter 14 ✦ The Window Object

<FRAME SRC="lst14-38.htm" NAME="display">
<FRAME SRC="lst14-41.htm" NAME="control">

</FRAMESET>
</HTML>

Notice in Listing 14-41 that all references to window properties and methods are
directed to the display frame. String values retrieved from text fields are converted
to number with the parseInt() global function.

Listing 14-41: ScrollBy Controller

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
function page(direction) {

var deltaY = parent.display.innerHeight
if (direction == "up") {

deltaY = -deltaY
}
parent.display.scrollBy(0, deltaY)

}
function customScroll(form) {

parent.display.scrollBy(parseInt(form.x.value),
parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
ScrollBy Controller
<FORM NAME="custom">
Enter an Horizontal increment
<INPUT TYPE="text" NAME="x" VALUE="0" SIZE=4">
and Vertical
<INPUT TYPE="text" NAME="y" VALUE="0" SIZE=4">
value.
Then
<INPUT TYPE="button" VALUE="click to scrollBy()"
onClick="customScroll(this.form)">
<HR>
<INPUT TYPE="button" VALUE="PageDown" onClick="page('down')">
<INPUT TYPE="button" VALUE="PageUp" onClick="page('up')">

</FORM>
</BODY>
</HTML>

Related Items: window.pageXOffset property; window.pageYOffset property;
window.scroll() method.

254 Part III ✦ JavaScript Object and Language Reference

setInterval(“functionOrExpr”, msecDelay
[, funcarg1, ..., funcargn])

Returns: Interval ID integer.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

It is important to understand the distinction between the setInterval() and
setTimeout() methods. Before the setInterval() method was part of
JavaScript, authors replicated the behavior with setTimeout(), but the task often
required reworking scripts a bit.

Use setInterval() when your script needs to call a function or execute some
expression repeatedly with a fixed time delay between calls to that function or
expression. The delay is not at all like a wait state in some languages: Other
processing does not halt while the delay is in effect. Typical applications include
animation by moving an object around the page under controlled speed (instead of
letting the JavaScript interpreter whiz the object through its path at CPU-
dependent speeds). In a kiosk application, you can use setInterval() to advance
“slides” that appear in other frames or as layers, perhaps changing the view every
ten seconds. Clock displays and countdown timers would also be suitable usage of
this method (even though you see examples in this book that use the old-fashioned
setTimeout() way to perform timer and clock functions).

In contrast, setTimeout() is best suited for those times when you need to
carry out a function or expression one time in the future — even if that future is
only a second or two away. See the discussion of the setTimeout() method for
details on this application.

The first parameter of the setInterval() method is the name of the function
or expression to run when the interval elapses. This item must be a quoted string.
If the parameter is a function, no function arguments are allowed inside the
function’s parentheses unless the arguments are literal strings. You can, however,
include evaluated function arguments as a comma-delimited list, starting with the
third parameter.

Putting function arguments in the final parameters of the setInterval()
method is unique to Navigator 4. Internet Explorer 4 uses the third parameter to
specify the scripting language of the statement or function being invoked in the
first parameter. If you are trying to achieve cross-platform compatibility, design a
function called by setInterval() so no arguments need to be passed. That way,
Navigator 4 will ignore the third parameter required for Internet Explorer 4.

The second parameter of this method is the number of milliseconds (1,000 per
second) that JavaScript should use as the interval between invocations of the
function or expression. Even though the measure is in extremely small units, don’t
rely on 100 percent accuracy of the intervals. Various other internal processing
delays may throw off the timing just a bit.

255Chapter 14 ✦ The Window Object

Like setTimeout(), setInterval() returns an integer value that is the ID
for the interval process. That ID value lets you turn off the process with the
clearInterval() method. That method takes the ID value as its sole parameter.
This mechanism allows for the setting of multiple interval processes running, while
giving your scripts the power to stop individual processes at any time without
interrupting the others.

Example
The demonstration of the setInterval() method entails a two-framed

environment. The framesetting document is shown in Listing 14-42.

Listing 14-42: SetInterval() Demonstration Frameset

<HTML>
<HEAD>
<TITLE>setInterval() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<FRAME SRC="lst14-43.htm" NAME="control">
<FRAME SRC="bofright.htm" NAME="display">

</FRAMESET>
</HTML>

In the top frame is a control panel with several buttons that control the
automatic scrolling of the Bill of Rights text document in the bottom frame. Listing
14-43 shows the control panel document. Many functions here control the interval,
scrolling jump size, and direction, and they demonstrate several aspects of
applying setInterval().

Notice that in the beginning the script establishes a number of global variables.
Three of them are parameters that control the scrolling; the last one is for the ID value
returned by the setInterval() method. The script needs that value to be a global
value so a separate function can halt the scrolling with the clearInterval() method.

All scrolling is performed by the autoScroll() function. Because I want this
method ultimately to coexist in a page usable in Internet Explorer 4 (with the help
of a JScript segment to handle Internet Explorer 4’s different manner of scrolling
content), the autoScroll() method does not rely on parameters. Instead, all
controlling parameters are global variables. In this application, placement of those
values in globals helps the page restart autoscrolling with the same parameters as
it had when it last ran.

Listing 14-43: SetInterval() Control Panel

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>

(continued)

256 Part III ✦ JavaScript Object and Language Reference

Listing 14-43 Continued

<SCRIPT LANGUAGE="JavaScript1.2">
var scrollSpeed = 500
var scrollJump = 1
var scrollDirection = "down"
var intervalID

function autoScroll() {
if (scrollDirection == "down") {

scrollJump = Math.abs(scrollJump)
} else if (scrollDirection == "up" && scrollJump > 0) {

scrollJump = -scrollJump
}
parent.display.scrollBy(0, scrollJump)
if (parent.display.pageYOffset <= 0) {

clearInterval(intervalID)
}

}

function reduceInterval() {
stopScroll()
scrollSpeed -= 200
startScroll()

}
function increaseInterval() {

stopScroll()
scrollSpeed += 200
startScroll()

}
function reduceJump() {

scrollJump -= 2
}
function increaseJump() {

scrollJump += 2
}
function swapDirection() {

scrollDirection = (scrollDirection == "down") ? "up" : "down"
}
function startScroll() {

parent.display.scrollBy(0, scrollJump)
intervalID = setInterval("autoScroll()",scrollSpeed)

}
function stopScroll() {

clearInterval(intervalID)
}
</SCRIPT>
</HEAD>
<BODY onLoad="startScroll()">
AutoScroll by setInterval() Controller
<FORM NAME="custom">
<INPUT TYPE="button" VALUE="Start Scrolling" onClick="startScroll()">

257Chapter 14 ✦ The Window Object

<INPUT TYPE="button" VALUE="Stop Scrolling" onClick="stopScroll()"><P>
<INPUT TYPE="button" VALUE="Shorter Time Interval"
onClick="reduceInterval()">
<INPUT TYPE="button" VALUE="Longer Time Interval"
onClick="increaseInterval()"><P>
<INPUT TYPE="button" VALUE="Bigger Scroll Jumps"
onClick="increaseJump()">
<INPUT TYPE="button" VALUE="Smaller Scroll Jumps"
onClick="reduceJump()"><P>
<INPUT TYPE="button" VALUE="Change Direction"
onClick="swapDirection()">

</FORM>
</BODY>
</HTML>

The setInterval() method is invoked inside the startScroll() function.
This function initially “burps” the page by one scrollJump interval so that the test
in autoScroll() for the page being scrolled all the way to the top doesn’t halt a
page from scrolling before it gets started. One of the global variables,
scrollSpeed, is used to fill the delay parameter for setInterval(). To change
this value on the fly, the script must stop the current interval process, change the
scrollSpeed value, and start a new process.

The intensely repetitive nature of this application is nicely handled by the
setInterval() method.

Related Items: window.clearInterval() method; window.setTimeout() method.

setTimeout(“functionOrExpr”, msecDelay
[, funcarg1, ..., funcargn])

Returns: ID value for use with window.clearTimeout() method.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The name of this method may be misleading, especially if you have done other
kinds of programming involving timeouts. In JavaScript, a timeout is an amount of
time (in milliseconds) before a stated expression evaluates. A timeout is not a wait
or script delay, but rather a way to tell JavaScript to hold off executing a statement
or function for a desired amount of time.

Say that you have a Web page designed to enable users to interact with a
variety of buttons or fields within a time limit (this is a Web page running at a free-
standing kiosk). You can turn on the timeout of the window so that if no
interaction occurs with specific buttons or fields lower in the document after, say,
two minutes (120,000 milliseconds), the window reverts to the top of the document

258 Part III ✦ JavaScript Object and Language Reference

or to a help screen. To tell the window to switch off the timeout when a user does
navigate within the allotted time, you need to have any button that the user
interacts with call the other side of a setTimeout() method — the
clearTimeout() method — to cancel the current timer. (The clearTimeout()
method is explained earlier in this chapter.)

The expression that comprises the first parameter of the
window.setTimeout() method can be either a call to any function or method or a
standalone JavaScript statement. The expression evaluates after the time limit
expires.

Understanding that this timeout does not halt script execution is very
important. In fact, if you use a setTimeout() method in the middle of a script, the
succeeding statements in the script execute immediately; after the delay time, the
statement in the setTimeout() method executes. Therefore, I’ve found that the
best way to design a timeout in a script is to plug it in as the last statement of a
function: Let all other statements execute and then let the setTimeout() method
appear to halt further execution until the timer goes off. In truth, however,
although the timeout is “holding,” the user is not prevented from performing other
tasks. And once a timeout timer is ticking, you cannot adjust its time. Instead, clear
the timeout and start a new one.

It is not uncommon for a setTimeout() method to invoke the very function in
which it lives. For example, if you have written a Java applet to perform some extra
work for your page and you need to connect to it via LiveConnect, your scripts
must wait for the applet to load and carry out its initializations. While an onLoad=
event handler in the document ensures that the applet object is visible to scripts,
it doesn’t know whether the applet has finished its initializations. A JavaScript
function that inspects the applet for a clue might need to poll the applet every 500
milliseconds until the applet sets some internal value indicating all is ready, as
shown here:

var t
function autoReport() {

if (!document.myApplet.done) {
t = setTimeout(“autoReport”,500)

} else {
clearTimeout(t)
[more statements using applet data]

}
}

JavaScript provides no built-in equivalent for a wait command. The worst
alternative is to devise a looping function of your own to trap script execution for
a fixed amount of time. In Navigator 3 and up, you can also use LiveConnect (see
Chapter 38) to invoke a Java method that freezes the browser’s thread for a fixed
amount of time. Unfortunately, both of these practices prevent other processes
from being carried out, so you should consider reworking your code to rely on a
setTimeout() method instead.

Example
When you load the HTML page in Listing 14-44, it triggers the updateTime()

function, which displays the time (in hh:mm am/pm format) in the statusbar
(Figure 14-16). Instead of showing the seconds incrementing one by one (which

259Chapter 14 ✦ The Window Object

may be distracting to someone trying to read the page), this function alternates
the last character of the display between an asterisk and nothing.

Listing 14-44: Display the Current Time

<HTML>
<HEAD>
<TITLE>Status Bar Clock</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
var flasher = false
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {

var now = new Date()
var theHour = now.getHours()
var theMin = now.getMinutes()
var theTime = "" + ((theHour > 12) ? theHour - 12 : theHour)
theTime += ((theMin < 10) ? ":0" : ":") + theMin
theTime += (theHour >= 12) ? " pm" : " am"
theTime += ((flasher) ? " " : "*")
flasher = !flasher
window.status = theTime
// recursively call this function every second to keep timer going
timerID = setTimeout("updateTime()",1000)

}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad="updateTime()">
</BODY>
</HTML>

Figure 14-16: A clock ticks in the statusbar.

260 Part III ✦ JavaScript Object and Language Reference

In this function, the way the setTimeout() method works is that once the
current time (including the flasher status) appears in the statusbar, the function
waits one second (1,000 milliseconds) before calling the same function again. You
don’t have to clear the timerID value in this application because JavaScript does
it for you every time the 1,000 milliseconds elapse.

A logical question to ask is whether this application should be using
setInterval() instead of setTimeout(). This is a case in which either one does
the job. To use setInterval() here would require that the interval process start
outside of the updateTime() function, because you need only one process running
that repeatedly calls updateTime(). It would be a cleaner implementation in that
regard, instead of the tons of timeout processes spawned by the above listing. On
the other hand, it would not run in any browsers before Navigator 4 or Internet
Explorer 4, as Listing 14-44 does.

One warning about setTimeout() functions that dive into themselves as
frequently as this one does: Each call eats up a bit more memory for the browser
application in Navigator 2. If you let this clock run for a while, some users may
encounter memory difficulties, depending on which operating system they’re
using. But considering the amount of time the typical user spends on Web pages
(even if only 10 or 15 minutes), the function shouldn’t present a problem. And any
reloading invoked by the user (such as by resizing the window in Navigator 2)
frees up memory once again.

Related Items: window.clearTimeout() method; window.setInterval()
method; window.clearInterval() method.

stop()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Navigator 4’s stop() method offers a scripted equivalent of clicking the Stop
button in the toolbar. Availability of this method allows you to create your own
toolbar on your page and hide the toolbar (in the main window with signed scripts
or in a subwindow). For example, if you have an image representing the Stop
button in your page, you can surround it with a link whose action stops loading, as
in the following:

A script cannot stop its own document from loading, but it can stop loading of
another frame or window. Similarly, if the current document dynamically loads a
new image or a multimedia MIME type file as a separate action, the stop() method
can halt that process. Even though the stop() method is a window method, it is
not tied to any specific window or frame: Stop means stop.

Note

261Chapter 14 ✦ The Window Object

Related Items: window.back() method; window.find() method;
window.forward() method; window.home() method; window.print() method.

Event handlers

onBlur=
onFocus=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

If knowing when a window or frame has been activated or deactivated is
important to your page design, you can set event handlers that fire under those
activities. For example, you can track how frequently a user switches between two
of your windows over a period of time. By saving timestamps triggered by the
onBlur= event handler in the subwindow and stamps triggered by the onFocus=
event handler in the main window, you can create a record of the user’s window
activity.

You should, however, be aware of some potential side effects of scripting these
events. As with their counterparts in text objects of forms, these event handlers,
when asked to display JavaScript modal dialog boxes (such as the alert dialog
box), can cause a nearly infinite loop, because the alert dialog box interrupts the
natural action of window or frame blurring. Therefore, I recommend scripting these
event handlers to perform less obvious tasks.

Another issue worth noting is that you should adhere to graphical user interface
guidelines when dealing with windows. You may, for example, be tempted to close
a subwindow when the user activates the main window. That design is unnatural in
most GUI universes. Navigator provides a Window menu (part of the Navigator 4
menu in Navigator 4) to help the user bring forward a hidden window, and you can
also script subwindows to gain focus. Regardless of how you decide to include
these event handlers in your scripts, be sure to test them for inopportune clicks in
the affected windows.

Related Items: window.blur(); window.focus().

onDragDrop=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

With closer integration between the computer desktop and browsers these
days, it is increasingly possible that shortcuts (or aliases) to Web URLs will be

262 Part III ✦ JavaScript Object and Language Reference

represented on our desktops and other kinds of documents. Beginning with
Navigator 4, you can script awareness of dragging and dropping of such items onto
the browser window. The window’s dragDrop event fires whenever a user drops a
file or other URL-filled object onto the window.

You can add an onDragDrop= event handler to the <BODY> tag of your
document and pass along the event object that has some juicy tidbits about the
drop: the object on which the item was dropped and the URL of the item. The
function called by the event handler receives the event object information and can
process it from there. Because this event is a window event, you don’t have to turn
on window.captureEvents() to get the window to feel the effect of the event.

The juiciest tidbit of the event, the URL of the dropped item, can be retrieved
only with a signed script and the user’s permission (see Chapter 40). Listing 14-45
shows a simple document that reveals the URL and screen location, as derived
from the event objects passed with the dragDrop event. You must have codebase
principals turned on to get the full advantage of this listing.

Listing 14-45: Analyzing a DragDrop Event

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function reportDrag(e) {

var msg = "You dropped the file:\n"

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRead")
msg += e.data

netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserRead")
msg += "\nonto the window object at screen location ("
msg += e.screenX + "," + e.screenY + ")."
alert(msg)
return false

}
</SCRIPT>
</HEAD>
<BODY onDragDrop="reportDrag(event)">
Drag and Drop a file onto this window
</BODY>
</HTML>

The dragDrop event is the only one so far that uses the data property of the
event object. That property contains the URL. The target property reveals only
the window object, but you can access the event object’s screenX and screenY
properties to get the location of the mouse release.

Related Items: event object.

263Chapter 14 ✦ The Window Object

onLoad=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The load event is sent to the current window at the end of the document
loading process (after all text and image elements have been transferred from the
source file server to the browser, and after all plug-ins and Java applets have
loaded and started running). At that point, the browser’s memory contains all the
objects and script components in the document that the browser can possibly
know about.

The onLoad= handler is an attribute of a <BODY> tag for a single-frame
document or of the <FRAMESET> tag for the top window of a multiple-frame
document. When the handler is an attribute of a <FRAMESET> tag, the event
triggers only after all frames defined by that frameset have completely loaded.

Use either of the following scenarios to insert an onLoad= handler into a
document:

<HTML>
<HEAD>
</HEAD>
<BODY [other attributes] onLoad=”statementOrFunction”>
[body content]
</BODY>
</HTML>

<HTML>
<HEAD>
</HEAD>
<FRAMESET [other attributes] onLoad=”statementOrFunction”>

<FRAME>frame specifications</FRAME>
</FRAMESET>
</HTML>

This handler has a special capability when part of a frameset definition: It won’t
fire until the onLoad= event handlers of all child frames in the frameset have fired.
Therefore, if some initialization scripts depend on components existing in other
frames, trigger them from the frameset’s onLoad= event handler. This brings up a
good general rule of thumb for writing JavaScript: Scripts that execute during a
document’s loading should contribute to the process of generating the document
and its objects. To act immediately on those objects, design additional functions
that are called by the onLoad= event handler for that window.

The type of operations suited for an onLoad= event handler are those that can
run quickly and without user intervention. Users shouldn’t be penalized by having
to wait for considerable post-loading activity to finish before they can interact with
your pages. At no time should you present a modal dialog box as part of an

264 Part III ✦ JavaScript Object and Language Reference

onLoad= handler. Users who design macros on their machines to visit sites
unattended may get hung up on a page that automatically displays an alert,
confirm, or prompt dialog box. On the other hand, an operation such as setting the
window.defaultStatus property is a perfect candidate for an onLoad= event handler.

As a reminder about a general rule pertaining to JavaScript event handlers,
event handlers such as onLoad=, onUnload=, onBlur=, and onFocus= can be set
by assignment (window.onload = myfunction) or by creating functions of the
same name (function onload()). The majority of your event handlers, however,
will likely be defined as HTML tag attributes.

Related Items: onUnload= handler; window.defaultStatus property.

onMove=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

If a user drags a window around the screen, the action triggers a move event for
the window object. When you assign a function to the event (for example,
window.onmove = handleMoves), the function receives an event object whose
screenX and screenY properties reveal the coordinate point (relative to the
entire screen) of the top-left corner of the window after the move.

Related Items: event object.

onLoad= bugs and anomalies

The onLoad= event has changed its behavior over the life of JavaScript in Navigator. In
Navigator 2, the onLoad= event handler fired whenever the user resized the window. Many
developers considered this a bug because the running of such scripts destroyed carefully
gathered data since the document originally loaded. From Navigator 3 onward (and includ-
ing Internet Explorer 3), a window resize does not trigger a load event.

Two onLoad= bugs haunt Navigator 3 when used in conjunction with framesets. The first
bug affects only Windows versions. The problem is that the frameset’s onLoad= event han-
dler is not necessarily the last one to fire among all the frames. It is possible that one
frame’s onLoad= event may still not have processed before the frameset’s onLoad= event
handler goes. This can cause serious problems if your frameset’s onLoad= event handler
relies on that final frame being fully loaded.

The second bug affects all versions of Navigator 3, but at least a workaround exists. If a
frame contains a Java applet, the frameset’s onLoad= event handler will fire before the
applet has fully loaded and started. But if you place an onLoad= event handler in the
applet’s document (even a dummy onLoad=”” in the <BODY> tag), the frameset’s
onLoad= event handler behaves properly.

265Chapter 14 ✦ The Window Object

onResize=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

If a user resizes a window, the action triggers a resize event for the window
object. When you assign a function to the event (for example, window.resize =
handleResizes), the function receives an event object whose width and height
properties reveal the outer width and height of the entire window. A window resize
in Navigator 4 does not trigger the onLoad= event handler (although the document
content is rendered again to fill the inner window size). Therefore, if you want a
script to run both when the document loads and when the user resizes the window
(this is how Navigator 2 worked), you can use the onResize= event handler to
help perform those duties.

Related Items: event object.

onUnload=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

An unload event reaches the current window just before a document is cleared
from view. The most common ways windows are cleared are when new HTML
documents are loaded into them or when a script begins writing new HTML on the
fly for the window or frame.

Limit the extent of the onUnload= event handler to quick operations that do not
inhibit the transition from one document to another. Do not invoke any methods
that display dialog boxes. You specify onUnload= event handlers in the same
places in an HTML document as the onLoad= handlers: as a <BODY> tag attribute
for a single-frame window or as a <FRAMESET> tag attribute for a multiframe
window. Both onLoad= and onUnload= event handlers can appear in the same
<BODY> or <FRAMESET> tag without causing problems. The onUnload= event
handler merely stays safely tucked away in the browser’s memory, waiting for the
unload event to arrive for processing as the document gets ready to clear the
window.

Let me pass along one caution about the onUnload= event handler. Even though
the event fires before the document goes away, don’t burden the event handler
with time-consuming tasks, such as generating new objects. The document could
possibly go away before the function completes, leaving the function looking for
objects and values that no longer exist. The best defense is to keep your
onUnload= event handler processing to a minimum.

Related Items: onLoad= handler; window.defaultStatus property.

266 Part III ✦ JavaScript Object and Language Reference

Frame Object
Properties Methods Event Handlers

Same as window object.

Syntax
Creating a frame:

<FRAMESET
ROWS=”ValueList”
COLS=”ValueList”
[FRAMEBORDER=YES | NO]
[BORDER=pixelSize]
[BORDERCOLOR=colorSpecification]
[onBlur=”handlerTextOrFunction”]
[onDragDrop=”handlerTextOrFunction”]
[onFocus=”handlerTextOrFunction”]
[onLoad=”handlerTextOrFunction”]
[onMove=”handlerTextOrFunction”]
[onResize=”handlerTextOrFunction”]
[onUnload=”handlerTextOrFunction”]>
<FRAME

SRC=”locationOrURL”
NAME=”firstFrameName”
[FRAMEBORDER= YES | NO]
[BORDERCOLOR=colorSpecification]
[MARGINHEIGHT=pixelSize]
[MARGINWIDTH=pixelSize]
[NORESIZE]
[SCROLLING=YES | NO | AUTO]>

...
</FRAMESET>

Accessing properties or methods of another frame:

parent.frameName.property | method([parameters])
parent.frames[i].property | method([parameters])

About this object
A frame object behaves exactly like a window object, except that it has been

created as part of a frameset by another document. A frame object always has a
top and a parent property different from its self property. If you load a
document that is normally viewed in a frame into a single browser window, its
window is no longer a frame. Consult the earlier discussion about the window
object for details on the properties and methods these two objects share.

267Chapter 14 ✦ The Window Object

One other significant difference between a window and frame object occurs in
the onLoad= and onUnload= event handlers. Because each document loading into
a frame may have its own onLoad= event handler defined in its <BODY> definition,
the frame containing that document receives the load event after the individual
document (and its components) finishes loading. But the frameset that governs the
frame receives a separate load event after all frames have finished loading their
documents. That event is captured in the onLoad= event handler of the
<FRAMESET> definition (but see specific buggy behavior in the onLoad= event
handler discussion, earlier in this chapter). The same applies to the onUnload=
event handlers defined in <BODY> and <FRAMESET> definitions. Navigator 3 and
later provide an easy way to view the source code for a document loaded in a
frame. Click anywhere in the frame to select it (if a border is defined for the frame,
it will highlight subtly), and then select Frame Source from the View menu.

✦ ✦ ✦

