
Images and
Dynamic HTML

The previous eight lessons have been intensive, covering
a lot of ground for both programming concepts and

JavaScript. Now it’s time to apply what you’ve learned to
learn some more. I will cover two areas here. First, I show you
how to implement the ever-popular mouse rollover, where
images swap when the user rolls the cursor around the
screen. Finally, I introduce you to concepts surrounding
scripted control of Dynamic HTML in the level 4 browsers,
and the Netscape <LAYER> tag in particular.

The Image Object
One of the objects contained by the document is the image

object. Unfortunately this object is not available in all
scriptable browsers. You can script it in Navigator 3 and later
or Internet Explorer 4. Therefore, everything you learn here
about the image object won’t apply to Navigator 2 or Internet
Explorer 3 for Windows.

Because a document can have more than one image, image
object references are stored in the object model as an array.
You can therefore reference an image by array index or image
name:

document.images[n]
document.imageName

Each of the tag’s attributes is accessible to
JavaScript as a property of the image object. No mouse-
related event handlers are affiliated with the image object
(although they are in Internet Explorer 4). If you want to
make an image a clickable item, surround it with a link (and
set the image’s border to zero) or attach a client-side image
map to it. The combination of a link and image is how you
make a clickable image button (the image type of form input
element is not a scriptable object).

Interchangeable images
When the image became an object with the release of

Navigator 3, it did so with a special behavior: a script could

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to precache
images

How to swap images
for mouse rollovers

What you can do
with Dynamic HTML
and scripting

✦ ✦ ✦ ✦

2 Part II ✦ JavaScript Tutorial

change the image occupying the rectangular space already occupied by an image.
This was one of the first examples of dynamically changing a page’s content after a
page has loaded.

The script behind this kind of image change is simple enough. All it entails is
assigning a new URL to the image object’s src property. The size of the image on
the page is governed by the HEIGHT and WIDTH attributes set in the tag as
the page loads and cannot be modified. Therefore, you need to select your images
carefully so that all images that supply content to a document image object are
the same size. Otherwise the image scales to the original dimensions assigned to
the object.

Precaching images
Images often take several extra seconds to download from a Web server. If you

are designing your page so an image changes in response to user action, you
usually want the same fast response that users are accustomed to in multimedia
programs. Making the user wait many seconds for an image to change can severely
distract from enjoyment of the page.

To the rescue comes the ability to precache images. The tactic that works best
is to preload the image into the browser’s image cache when the page initially
loads. Users will be less impatient for those few extra seconds during the main
page loading than they would be while waiting for an image to change.

Precaching an image requires constructing an image object in memory. An
image object created in memory is different in some respects from the document
image object that you create with the tag. Memory-only objects are created
by script, and you don’t see them on the page at all. But their presence in the
document forces the browser to load the images as the page loads. JavaScript
provides a constructor function for the memory type of image object as follows:

var myImage = new Image(width, height)

Parameters to the constructor function are the width and height of the image.
These dimensions should match the width and height of the tag attributes
where the new image will eventually go. Once the image object exists in memory,
you can then assign a filename or URL to the src property of that image object:

myImage.src = “someArt.gif”

When JavaScript encounters a statement assigning a URL to an image object’s
src property, it instructs the browser to go out and load that image into the image
cache. All the user sees is some extra loading information in the status bar, as if
another image were in the page. By the time the onLoad= event handler fires, all
images generated in this way are tucked away in the image cache. You can then
assign your cached image’s src property or the actual image URL to the src
property of the document image created with the tag:

document.images[0].src = myImage.src
document.images[0].src = someArt.gif

The change to the image in the document is instantaneous.
Listing 12-1 shows a simple listing for a page that has one tag and a select

list that lets you replace the document image with any of four precached images
(including the original image specified for the tag). If you type this listing — as I

3Chapter 12 ✦ Images and Dynamic HTML

strongly recommend — you can obtain copies of the four image files from the
companion CD-ROM in the Chapter 18 listings.

As the page loads, it executes several statements immediately. These statements
create four new memory image objects and assigns a file name to the src property
of each one. These images will be loaded into the image cache as the page loads.
Down in the Body portion of the document, an tag stakes its turf on the
page and loads one of the images as a starting image.

A select object lists user-friendly names for the pictures while housing the
names of the image files (without the extension) already precached. When the user
makes a selection from the list, the loadCached() function extracts the value of
the selected item and assembles the complete name of the desired image. That
name is assigned to the src property of the document’s image object, and the
image changes in a snap.

Listing 12-1: Precaching Images

<HTML>
<HEAD>
<TITLE>Image Object</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
// pre-cache four images
image1 = new Image(120,90)
image1.src = "desk1.gif"
image2 = new Image(120,90)
image2.src = "desk2.gif"
image3 = new Image(120,90)
image3.src = "desk3.gif"
image4 = new Image(120,90)
image4.src = "desk4.gif"

// load an image chosen from select list
function loadCached(list) {

var img = list.options[list.selectedIndex].value
document.thumbnail.src = img + ".gif"

}
</SCRIPT>
</HEAD>

<BODY >
<H2>Image Object</H2>

<FORM>
<SELECT NAME="cached" onChange="loadCached(this)">
<OPTION VALUE="desk1">Bands
<OPTION VALUE="desk2">Clips
<OPTION VALUE="desk3">Lamp
<OPTION VALUE="desk4">Erasers
</SELECT>
</FORM>
</BODY>
</HTML>

4 Part II ✦ JavaScript Tutorial

Creating image rollovers
A favorite technique to add some pseudo-excitement to a page is to swap button

images as the user rolls the cursor atop them. The degree of change to the image
is largely a matter of taste. The effect can be subtle — a slight highlight or glow
around the edge of the original image — or drastic — a radical change of color.
Whatever your approach, the scripting is the same.

When several of these graphical buttons occur in a group, I tend to organize the
memory image objects as arrays and create naming and numbering schemes that
facilitate working with the arrays. Listing 12-2 shows such an arrangement for four
buttons that control a jukebox. The code in the listing is confined to the image-
swapping portion of the application. This is the most complex and lengthiest
listing of the tutorial, so it requires a bit of explanation as it goes along.

Listing 12-2: Image Rollovers

<HTML>
<HEAD>
<TITLE>Jukebox/Image Rollovers</TITLE>

Because the image object was not in Navigator until Version 3, I limit access to
the code via the LANGUAGE attribute of the <SCRIPT> tag. Here the language is
specified as JavaScript Version 1.1, the version incorporated into Navigator 3. All
versions of Navigator beyond that and Version 4 of Internet Explorer will be able to
use this script.

<SCRIPT LANGUAGE="JavaScript1.1">

The first task in the script is to build two arrays of image objects. One array
stores information about the images depicting the graphical button’s “off” position;
the other is for images depicting their “on” position. After creating the array and
assigning new blank image objects to the first four elements of the array, I go
through the array again, this time assigning file pathnames to the src property of
each object stored in the array. Since these lines of code are executing as the page
loads, the images load into the image cache along the way.

// pre-cache all 'off' button images
var offImgArray = new Array()
offImgArray[0] = new Image(75,33)
offImgArray[1] = new Image(75,33)
offImgArray[2] = new Image(75,33)
offImgArray[3] = new Image(86,33)

// off image array -- set 'off' image path for each button
offImgArray[0].src = "images/playoff.jpg"
offImgArray[1].src = "images/stopoff.jpg"
offImgArray[2].src = "images/pauseoff.jpg"
offImgArray[3].src = "images/rewindoff.jpg"

// pre-cache all 'on' button images
var onImgArray = new Array()
onImgArray[0] = new Image(75,33)
onImgArray[1] = new Image(75,33)

5Chapter 12 ✦ Images and Dynamic HTML

onImgArray[2] = new Image(75,33)
onImgArray[3] = new Image(86,33)

// on image array -- set 'on' image path for each button
onImgArray[0].src = "images/playon.jpg"
onImgArray[1].src = "images/stopon.jpg"
onImgArray[2].src = "images/pauseon.jpg"
onImgArray[3].src = "images/rewindon.jpg"As you will see in the HTML
below, when the user rolls the mouse atop any of the document image objects,
the onMouseOver= event handler (from the link object surrounding the
document image object) invokes the imageOn() function, passing an index
value for the particular image. The index value corresponds to the index
values of the image arrays defined above. The imageOn() function uses that
index value to assign the URL from the onImgArray entry to the
corresponding document image src property.
// functions that swap images & status bar
function imageOn(i) {

document.images[i].src = onImgArray[i].src
}

The same goes for the onMouseOut= event handler, which needs to turn the
image off by invoking the imageOff() function with the same index value.

function imageOff(i) {
document.images[i].src = offImgArray[i].src

}

Both the onMouseOver= and onMouseOut= event handlers set the status bar to
prevent the ugly javascript: URL from appearing there as the user rolls the
mouse atop the image. The onMouseOut= event handler sets the status bar
message to an empty string.

function setMsg(msg) {
window.status = msg
return true

}

For this demonstration, I have disabled the functions that control the jukebox.
But I leave the empty function definitions here so they catch the calls made by the
clicks of the links associated with the images.

// controller functions (disabled)
function playIt() {
}
function stopIt() {
}
function pauseIt(){
}
function rewindIt() {
}
</SCRIPT>
</HEAD>

<BODY>
<CENTER>
<FORM>
Jukebox Controls

(continued)

6 Part II ✦ JavaScript Tutorial

Listing 12-2 Continued

I surround each document image object with a link because the link object has
the event handlers needed to respond to the mouse rolling over the area. Each
link’s onMouseOver= event handler calls the imageOn() function with the index
value of this image’s position in both image arrays defined earlier. Because both
the onMouseOver= and onMouseOut= event handlers require a return true
statement to work, I combined the second function call (to setMsg()) with the
return true requirement. The setMsg() function always returns true, which is
combined with the return keyword before the call to the setMsg() function. It’s
just a trick to reduce the amount of code in these event handlers.

<A HREF="javascript:playIt()" onMouseOver="imageOn(0); return
setMsg('Play the selected tune')" onMouseOut="imageOff(0); return
setMsg('')">

<IMG SRC="images/playoff.jpg" NAME="hiliteBtn0" HEIGHT=33
WIDTH=75 BORDER=0>
<A HREF="javascript:stopIt()" onMouseOver="imageOn(1); return
setMsg('Stop the playing tune')" onMouseOut="imageOff(1); return
setMsg('')">

<IMG SRC="images/stopoff.jpg" NAME="hiliteBtn1" HEIGHT=33
WIDTH=75 BORDER=0>
<A HREF="javascript:pauseIt()" onMouseOver="imageOn(2); return
setMsg('Pause the playing tune')" onMouseOut="imageOff(2); return
setMsg('')">

<IMG SRC="images/pauseoff.jpg" NAME="hiliteBtn2" HEIGHT=33
WIDTH=75 BORDER=0>
<A HREF="javascript:rewindIt()" onMouseOver="imageOn(3); return
setMsg('Rewind back to the beginning')" onMouseOut="imageOff(3); return
setMsg('')">

<IMG SRC="images/rewindoff.jpg" NAME="hiliteBtn3" HEIGHT=33
WIDTH=86 BORDER=0>
</FORM>
</CENTER>
</BODY>
</HTML>

The results of this lengthy script can be seen in Figure 12-1. As the user rolls the
mouse atop one of the images, it changes from a light to dark color by swapping
the entire image.

More Dynamism in HTML
The image object swapping technique is but a preview of what the newest

developments in Dynamic HTML are all about. With each new generation of
browser, scripts can change more content on the fly. Navigator’s implementation of
this involves a new object and tag. The <LAYER> tag identifies an object within a
document that can contain its own separate document and can be positioned and
sized anywhere in the document. It is kind of like a floating frame. But unlike a
frame, a layer is contained by a document, not a parent window.

7Chapter 12 ✦ Images and Dynamic HTML

Figure 12-1: Typical mouse rollover image swapping

As described in depth in Chapter 19, the layer object has a large number of
properties and methods, most of which are unique to the layer object — new
behaviors and facilities for a new kind of object. Most of the methods, for example,
concern themselves with the positioning and viewable size of the layer. You can also
hide a layer and change the HTML that goes into a layer after the page has loaded.

Internet Explorer 4 treats Dynamic HTML differently, and does not implement a
layer object. But as you will discover in Chapter 41, it is possible to create
Dynamic HTML pages that work with both systems, thanks to industry standards
efforts in this arena.

And so ends the final lesson of the JavaScript Bible, Third Edition tutorial. If you
have gone through every lesson and tried your hand at the exercises, you are now
ready to dive into the rest of the book to learn the fine details and many more
features of both the document object model and the JavaScript language.

Exercises
1. Explain the difference between a document image object and the memory

type of image object.

2. Write the JavaScript statements needed to precache an image named
“jane.jpg” that will later be used to replace the document image defined by
the following HTML:

3. With the help of the code you wrote for question 2, write the JavaScript
statement that replaces the document image with the memory image.

4. Document image objects do not have event handlers for mouse events. How
do you trigger scripts needed to swap images for mouse rollovers?

✦ ✦ ✦

