
Window and
Document
Objects

Now that you have exposure to programming
fundamentals, it will be easier to demonstrate how to

script document objects. Starting with this lesson, the
tutorial turns back to the document object model, diving
more deeply into each of the objects you will place in many
of your documents.

Document Objects
As a refresher, study the Netscape Navigator document

object hierarchy in Figure 8-1. This lesson focuses on objects
at or near the top of the hierarchy: window, location, history,
and document. The goal is not only to equip you with the
basics so you can script simple tasks, but also to prepare you
for in-depth examinations of each object and its properties,
methods, and event handlers in Part III of this book. I
introduce only the basic properties, methods, and event
handlers for objects in this tutorial — far more are to be found
in Part III. Examples in that part of the book assume you know
the programming fundamentals covered in previous lessons.

The Window Object
At the very top of the document object hierarchy is the

window object. This object gains that exalted spot in the
object food chain because it is the master container for all
content you view in the Web browser. As long as a browser
window is open — even if no document is loaded in the
window — the window object is defined in the current model
in memory.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What the window
object does

How to access key
window object
properties and
methods

How to trigger script
actions after a
document loads

The purposes of the
location and history
objects

How the document
object is created

How to access key
document object
properties and
methods

✦ ✦ ✦ ✦

86 Part II ✦ JavaScript Tutorial

Figure 8-1: The Netscape Navigator 4 document object model

In addition to the content part of the window where documents go, a window’s
sphere of influence includes the dimensions of the window and all of the “stuff”
that surrounds the content area. Netscape calls this area — where scrollbars,
toolbars, the status bar, and menu bar on non-Macintosh versions live — a
window’s chrome. Not every browser or every version of Navigator has full
scripted control over the chrome of the main browser window, but you can easily
script the creation of additional windows sized the way you want and have only
the chrome elements you wish to display in that subwindow.

Although the discussion about frames comes in Chapter 11, I can safely say now
that each frame is also considered a window object. If you think about it, that
makes sense, because each frame can hold a different document. When a script
runs in one of those documents, it regards the frame that holds the document as
the window object in its view of the object hierarchy.

As you will see here, the window object is a convenient place for the document
object model to attach methods that display modal dialog boxes and adjust the
text that displays in the status bar at the bottom of the browser window. Another
window object method lets you create a separate window that appears on the
screen. When you look at all of the properties, methods, and event handlers
defined for the window object in Netscape’s object model (see Appendix A), it
should be clear why they are attached to window objects — visualize their scope
and the scope of a browser window.

Accessing window properties and methods
Script references to properties and methods of the window object can be

worded in several ways, depending more on whim and style than on specific
syntactical requirements. The most logical and common way to compose such
references includes the window object in the reference:

window.propertyName
window.methodName([parameters])

link anchor layer applet image area

text radio fileUpload

textarea checkbox reset

password submit

select

option

frame self parenttop
window

history location toolbar, etc.document

form

button

87Chapter 8 ✦ Window and Document Objects

A window object also has a synonym when the script doing the referencing is
pointing to the window that houses the document. The synonym is self.
Reference syntax then becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to
reserve the use of self for more complex scripts that involve multiple frames and
windows. The self moniker more clearly denotes the current window holding the
script’s document. To me, it makes the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always “there”
when a script runs, you can omit it from references to any objects inside that
window. Therefore, the following syntax models assume properties and methods of
the current window:

propertyName
methodName([parameters])

In fact, as you will see in a few moments, some methods may be more
understandable if you omit the window object reference. The methods run just fine
either way.

Creating a window
A script does not create the main browser window. A user does that by virtue of

launching the browser or by opening a URL or file from the browser’s menus (if the
window is not already open). But a script can generate any number of subwindows
once the main window is open (and contains a document whose script needs to
open subwindows).

The method that generates a new window is window.open(). This method
contains up to three parameters that define window characteristics, such as the
URL of the document to load, its name for TARGET reference purposes in HTML
tags, and physical appearance (size and chrome contingent). I won’t go into the
details of the parameters here (they’re covered in great depth in Chapter 14), but I
do want to expose you to an important concept involved with the window.open()
method.

Consider the following statement that opens a new window to a specific size and
with an HTML document from the server:

var subWindow =
window.open(“definition.html”,”def”,”HEIGHT=200,WIDTH=300”)

The important part of this statement is that it is an assignment statement.
Something gets assigned to that variable subWindow. What is it? It turns out that
when the window.open() method runs, it not only opens up that new window
according to specifications set as parameters, but it evaluates to a reference to
that new window. In programming parlance, the method is said to return a value —
in this case, a genuine object reference. The value returned by the method is
assigned to the variable.

Your script can now use that variable as a valid reference to the second window.
If you need to access one of its properties or methods, you must use that reference

88 Part II ✦ JavaScript Tutorial

as part of the complete reference. For example, to close the subwindow from a
script in the main window, the reference to the close() method for that
subwindow would be

subWindow.close()

If you were to issue window.close(), self.close(), or just close() in the
main window’s script, the method would close the main window, and not the
subwindow. To address another window, then, you must include a reference to that
window as part of the complete reference. This will have an impact on your code,
because you probably want the variable holding the reference to the subwindow to
be valid as long as the main document is loaded into the browser. For that to
happen, the variable will have to be initialized as a global variable, rather than
inside a function (although its value can be set inside a function). That way, one
function can open the window while another closes it.

Listing 8-1 is a page that has a button for opening a blank new window and
closing that window from the main window. To view this demonstration, shrink
your main browser window to less than full screen. Then when the new window is
generated, reposition the windows so you can see the smaller new window when
the main window is in front. The key point of Listing 8-1 is that the newWindow
variable is defined as a global variable so that both functions have access to it.
When a variable is declared with no value assignment, its value is null. It turns out
that a null value is the same as false in a condition, while any value is the same
as true in a condition. Therefore, in the closeNewWindow() function, the
condition tests whether the window has been created before issuing the
subwindow’s close() method.

Listing 8-1: References to Window Objects

<HTML>
<HEAD>
<TITLE>Window Opener and Closer</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var newWindow
function makeNewWindow() {

newWindow = window.open("","","HEIGHT=300,WIDTH=300")
}
function closeNewWindow() {

if (newWindow) {
newWindow.close()

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Create New Window"
onClick="makeNewWindow()">
<INPUT TYPE="button" VALUE="Close New Window"
onClick="closeNewWindow()">

89Chapter 8 ✦ Window and Document Objects

</FORM>
</BODY>
</HTML>

Window Properties and Methods
The one property and three methods for the window object described in this

lesson have an immediate impact on user interaction. They work with all
scriptable browsers. Extensive code examples can be found in Part III for each
property and method.

window.status property
The status bar at the bottom of the browser window normally displays the URL

of a link when you roll the mouse pointer atop it. Other messages also appear in
that space during document loading, Java applet initialization, and the like.
However, you can use JavaScript to display your own messages in the status bar at
times that may be beneficial to your users. For example, rather than display the
URL of a link, you can display a friendlier plain-language description of the page at
the other end of the link (or a combination of both to accommodate both newbies
and geeks).

The window.status property can be assigned some other text at any time. To
change the text of a link, the action is triggered by an onMouseOver= event handler
of a link object. A peculiarity of the onMouseOver= event handler for setting the
status bar is that an additional statement — return true — must also be part of
the event handler. This is very rare in JavaScript, but required here for the status
bar to be successfully overridden by your script.

Due to the simplicity of setting the window.status property, it is most common
for the script statements to be run as inline scripts in the event handler definition.
This is handy for short scripts, because you don’t have to specify a separate
function or add <SCRIPT> tags to your page. You simply add the script statements
to the <A> tag:

<A HREF=”http://home.netscape.com” onMouseOver=”window.status=’Visit
the Netscape Home page (home.netscape.com)’; return true”>Netscape

Look closely at the script statements assigned to the onMouseOver= event
handler. The two statements are

window.status=’Visit the Netscape Home page (home.netscape.com)’
return true

When run as inline scripts, the two statements must be separated by a
semicolon. Equally important, the entire set of statements is surrounded by double
quotes(“...”). To nest the string being assigned to the window.status property
inside the double-quoted script, the string is surrounded by single quotes (‘...’).
You get a lot of return for a little bit of script when you set the status bar. The
downside is that scripting this property is how those awful status bar scrolling
banners are created. Yech!

90 Part II ✦ JavaScript Tutorial

window.alert() method
I have already used the alert() method many times so far in this tutorial. This

window method generates a dialog box that displays whatever text you pass as a
parameter (see Figure 8-2). A single OK button (which cannot be changed) lets the
user dismiss the alert.

Figure 8-2: A JavaScript alert
dialog box

The appearance of this and two other JavaScript dialog boxes (described next)
has changed slightly since the first scriptable browsers. In versions prior to
Navigator 4 (as shown in Figure 8-2), the browser inserted words clearly indicating
that the dialog box was a “JavaScript Alert.” This text cannot be altered by script:
Only the other message content can be changed.

All three dialog box methods are good cases for using a window object’s
methods without the reference to the window. Even though the alert() method is
technically a window object method, no special relationship exists between the
dialog box and the window that generates it. In production scripts, I rarely use the
full reference:

alert(“This is a JavaScript alert dialog.”)

window.confirm() method
The second style of dialog box presents two buttons (Cancel and OK in most

versions on most platforms) and is called a confirm dialog (see Figure 8-3). More
importantly, this is one of those methods that returns a value: true if the user
clicks OK, false if the user clicks Cancel. You can use this dialog and its returned
value as a way to have a user make a decision about how a script will progress.

Figure 8-3: A JavaScript confirm
dialog box

Because the method always returns a Boolean value, you can use the evaluated
value of the entire method as a condition statement in an if or if...else
construction. For example, in the following code fragment, the user is asked about
starting the application over. Doing so causes the default page of the site to be
loaded into the browser:

91Chapter 8 ✦ Window and Document Objects

if (confirm(“Are you sure you want to start over?”)) {
location = “index.html”

}

window.prompt() method
The final dialog box of the window object, the prompt dialog box (see Figure 8-

4), displays a message that you set and provides a text field for the user to enter a
response. Two buttons, Cancel and OK, let the user dismiss the dialog box with
two opposite expectations: canceling the entire operation or accepting the input
typed into the dialog box.

Figure 8-4: A JavaScript
prompt dialog box

The window.prompt() method has two parameters. The first is the message
that acts as a prompt to the user. You can suggest a default answer in the text field
by including a string as the second parameter. If you don’t want any default answer
to appear, then include an empty string (two double quotes without any space
between them).

This method returns one value when the user clicks on either button. A click of
the Cancel button returns a value of null, regardless of what is typed into the
field. A click of the OK button returns a string value of the typed entry. Your scripts
can use this information in conditions for if and if...else constructions. A
value of null is treated as false in a condition. It turns out that an empty string is
also treated as false. Therefore, a condition can easily test for the presence of
real characters typed into the field to simplify a condition test, as shown in the
following fragment:

var answer = prompt(“What is your name?”,””)
if (answer) {

alert(“Hello, “ + answer + “!”)
}

The only time the alert() method is called is when the user has entered
something into the prompt dialog and clicked the OK button.

onLoad= event handler
The window object reacts to several system and user events, but the one you

will probably use most is the event that fires as soon as everything in a page has
finished loading. This event waits for images, Java applets, and data files for plug-
ins to download fully to the browser. It can be dangerous to script access to
elements of a document object while the page loads, because if the object has not

92 Part II ✦ JavaScript Tutorial

yet loaded (perhaps due to a slow network connection or server), a script error
will result. The advantage of using the onLoad= event to invoke functions is that
you are assured that all document objects are in the browser’s document object
model. All window event handlers are placed inside the <BODY> tag. Even though
you will come to associate the <BODY> tag’s attributes with the document object’s
properties, it is the window object’s event handlers that go inside the tag (the
document object has no event handlers).

The Location Object
Sometimes an object in the hierarchy represents something that doesn’t seem

to have a physical presence, like a window or a button. That’s the case with the
location object. This object represents the URL loaded into the window. This is
different from the document object (discussed later in this lesson), because the
document is the real content; the location is simply the URL.

Unless you are truly Web-savvy, you may not realize a URL consists of many
components that define the address and method of data transfer for a file. Pieces
of a URL include the protocol (like http:) and the hostname (like
www.giantco.com). All of these items are accessed as properties of the location
object. For the most part, though, your scripts will be interested in only one
property: the href property, which defines the complete URL.

Setting the location.href property is the primary way your scripts navigate to
other pages, either in the current window or another frame. You can generally
navigate to a page in your own Web site by specifying a relative URL (that is, relative
to the currently loaded page), rather than the complete URL with protocol and host
info. For pages outside of your domain, you need to specify the complete URL.

A shortcut that works well in Navigator is to omit the reference to the href
property. You can simply set the location object to a URL (relative or absolute),
and Navigator will get to the desired page. Therefore, both of the following
statements accomplish the same end:

location = “http://www.dannyg.com”
location.href = “http://www.dannyg.com”

If the page to be loaded is in another window or frame, the window reference
must be part of the statement. For example, if your script opens a new window and
assigns its reference to a variable named newWindow, the statement that loads a
page into that window would be

newWindow.location = “http://www.dannyg.com”

The History Object
Another object that doesn’t have a physical presence on the page is the history

object. Each window maintains a list of recent pages that have been visited by the
browser. While the history object’s list contains the URLs of recently visited pages,
those URLs are not generally accessible by script. But methods of the history
object allow for navigating backward and forward through the history relative to
the currently loaded page.

93Chapter 8 ✦ Window and Document Objects

The Document Object
The document object holds the real content of the page. Properties and

methods of the document object generally affect the look and content of the
document that occupies the window. Except for some of the advances in Dynamic
HTML in Internet Explorer 4, the text contents of a page cannot be accessed or
changed once the document has loaded. However, as you saw in your first script of
Chapter 3, the document.write() method lets a script dynamically create content
as the page is loading. A great many of the document object’s properties are
established by attributes of the <BODY> tag. Many other properties are arrays of
other objects in the document.

Accessing a document object’s properties and methods is straightforward, as
shown in the following syntax examples:

[window.]document.propertyName
[window.]document.methodName([parameters])

The window reference is optional when the script is accessing the document
object that contains the script.

document.forms[] property
One of the object types contained by a document is the form object. Because

there can conceivably be more than one form in a document, forms are stored as
arrays in the document.forms[] property. As you recall from the discussion of
arrays in Chapter 7, an index number inside the square brackets points to one of
the elements in the array. To access the first form in a document, for example, the
reference would be

document.forms[0]

In general, however, I recommend that you access a form by way of a name you
assign to the form in its NAME attribute, as in

document.formName

Either methodology reaches the same object. When a script needs to reference
elements inside a form, the complete address to that object must include the
document and form.

document.title property
Not every property about a document object is set in a <BODY> tag attribute. If

you assign a title to the page in the <TITLE> tag set within the Head portion, that
title text is reflected by the document.title property. A document’s title is mostly
a cosmetic setting that gives a plain-language name of the page appearing in the
browser’s title bar, as well as the user’s history listing and bookmark of your page.

document.write() method
The document.write() method can be used in both immediate scripts to

create content in a page as it loads and in deferred scripts that create new content
in the same or different window. The method requires one string parameter, which

94 Part II ✦ JavaScript Tutorial

is the HTML content to write to the window or frame. Such string parameters can
be variables or any other expressions that evaluate to a string. Very often, the
content being written includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream is
automatically closed. After that, any document.write() method issued to the
current page opens a new stream that immediately erases the current page (along
with any variables or other values in the original document). Therefore, if you wish
to replace the current page with script-generated HTML, you need to accumulate
that HTML in a variable and perform the writing with just one document.write()
method. You don’t have to explicitly clear a document and open a new data
stream: One document.write() call does it all.

One last piece of housekeeping advice about the document.write() method
involves its companion method, document.close(). Your script must close the
output stream when it has finished writing its content to the window (either the
same window or another). After the last document.write() method in a deferred
script, be sure to include a document.close() method. Failure to do this may
cause images and forms not to appear; also, any document.write() method
invoked later will only append to the page, rather than clear the existing content to
write anew. To demonstrate the document.write() method, I show two versions
of the same application. One writes to the same document that contains the script;
the other writes to a separate window. Type in each document, save it, and open it
in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document,
including HTML tags for a new document title and color attribute for the <BODY>
tag. One document.write() statement blasts the entire new content to the same
document, obliterating all vestiges of the content of Listing 8-2. The
document.close() statement, however, is required to properly close the output
stream. When you load this document and click the button, notice that the
document title in the browser’s title bar changes accordingly. As you click back to
the original and try the button again, notice that the dynamically written second
page loads much faster than even a reload of the original document.

Listing 8-2: Using document.write() on the Same Window

<HTML>
<HEAD>
<TITLE>Writing to Same Doc</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function reWrite() {

// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>"
newContent += "<BODY BGCOLOR='aqua'><H1>This document is brand

new.</H1>"
newContent += "Click the Back button to see original document."
newContent += "</BODY></HTML>"
// write HTML to new window document
document.write(newContent)
document.close() // close layout stream

}

95Chapter 8 ✦ Window and Document Objects

</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Replace Content" onClick="reWrite()">
</FORM>
</BODY>
</HTML>

In Listing 8-3, the situation is a bit more complex because the script generates a
subwindow, to which is written an entirely script-generated document. To keep the
reference to the new window alive across both functions, the newWindow variable
is declared as a global variable. As soon as the page loads, the onLoad= event
handler invokes the makeNewWindow() function. This function generates a blank
subwindow. I have added a property to the third parameter of the window.open()
method that instructs the status bar of the subwindow appear.

A button in the page invokes the subWrite() method. The first task it performs
is to check the closed property of the subwindow. This property (which exists
only in newer browser versions) returns true if the referenced window is closed. If
that’s the case (in case the user has manually closed the window), the function
invokes the makeNewWindow() function again to open that window again.

With the window open, new content is assembled as a string variable. As with
Listing 8-2, the content is written in one blast (although that isn’t necessary for a
separate window), followed by a close() method. But notice an important
difference: both the open() and close() methods explicitly specify the
subwindow.

Listing 8-3: Using document.write() on Another Window

<HTML>
<HEAD>
<TITLE>Writing to Sub Window</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var newWindow
function makeNewWindow() {

newWindow = window.open("","","status,height=200,width=300")
}

function subWrite() {
// make new window if someone has closed it
if (newWindow.closed) {

makeNewWindow()
}
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>"
newContent += "<BODY BGCOLOR='coral'><H1>This document is brand

new.</H1>"

(continued)

96 Part II ✦ JavaScript Tutorial

Listing 8-3 Continued

newContent += "</BODY></HTML>"
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close layout stream

}
</SCRIPT>
</HEAD>
<BODY onLoad="makeNewWindow()">
<FORM>
<INPUT TYPE="button" VALUE="Write to Subwindow" onClick="subWrite()">
</FORM>
</BODY>
</HTML>

The Link Object
Belonging to the document object in the hierarchy is the link object. A

document can have any number of links, so references to links, if necessary, are
usually made via the array index method:

document.links[n].propertyName

More commonly, though, links are not scripted. However, there is an important
JavaScript component to these objects. When you want the click on a link to
execute a script rather than navigate directly to another URL, you can redirect the
HREF attribute to call a script function. The technique involves a pseudo-URL
called the javascript: URL. If you place the name of a function after the
javascript: URL, a scriptable browser runs that function. So as not to mess with
the minds of users, the function should probably perform some navigation in the
end, but the script can do other things as well, such as simultaneously changing
the content of two frames within a frameset.

The syntax for this construction in a link is as follows:

<A HREF=”javascript:void
functionName([parameter1]...[parameterN])”>...

The void keyword prevents the link from trying to display any value that may
be returned from the function. Remember this javascript: URL technique for all
tags that include HREF and SRC attributes: If an attribute accepts a URL, it can
accept this javascript: URL as well. This can come in handy as a way to script
actions for client-side image maps that don’t necessarily navigate anywhere, but
cause something to happen on the page just the same.

The next logical step past the document level in the object hierarchy is the
form. That’s where you will spend the next lesson.

97Chapter 8 ✦ Window and Document Objects

Exercises
1. Which of the following references are valid and which are not? Explain what

is wrong with the invalid references.

a. window.document.form[0]

b. self.entryForm.entryField.value

c. document.forms[2].name

d. entryForm.entryField.value

e. newWindow.document.write(“Howdy”)

2. Write the JavaScript statement that displays a message in the status bar
welcoming visitors to your Web page.

3. Write the JavaScript statement that displays the same message to the
document as an <H1>-level headline on the page.

4. Create a page that prompts the user for his or her name as the page loads
(via a dialog box) and then welcomes the user by name in the body of the
page.

5. Create a page with any content you like, but one that automatically displays a
dialog box after the page loads to show the user the URL of the current page.

✦ ✦ ✦

