
An Introduction to VBA in Excel ∗

Robert L. McDonald†

First draft: November, 1995

November 3, 2000

Abstract

This is a tutorial showing how to use the macro facility in Microsoft
Office—Visual Basic for Applications—to simplify analytical tasks in
Excel.

Contents

1 Introduction 3

2 Calculations without VBA 3

3 How to Learn VBA 4

4 Calculations with VBA 5
4.1 Creating a simple function . 5
4.2 A Simple Example of a Subroutine 7
4.3 Creating a Button to Invoke a Subroutine 7
4.4 Functions can call functions 8
4.5 Illegal Function Names . 9
4.6 Differences Between Functions and Subroutines 9

∗Copyright c©1995-2000 Robert L. McDonald. Thanks to Jim Dana for asking stimu-
lating questions about VBA.

†Finance Dept, Kellogg School, Northwestern University, 2001 Sheridan Rd., Evanston,
IL 60208, tel: 847-491-8344, fax: 847-491-5719, E-mail: r-mcdonald@northwestern.edu.

CONTENTS 2

5 Storing and Retrieving Variables in a Worksheet 10
5.1 Using a named range to read and write numbers from the

spreadsheet . 11
5.2 Reading and Writing to Cells Which are not Named. 12
5.3 Using the “Cells” Function to Read and Write to Cells. . . . 13

6 Using Excel Functions 13
6.1 Using VBA to compute the Black-Scholes formula 13
6.2 The Object Browser . 15

7 Checking for Conditions 16

8 Arrays 17
8.1 Defining Arrays . 18

9 Iterating 19
9.1 A simple for loop . 20
9.2 Creating a binomial tree . 20
9.3 Other kinds of loops . 22

10 Reading and Writing Arrays 22
10.1 Arrays as Output . 23
10.2 Arrays as Inputs . 24

10.2.1 The Array as a Collection 24
10.2.2 The Array as an Array 25

11 Miscellany 26
11.1 Getting Excel to generate your macros for you 26
11.2 Using multiple modules . 27
11.3 Recalculation speed . 27
11.4 Debugging . 28
11.5 Creating an Add-in . 28

12 A Simulation Example 29
12.1 What is the algorithm? . 29
12.2 VBA code for this example. 30
12.3 A trick to speed up the calculations 32

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

2 CALCULATIONS WITHOUT VBA 3

1 Introduction

Visual Basic for Applications, Excel’s powerful built-in programming lan-
guage, permits you to easily incorporate user-written functions into a spread-
sheet.1 You can easily calculate Black-Scholes and binomial option prices,
for example. Lest you think VBA is something esoteric which you will never
otherwise need to know, VBA is now the core macro language for all Mi-
crosoft’s office products, including Word. It has also been incorporated into
software from other vendors. You need not write complicated programs us-
ing VBA in order for it to be useful to you. At the very least, knowing
VBA will make it easier for you to analyze relatively complex problems for
yourself.

This document presumes that you have a basic knowledge of Excel, in-
cluding the use of built-in functions and named ranges. I do not presume
that you know anything about writing macros or programming. The ex-
amples here are mostly related to option pricing, but the principles apply
generally to any situation where you use Excel as a tool for numerical anal-
ysis.

All of the examples here are contained in the Excel workbook VBA.XLS.

2 Calculations without VBA

Suppose you wish to compute the Black-Scholes formula in a spreadsheet.
Suppose also that you have named cells2 for the stock price (s), strike price
(k), interest rate (r), time to expiration (t), volatility (v), and dividend
yield (d). You could enter the following into a cell:

s*exp(-d*t)*normsdist((ln(s/k)+(r-d+v ˆ 2/2)* t)/(v*t ˆ0.5))
−k * exp(-r * t)* normsdist((ln(s/k)+(r -d-vˆ2/2)*t)/(v*tˆ0.5))

Typing this formula is cumbersome, though of course you can copy the
formula wherever you would like it to appear. It is possible to use Excel’s
data table feature to create a table of Black-Scholes prices, but this is cum-
bersome and inflexible. If you want to calculate option Greeks (e.g. delta,
gamma, etc...) you must again enter or copy the formulas into each cell

1This document uses keystrokes which are correct for Office 97. VBA changed dra-
matically (for the better, in my opinion) between Office 95 and Office 97. The general
idea remained the same, but specific keystrokes changed. So far I have not found changes
required for Office 2000.

2If you do not know what a named cell is, consult Excel’s on-line help.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

3 HOW TO LEARN VBA 4

where you want a calculation to appear. And if you decide to change some
aspect of your formula, you have to hunt down all occurences and make the
changes. When the same formula is copied throughout a worksheet, that
worksheet potentially becomes harder to modify in a safe and reliable fash-
ion. When the worksheet is to be used by others, maintainabiltiy becomes
even more of a concern.

Spreadsheet construction becomes even harder if you want to, for exam-
ple, compute a price for a finite-lived American option. There is no way to
do this in one cell, so you must compute the binomial tree in a range of cells,
and copy the appropriate formulas for the stock price and the option price.
is is not so bad with a 3-step binomial calculation, but for 100 steps you will
spend quite a while setting up the spreadsheet. You must do this separately
for each time you want a binomial price to appear in the spreadsheet. And
if you decide you want to set up a put pricing tree, there is no easy way
to edit your call tree to price puts. Of course you can make the formulas
quite flexible and general by using lots of “if” statements. But things would
become much easier if you could create your own formulas within Excel.
You can — with Visual Basic for Applications.

3 How to Learn VBA

Before we look at examples of VBA, it is useful to have appropriate expec-
tations. There are several points:

• For many tasks, VBA is simple to use. We will see in a moment that
creating simple add-in functions in VBA (for example to compute the
Black-Scholes formula) is easy.

• You can do almost anything using VBA. If you can dream of something
you would like Excel to do, the odds are that VBA will enable you to
do it.

• You will never learn all about VBA by reading a book. If a macro
language is so powerful that it enables you to do everything, it is obvi-
ously going to be too complex for you to memorize all the commands.
A book or tutorial (like this one) will enable you to use VBA to solve
specific problems. However, once you want to do more, you will have
to become comfortable figuring out VBA by trial and error. The way
to do this is...

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

4 CALCULATIONS WITH VBA 5

• Learn to use the macro-recorder in Excel. If you turn on the macro
recorder, Excel will record your actions using VBA! Try this: select
Tools | Macro | Record New Macro in Excel. Then create a simple
graph using the graph wizard. Look at the VBA code that Excel
creates. (This example is described in more detail on p. 26 below.)
It is daunting when you first look at it, but if you want to use VBA
to create graphs, you can now simply modify the code that Excel
has recorded for you. You do not need to create the basic code from
scratch. Of course this raises the question of how to modify the VBA
code you now have. The simple fact is that you must be comfortable
with trial-and-error.

If you are a serious Excel user, VBA can make your life much simpler
and greatly extend the power of Excel. The main emphasis of this tutorial
is to help you create your own functions. Most of the examples here are for
option pricing, but it should be obvious that there are many other uses of
VBA.

4 Calculations with VBA

4.1 Creating a simple function

With VBA, it is a simple matter to create your own function, say BSCall,
which will compute a Black-Scholes option price. To do this, you must first
open a special kind of worksheet, called a macro module. Here are the steps
required to open a new macro module, and create a simple formula:

1. Open a blank workbook using File|New.

2. Select Tools|Macro|Visual Basic Editor from the Excel menu.

3. Within the VBA editor, select Insert|Module from the menu. You will
find yourself in a new window, in which you can type macro commands.

4. Within the newly-created macro module, type the following exactly (be
sure to include the “ ” at the end of the second line):

’ Here is a function to add two numbers.
Works well, doesn’t it?

Function addtwo(x, y)
addtwo = x + y

End Function

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

4 CALCULATIONS WITH VBA 6

5. Return to Excel. In cell A1 enter

=addtwo(3,5)

6. Hit <Enter>. You will see the result “8”.

Congratulations! You have just created an add-in function! There are a
number of things to notice about this example:

• You need to tell the function what to expect as input, hence the list
“(x,y)” following the name of the function.

• You specify the value of the function with a line where you set the
function name (“addtwo”) equal to a calculation (“x+y”).

• An apostrophe denotes a comment, i.e. text which is not interpreted
by VBA. You do not need to create comments, but they are very
useful if you ever return to work you did several months ago and have
to figure out what you did.

• VBA is line-oriented. This means that when you start a comment with
an apostrophe, if you press <enter> to go to a new line, you must enter
another apostrophe or else—since what you type will almost surely not
be a valid command—VBA will report an error. You can continue a
line to the next line by typing an underscore, i.e. “ ” without the
quotes. (You can test this out by deleting the “ ” in the example
above.)

• When you entered the comment and the function, VBA automati-
cally color-coded the text and completed the syntax (the line “End
Function” was automatically inserted).. Comments are coded green
and the reserved words “Function” and “End” were coded in blue and
automatically capitalized.

• The function you typed now appears in the function wizard, just as if
it were a built-in Excel function! To see this, open the function wizard
using Insert|Function. In the left-hand pane (“function category”),
scroll to and highlight “User Defined”. Note that “Addtwo” appears
in the right-side pane (“function name”). Click on it and Excel pops
up a box where you are prompted to enter inputs for the function.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

4 CALCULATIONS WITH VBA 7

4.2 A Simple Example of a Subroutine

A function returns a result. A subroutine (called a “sub” by VBA) performs
an action when invoked. In the above example we used a function, because
we wanted to supply two numbers and have VBA add them for us and tell
us the sum. For our purposes, this is by far the most important use of
VBA. However, it is often useful to create a subroutine, which is a set of
statements which execute when invoked. Here is how to create one (the
following is easier to do than it is to explain):

1. Return to the Visual Basic Editor

2. Click on the “Module1” window.

3. At the bottom of the module (i.e. below the function we just created)
enter the following:

Sub displaybox()
response = MsgBox(”Greetings!”)

End Sub

4. Return to Excel

5. Run the subroutine by using Tools|Macro, then double-clicking on “dis-
playbox” out of the list.

We have just created and run a subroutine. It pops up a dialog box
which displays a message. The “MsgBox” function can be very useful for
giving information to the spreadsheet user.

4.3 Creating a Button to Invoke a Subroutine

In the previous section we ran the subroutine by clicking on Tools|Macro|Macros
and then double-clicking on the subroutine name. If you are going to run
the subroutine often, creating a button in the spreadsheet is a way to create
a shortcut to the subroutine. Here is how to create a button:

1. Move the mouse to the Excel toolbar and right-click once.

2. You will see a list of toolbar names. Move the highlight bar down to
“forms” and left-click. A new toolbar will pop up.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

4 CALCULATIONS WITH VBA 8

3. The rectangula icon on this toolbar is the “create button” icon, which
looks something like a button (of the software, not the clothing, vari-
ety). Click on it.

4. The cursor changes to a crosshair. Move the mouse to the spreadsheet,
hold down the left mouse button, and drag to create a rectangle. When
you lift your finger off the mouse button, a dialog box will pop up and
one of the choices will be “Displaybox”. Double click on that.

5. Now move the mouse away from the button you’ve created and click
once (this de-selects the button). Move the mouse back to the button
you created and left-click once on it. Observe the dialog box which pops
up, and click either “yes” or “no” to get rid of the dialog.

Some comments:

• This is obviously a trivial example. However, if you have a calculation
which is particularly time-consuming (for example a Monte Carlo cal-
culation) you might want to create a subroutine to activate it, and a
button to activate the subroutine would be natural.

• There is a more sophisticated version of the MsgBox function which
permits you to customize the appearance of the dialog box. It is doc-
umented in the on-line help and an example of its use is contained in
DisplayBox2 in the workbook. One nice feature of this more sophis-
ticated version is that within the subroutine, we could have checked
the value of the variable “response”, and had the subroutine perform
different actions depending upon which button the user clicked. For
an example of this, see the example Displaybox2.3

4.4 Functions can call functions

As a final example, we will demonstrate that a function can call a function
(or a subroutine).

1. Enter this code in the “Module1” window
3If you have examined the code for Displaybox2, you may be puzzled by checking to

see if response = “vbYes”. VbYes is simply an internal constant which VBA uses to check
for a “yes” button response to a dialog box. The possible responses—documented in the
help file—are vbOK, vbCancel, vbAbort, vbRetry, vbIgnore, vbYes, and vbNo.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

4 CALCULATIONS WITH VBA 9

Function addthree(x, y, z)
addthree = addtwo(x, y) + z
End Function

2. Now in cell A2, enter

=addthree(3,5,7)
The answer 15 will appear. This is again a trivial example, but it illus-

trates what you can do with functions.

4.5 Illegal Function Names

You need to be aware of what you can and cannot name a function. In
Office 97, the documentation has this useful information: the function name
“follows standard variable naming conventions.” This is obviously not very
helpful.

There are some obvious restrictions. (Please don’t take the following
as definitive, these are mostly things I’ve figured out.) You cannot name a
function a number. You cannot use the following characters in a function
name: space . , + - : ; ” ’ ‘ # $ % / \. It was easy to produce this list
because the Visual Basic compiler lets you know immediately that something
is wrong if you try to put any of these characters in a function name. Note
that you can use an underscore where you would like to have a space for
readability of the function name. So “BS 2”, for example, is a legal function
name.

Here is a more subtle issue. There are function names which are legal
but which you should most definitely not use. “BS2” is an example. This
would be fine as the name of a subroutine, which is not called directly from a
cell. But think about what happens if you give this name to a user-defined
function. You enter, for example, “BS2(3)”, in a cell. How does Excel
understand this? The problem is that “BS2” is also the name of a cell. So
if you try to use it as a function in the spreadsheet, Excel will return the
cryptic error “#REF!” and you will likely have no idea what is wrong. This
is why, later in this tutorial, you will see functions named “BS 2”, “BS 3”,
and so on.

4.6 Differences Between Functions and Subroutines

Functions and subroutines are not interchangable and do not have the same
capabilities. Subroutines are meant to be invoked by a button or otherwise

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

5 STORING AND RETRIEVING VARIABLES 10

explicitly, while functions are meant to be inserted into cells and return
results. Because of their different purpose, some VBA capabilities will work
in one but not the other.

In a subroutine, for example, you can write to cells of the workbook.
With a subroutine you could perform a calculation and have the answer
show up in cell A1. You cannot write to cells from within a function (there
are several ways to do this from a subroutine; to my knowledge none of them
work within functions). You cannot activate a worksheet or change anything
about the display from within a function. Subroutines, on the other hand,
can not be called from cells. Ocassionally you may find these restrictions
annoying, but they exist because functions and subroutines are intended for
different purposes.

5 Storing and Retrieving Variables in a Worksheet

Suppose that there is a value in the spreadsheet which you want to have
affect your function or subroutine. (For instance you might have a variable
which determines whether the option to be valued is American or European.)
Or suppose you create a subroutine which performs computations. You may
want to display the output in the spreadsheet. (For example, you might
wish to create a subroutine to draw a binomial tree.) This raises the general
question: if you are using VBA, how do you read and write values from the
spreadsheet?

Obviously if you are going to read and write numbers to specific locations
in the spreadsheet, you must identify those locations. The easiest way to
identify a location is to use a named range. The alternatives—which we will
examine below—requires that you “activate” a specific location or worksheet
within the workbook, and then read and write within this activated region.

There are at least three ways to read and write to cells:

• “Range” lets you address cells by name,

• “Range().Activate” and “ActiveCell” lets you easily get at cells by
using traditional cell addresses (e.g. “A1”), and

• “Cell” lets you address cells using a row and column numbering scheme.

Although you are probably thinking that it seems silly to have so many
ways to get to cells, each is useful at different times.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

5 STORING AND RETRIEVING VARIABLES 11

5.1 Using a named range to read and write numbers from
the spreadsheet

1. Enter the following function in Module1:

Sub ReadVariable()
x = Range(”test ”)
MsgBox (Str(x))

End Sub

2. Select cell A1 in sheet “Sheet2”, then Insert|Name|Define, and type
“test”, then click OK. You have just created a named range

3. Enter the value “5” in the cell you just named “test”.

4. Tools|Macro, then double-click on “ReadVariable”.

At this point you have just read from a cell and displayed the result.
Note that “x” is a number in this example. In order to display it using
MsgBox, we first need to convert it into a string. We did this using the
built-in “Str” function. (You can find locate this function by using—you
guessed it—the object browser, looking under VBA, then “conversions”.)

As you might guess, you can use the Range function to write as well as
read.

1. Enter the following subroutine in Module1:

Sub WriteVariable()
Range(”Test2”) = Range(”Test”)
MsgBox (”Number copied!”)

End Sub

2. Give the name “test2” to cell sheet2.b2.

3. Enter a number in sheet2.b2.

4. Go to Tools|Macro, then double click on “WriteVariable”.

5. The number from Test is copied to Test2.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

5 STORING AND RETRIEVING VARIABLES 12

5.2 Reading and Writing to Cells Which are not Named.

You can also access a specific cell directly. In order to do this, you first have
to “activate” the worksheet containing the cell. Here is VBA code to read
a variable:

Sub ReadVariable2()
Worksheets(”Sheet2”).Activate
Range(”A1”).Activate
x = ActiveCell.Value
MsgBox (Str(x))

End Sub

Notice what is happening: we first activate the worksheet named “sheet2”.
Next we activate the cell “A1” within Sheet2. You will notice that when
you have finished calling this function, the cursor has moved to cell A1 in
Sheet2! This is because what Excel means by “Active Cell” is whatever cell
the cursor happens to be on; the first two lines instruct the cursor to move
to sheet2.a1.

The active cell has properties, such as the font, color of the cell, for-
matting, etc... All of these properties may be accessed using the ActiveCell
function. For fun, insert the line

ActiveCell.Font.Bold = True

after the MsgBox function. Then switch to sheet2,run the subroutine, and
watch what happens to cell A1. (I’ll bet you can guess before you run the
example!)

We can also assign a value to ActiveCell.Value; this is a way to write to
a cell. Here is a macro which does this:

Sub WriteVariable2()
Worksheets(”Sheet2”).Activate
Range(”A1”).Activate
X = ActiveCell.Value
Range(”B1”).Activate
ActiveCell.Value = X

End Sub

This subroutine reads the number from Sheet2.A1 and copies it to Sheet2.B1.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

6 USING EXCEL FUNCTIONS 13

5.3 Using the “Cells” Function to Read and Write to Cells.

There is yet another way to read and write to cells. The “Cells” function
lets you address cells using a numerical row and column numbering scheme.
Here is an example illustrating how Cell works:

Sub CellsExample()
’ Make ”Sheet2” the active sheet
Worksheets(”Sheet2”).Activate
’ The first entry is the row, the second is the column
’ Write the number 1 into cell A3
Cells (3, 1) = 1
’ Write the number 2 into cell A4
Cells (4, 1) = 2
’ Copy the number from cell A3 into cell C3
Cells (3, 3) = Cells (3, 1)
’ Copy the number from cell A4 into cell C4
Cells (4, 3) = Cells (4, 1)

End Sub

This example reads the numbers 1 and 2 into A3 and A4, and copies them
into C3 and C4. Later we will use the Cells function to draw a binomial
tree.

6 Using Excel Functions from Within VBA

6.1 Using VBA to compute the Black-Scholes formula

There is only one complicated piece of the Black-Scholes calculation: com-
puting the cumulative normal distribution, the “N()” function in the for-
mula. Based on the very first example above, we would like to do something
like the following:

function BS(s,k,v,r,t,d)
BS=s∗exp(−d∗t)∗normsdist((ln(s/k)+(r−d+vˆ2/2)∗t)/(v∗tˆ0.5))
−k∗exp(−r∗t)∗normsdist((ln(s/k)+(r−d−vˆ2/2)∗t)/(v∗tˆ0.5))

end function

Unfortunately, this doesn’t work. The reason it doesn’t work is that
VBA does not understand either “ln” or “NormSDist”. Though these are
functions in Excel they are not functions in VBA, even though VBA is part
of Excel! (Who says software is getting easier to use?)

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

6 USING EXCEL FUNCTIONS 14

Instead of using “ln”, we can use “log”, which is the VBA version of the
same function. However, there is no VBA versions of NormSDist.

Fortunately, there is a way for you to tell VBA that NormSDist is located
inside of Excel. This will then make the function available for use in VBA.
The following example will first show you the error you get if you fail to call
NormSDist correctly:

1. Click on the “Module1” tab

2. Enter the following:

Function BS(s, k, v, r, t , d)
d1 = (Log(s / k) + (r − d + v \ˆ{} 2 / 2) ∗ t) / (v ∗ sqr(t))
d2 = d1 − v ∗ sqrt(t)
bs = s∗exp(−d∗t)∗normsdist(d1)−k∗exp(−r∗t)∗normsdist(d2)

End Function

Comment: To save a little typing and to make the function more
readable, we are defining the Black-Scholes “d1” and “d2” separately.
You will also notice that instead of entering “ln”, we entered “log”,
which—as we noted above—is built into VBA.

3. Enter into the spreadsheet

=bs(40,40,.3,.08,.25,0)

Hit <Enter>. You will get the error message “sub or function not
defined”.

This error occurs because there is no version, however spelled, of “NormS-
Dist” which is built-in to VBA. Instead, we have to tell VBA where to
look for “NormSDist”. We do this by typing instead “WorksheetFunc-
tion.NormSDist”.4

Correctly typed, the function becomes:
4If you are curious about this, do the following: Select View|Object Browser or press F2.

Click on the drop-down arrow under “libraries/workbooks”, then select “Excel”. Under
“Objects/Modules” click on “Application”, then under “Methods/Properties” scroll down
to “NormSDist”. You have now just located “NormSDist” as a method available from
the application. If you scroll around a bit you will see that there is an enormous and
overwhelming number of functions available to be called from VBA.

By the way, you should not make the mistake of thinking that you can call any Excel
function simply by prefacing it with “WorksheetFunction” Try it with “sqrt” and it won’t
work. The only way to know for sure which functions you can and can’t call is by using
the object browser.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

6 USING EXCEL FUNCTIONS 15

Function BS(s, k, v, r, t , d)
d1 = (Log(s / k) + (r − d + v ˆ 2 / 2) ∗ t) / (v ∗ t ˆ 0.5)
d2 = d1 − v ∗ t ˆ 0.5
bs = s∗exp(−d∗t)∗WorkSheetFunction.NormSDist(d1) \
−k∗exp(− \ r∗t)∗WorkSheetFunction.NormSDist(d2)

End Function

The Black-Scholes function will now evaluate correctly to 2.78.

6.2 The Object Browser

The foregoing example illustrates an extremely powerful feature of VBA: it
can access the functions built into Excel if you can tell it where to find them.
The way you locate other functions is to use the Object Browser, which is
part of VBA. Here is how to use it:

1. From within a macro module, press the F2 key. This will pop up a
dialog box with the title “Object Browser”.

2. In the top left you will see a drop-down box which says “All Libraries”.
Click on the down arrow at the right of this line. You will see a drop-
down list with, at a minimum, “VBA” and “Excel” as two entries.
(There may be other entries, depending upon how you have set up
Excel.)

3. Click on VBA.

4. In the “Classes” list, click on “Math”.

5. To the right, in the “Members of Math” box, you now have a list of
all the math functions which are available in VBA. Note that “log” is
included in this list, but not “ln” or “NormSDist”. If you right-click
on “log” and then click on “help”, you will see that “log” returns the
natural logarithm.

6. Move back to the top left box which now says “VBA”. Click on the
down arrow at the right of this line.

7. Click on Excel.

8. In the “Objects/Modules” list, click on “WorksheetFunction”.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

7 CHECKING FOR CONDITIONS 16

9. To the right, in the “Members of WorksheetFunction” box, you now
have a list of Excel built-in functions which may be called from a macro
module by specifying “WorksheetFunctionfunctionname”. Note that
both“ln” and “NormSDist” are included in this list. Note also that
“log” is included in this list, but be aware that Excel’s “log” function
is base 10 by default (you can specify a different base), while VBA’s is
base e.5Note also that “Sqrt” is not included. For some reason Excel’s
Sqrt function is not available in VBA, which means that you cannot
count on an Excel function automatically being available (though most
are).

If you create any VBA functions which are even moderately ambitious,
you are going to use the object browser. It is the heart and soul of VBA.

7 Checking for Conditions

Frequently you want to perform a calculation only if certain conditions are
met. For example, you would not want to calculate an option price with
a negative volatility. It makes sense to check to see if your inputs make
sense before proceeding with the calculation, and aborting—possibly with
an error message—if they do not.

The easy way to check is to use the construct is If ... Then ... Else.7

Here is an example of its use in checking for a negative volatility in the
Black-Scholes formula:8

Function BS 2(s, k, v, r, t , d)
If v > 0 Then

BS 2 = BS(s, k, v, r , t , d)
Else

MsgBox (”Negative volatility!”)
BS 2 = CVErr(xlErrValue)

End If
End Function

5Scroll down to the “:Log” entry and then click on the “?” button at the bottom left.
If you use “log” in a spreadsheet, or if you use “worksheetfunction.log” in a function, you
will get the base 10 logarithm. However, if you use “log” in a function, you will get the
base e logarithm! Be very very sure you know what you are doing when you use a function!

7There is also a Case ... Select construct which we will not use.
8You need to be aware that VBA will expect the “If then”, “Else”, and “End if” pieces

to be on separate lines. If you write “else” on the same line as “If then”, for example, the
code above will fail.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

8 ARRAYS 17

This function checks to see if volatility is greater than 0; if it is, the func-
tion computes the Black-Scholes formula using the BS function we created
earlier. If volatility is not greater than zero, then two things happen: (i)
a MsgBox pops up which informs you of the mistake and (ii) the function
returns a value indicating that there is an error.

In general you should be cautious about putting message boxes into a
function (as opposed to a procedure), since every time the spreadsheet is
recalculated the message box will pop up.

Since error-checking is often critically important (you would not want
to quote a client a price on a deal for which you had accidentally entered
a negative volatility!), it is worth expanding a bit on the use of the CVErr
function.

If the user enters a negative volatility, you could just have Excel return
a nonsense value for the option, such as -99. This would be a bad idea,
however. What if you have a complicated worksheet with many option
calculations? If you failed to notice the error, the -99 would be treated as a
true option value and propagated throughout your calculations.

Alternatively, you could have the function return a string such as “You
dweeb, you entered a negative volatility”. Apart from the fact that a col-
league might use your spreadsheet and take the message personally, this is
also not a good idea. Entering a string in a cell when you should have a
number could have unpredictable effects on calculations which depend on
the cell. While it is obvious that an addition between a string and a number
will fail, suppose you are performing a regression or a frequency count. Are
you sure what will happen to the calculation if you introduce a string among
the numbers in your data?

By using CVErr along with one of the built-in error codes (all of which
are called “xlErrsomething”) you are guaranteeing that your function will
return a result which Excel recognizes as a numerical error. The Excel
programmers have already thought through the issues of how subsequent
calculations should respond to a recognized error, and Excel usually does
something reasonable in those circumstances. The Excel error codes are
documented in the on-line VBA help.

8 Arrays

Often you will wish to use a single variable to store many numbers. For
example, in a binomial option calculation, you have a stock price tree. After
n periods, you have n possible stock prices. It can be useful to write the

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

8 ARRAYS 18

lowest stock price as P(1), the next as P(2), and the highest as P(n). The
variable P is then called an array—it is a single variable which stores more
than one number. You access the different elements of the array by selecting
the appropriate argument.

8.1 Defining Arrays

When you create an array, it is necessary to tell VBA how big the array
is going to be. You do this by using the Dim statement. Here are some
examples of how to use Dim:

Dim P(2) as double
This creates an array of three double precision real numbers, with the

array index running from 0 to 2. (By default, the first subscript in an array
is 0.) If you had written

Dim P(3 to 5) as double

you would have created a 3-element array with the index running from 3 to
5.

In this example we told Excel that the variable is type “double”. This
was not necessary—we could have left the type unspecified and permitted
Excel to determine the type automatically. It is faster and easier to detect
mistakes, however, if we specify the type.

Here is a routine which defines a 3-element array, reads numbers into
the array, and then writes the array out into dialog boxes:

Sub UseArray()
Dim X(2) As Double
X(0) = 0
X(1) = 1
X(2) = 2
y = X(0)
MsgBox (Str(y))
y = X(1)
MsgBox (Str(y))
y = X(2)
MsgBox (Str(y))

End Sub

You should enter this code and execute it to see what happens. The
subroutine UseArray can also be written as follows

Sub UseArray2()

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

9 ITERATING 19

X = Array(0, 1, 2)
y = X(0)
MsgBox (Str(y))
y = X(1)
MsgBox (Str(y))
y = X(2)
MsgBox (Str(y))

End Sub

There is an interesting difference between UseArray and UseArray2 in
the way arrays are declared. In UseArray, there is a dimension statement,
and then array elements are created one by one. In UseArray2, there is no
dimension statement, and the array function (built into VBA) is used to
initialize the array. UseArray will fail without the “Dim” statement, and
UseArray2 will fail with the “Dim” statement. I don’t know why.

You might wonder why in this example I write

y = X(2)
MsgBox (Str(y))

instead of just

MsgBox (Str(X(2)))

The reason is that “MsgBox(Str(X(2)))” does not work. It seems that
it should, but it doesn’t.1

Finally, notice the repetition in these examples! The statements which
put numbers into the array are essentially repeated three times (albeit more
compactly in UseArray2), and the statements which read numbers out of
the array are repeated three times. Suppose the array had 100 elements!
Surely there must be a better way. There is. It is time to learn about how
to perform repetitive calculations by iterating.

9 Iterating

Many kinds of option calculations are repetitive. For example, when we
compute a binomial option price, we generate a stock price tree and then
traverse the tree, calculating the option price at each node. Similarly, when

1This is just one example of why real programmers might kick silicon in your face if
you tell them you’re using VBA instead of, say, C++. But you can just smile, get your
work done, and close the deal, while they’re still yapping about how VBA is nothing but
a toy.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

9 ITERATING 20

we compute an implied volatility we need to perform a calculation repeatedly
until we arrive at the correct volatility. VBA provides us with the ability to
write one or more lines of code which can be repeated as many times as we
like.

9.1 A simple for loop

Here is an example of a for loop, which does exactly the same thing as the
UseArray subroutine above:

Sub UseArrayLoop()
Dim X(2) As Double
For i = 0 To 2
X(i) = i
Next i
For i = 0 To 2

y = X(i)
MsgBox (Str(y))

Next i
End Sub

This table translates the syntax in the first loop above:

For i = 0 to 2 Repeat the following statements three times,
the first time setting i = 0, the next time i =
1, and finally i = 2.

y = X(i) Set the variable y equal to the ith value of X.

Next i Go back and repeat the statement for the next
value of i.

9.2 Creating a binomial tree

In order to create a binomial tree, we need the following information:

• The initial stock price

• The number of time periods

• The magnitudes up and down by which the stock moves.

Suppose we wish to draw a tree where the initial price is 100, we have
10 binomial periods, and the moves up and down are u = 1.25 and d = 1/u

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

9 ITERATING 21

= .8. Here is a subroutine, complete with comments explaining the code,
which will create this tree. You first need to name a worksheet “output”,
and then we will write the tree to this worksheet. The number of binomial
steps and the magnitude of the moves are read from named cells, which can
be in any worksheet. I have placed those named cells in Sheet1. We will put
these named cells in Sheet2.6

Sub DrawBinomialTree()

ReDim stock(2) ’ provide default of 2 steps if no steps specified
Dim i as integer
Dim t as integer
n = Range(”n”) ’ number of binomial steps
u = Range(”u”) ’ move up
P0 = Range(”p0”) ’ initial stock price
d = 1 / u ’ move down
ReDim stock(n + 1) ’ array of stock prices
Worksheets(”Output”).Activate
’ Erase any previous calculations
Worksheets(”Output”).Cells.ClearContents
Cells (1, 1) = P0
’ We will adopt the convention that the column holds the
’ stock prices for a given point in time. The row holds
’ stock prices over time. For example, the first row
’ holds stock prices resulting from all up moves, the
’ second row holds stock prices resulting from a single
’ down move, etc...

’ The first loop is over time
For t = 2 To n

Cells (1, t) = Cells (1, t $−$ 1) ∗ u
’ The second loop is across stock prices at a given time
For i = 2 To t

Cells(i , t) = Cells(i $−$ 1, t $−$ 1) ∗ d
Next i

Next t
End Sub

6If it is not obvious to you that using the “Cells” function is the best way to write
to cells here, you should think about how you would do it using the other methods we
discussed earlier.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

10 READING AND WRITING ARRAYS 22

Several comments:

• There is a simple command to clear an entire worksheet, namely:
Worksheets(“worksheetname”).Cells.ClearContents.

• The use of the Cells function means that you can perform the calcula-
tion exactly as you would if you were writing it down, using subscripts
to denote which price you are dealing with. Think about how much
more complicated it would be to use traditional row and column no-
tation (e.g. “A1”) to perform the same function.

Note that this function uses the “ReDim” command to specify a flexible
array size. Sometimes you do not know in advance how big your array is
going to be. In this example you are unsure how many binomial periods
the user will specify. If you are going to use an array to store the full set
of prices at each point in time, this presents a problem—how large do you
make the array? You could specify the array to have a very large size, one
larger than any user is ever likely to use, but this kind of practice could get
you into trouble someday. Fortunately, VBA permits you to specify the size
of an array using a variable. You do it by using the Redim (“dimension”)
statement.

9.3 Other kinds of loops

We will not go into them here, but you should be aware that there are other
looping constructs available in VBA. The following kinds of loops are also
available:

• Do Until Loop and Do ... Loop Until

• Do While ... Loop and Do ... Loop While

• While ... Wend

• For Each ... In ... Next

If you ever think you need them, you can look these up in the on-line
help.

10 Reading and Writing Arrays

A powerful feature of VBA is the ability to read arrays as inputs to a function
and also to write functions which return arrays as output.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

10 READING AND WRITING ARRAYS 23

10.1 Arrays as Output

Suppose you would like to create a single function which returns two num-
bers: the Black-Scholes price of a call option, and the option delta. Let’s
call this function BS 3 and create it by modifying the function BS from
Section 6.1.

Function bs 3(s, k, v, r , t , d)
d1 = (Log(s / k) + (r − d + 0.5 ∗ v ˆ 2) ∗ t) / (v ∗ t ˆ 0.5)
d2 = d 1 − v ∗ t ˆ 0.5
nd1 = WorksheetFunction.NormSDist(d1)
nd2 = WorksheetFunction.NormSDist(d2)
delta = Exp(−d ∗ t) ∗ nd1
price = s ∗ delta − k ∗ Exp(−r ∗ t) ∗ nd2
bs 3 = Array(price, delta)

End Function

The key section is the line

bs 3 = Array(price, delta)

We assign an array as the function output, using the array function intro-
duced in Section 8.

If you just enter the function bs 3 in your worksheet in the normal way, in
a single cell, it will return a single number. In this case, that single number
will be the option price, which is the first element of the array. If you want to
see both numbers, you have to enter bs 3 as an array function: select a range
of two cells, enter the formula in the first, and then hit Ctrl-Shift-Enter to
create the array function.

There is a 50% probability you just discovered a catch. The way we have
written bs 3, the array output is horizontal. If you enter the array function
in cells a1:a2, for example, you will see the option price repeated twice. If
you enter the function in a1:b1, you will see the price and the delta. What
happens if we want vertical output? The answer is that we transpose the
array using the Excel function of that name, modifying the last line to read

bs 3 = WorksheetFunction.Transpose(Array(price, delta))

This will make the output be vertical.
There is also a way to make the output both horizontal and vertical. We

just have to return a 2× 2 array. Here is an illustration of how to do that:

Function bs 4(s, k, v, r , t , d)
Dim temp(1, 1) As Double

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

10 READING AND WRITING ARRAYS 24

d1 = (Log(s / k) + (r − d + 0.5 ∗ v ˆ 2) ∗ t) / (v ∗ t ˆ 0.5)
d2 = d 1 − v ∗ t ˆ 0.5
nd1 = WorksheetFunction.NormSDist(d1)
nd2 = WorksheetFunction.NormSDist(d2)
delta = Exp(−d ∗ t) ∗ nd1
price = s ∗ delta − k ∗ Exp(−r ∗ t) ∗ nd2
temp(0, 0) = price
temp(0, 1) = delta
temp(1, 0) = delta
temp(1, 1) = 0
bs 4 = temp

End Function

Now it does not matter whether you select cells a1:a2 or a1:b1; either way,
you will see both the price and the delta.2

10.2 Arrays as Inputs

We may wish to write a function which processes many inputs, where we
do not know in advance how many inputs there will be. Excel’s built-in
functions “sum” and “average” are two familiar examples of this. They
both can take a range of cells as input. It turns out it is easy to write
functions which accept ranges as input. Once in the function, the array
of numbers from the range can be manipulated in at least two ways: as a
collection, or as an actual array with the same dimensions as the range.

10.2.1 The Array as a Collection

First, here are two examples of how to use a collection.
Sumsq takes a set of numbers, squares each one, and adds them up:

Function sumsq(x)
Sum = 0
For Each y In x

Sum = Sum + y ˆ 2
Next
sumsq = Sum

End Function

The function sumsq can take a range (e.g. “a1:a10”) as its argument.
The “for each” construct in VBA loops through each element of a collection,

2What do you see if you select cells a1:b2? What about a1:d4?

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

10 READING AND WRITING ARRAYS 25

without our having to know in advance how many elements the collection
has.

There is another way to loop through the elements of a collection. The
function SumProd takes two equally-sized arrays, multiplies them element
by element, and returns the sum of the multiplied elements. In this example,
because we are working with two collections, we need to use a more standard
looping construct. To do this, we need to first count the number of elements
in each array. This is done using the “count” property of a collection. If
there is a different number of elements in each of the two arrays, we exit
and return an error code.

Function SumProd(x1, x2)
n1 = x1.Count
n2 = x2.Count
If n1 <> n2 Then

’ exit if arrays not equally−sized
sumprod = CVErr(xlErrNum)
End

End If
Sum = 0
For i = 1 To n1

Sum = Sum + x1(i) ∗ x2(i)
Next i
i = 1
SumProd = Sum

End Function

10.2.2 The Array as an Array

We can also treat the numbers in the range as a literal array. The only trick
to doing that is that we need to know the dimensions of the array, i.e. how
many rows and columns it has. The function RangeTest illustrates how to
do this.

Function RangeTest(x)
prod = 1
r = x.Rows.Count
c = x.Columns.Count
For i = 1 To r

For j = 1 To c
prod = prod ∗ x(i, j)

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

11 MISCELLANY 26

Next j
Next i
RangeTest = WorksheetFunction.Transpose(Array(prod, r, c))
End Function

This function again multiplies together the cells in the range. It returns
not only the product, but also the number of rows and columns.

When x is read into the function, it is considered by VBA to be an
array.3 “Rows” and “Columns” are properties of an array. The construct

x.Rows.Count

tells us the number of rows in the array. With this capability, we could
multiply arrays, check to see whether two ranges have the same dimensions,
and so on.

11 Miscellany

11.1 Getting Excel to generate your macros for you

Suppose you want to perform a task and you don’t have a clue how to
program it in VBA. For example, suppose you want to create a subroutine to
set up a graph. You can set up a graph manually, and tell Excel to record the
VBA commands which accomplish the same thing. You then examine the
result and see how it works. To do this, select Tools|Record Macro|Record
New Macro. Excel will record all your actions in a new module located at
the end of your workbook, i.e. following Sheet16. You stop the recording
by clicking the -?- button which should have appeared on your spreadsheet
when you started recording. Macro recording is an extremely useful tool for
understanding how Excel and VBA work and interact; this is in fact how
the Excel experts learn how to write macros which control Excel’s actions.

For example, here is the macro code Excel generates if you use the chart
wizard to set up a chart using data in the range A2:C4. You can see among
other things that the selected graph style was the fourth line graph in the
graph gallery, and that the chart was titled “Here is the title”. Also, each
data series is in a column and that the first column was used as the x-axis
(“CategoryLabels:=1”).

3You can verify this by using the VBA function IsArray. For example, you could write

y = IsArray(x)

and y will have the value “true” if x is a range input to the function.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

11 MISCELLANY 27

’ Macro1 Macro
’ Macro recorded 2/17/99 by Robert McDonald
’
’
Sub Macro1()
Range(”A2:C4”).Select
ActiveSheet.ChartObjects.Add(196.5, 39, 252.75, 162).Select
Application.CutCopyMode = False
ActiveChart.ChartWizard Source:=Range(”A2:C4”), Gallery:=xlLine,

Format:=4, PlotBy:=xlColumns, CategoryLabels:=1,SeriesLabels
:=0, HasLegend:=1, Title:=”Here is the Title”, CategoryTitle
:=”X−Axis”, ValueTitle:=”Y−Axis”, ExtraTitle:=””

End Sub

11.2 Using multiple modules

You can split up your functions and subroutines among as many modules as
you like—functions from one module can call another, for example. Using
multiple modules is often convenient for clarity. If you put everything in
one module you will spend a lot of time scrolling around.

11.3 Recalculation speed

One unfortunate drawback of VBA—and of most macro code in most app-
lications—is that it is slow. When you are using built-in functions, Excel
performs clever internal checking to know whether something requires recal-
culation (you should be aware that on occasion it appears that this clever
checking goes awry and something which should be recalculated, isn’t).
When you write a custom function, however, Excel is not able to perform its
checking on your functions, and it therefore tends to recalculate everything.
This means that if you have a complicated spreadsheet, you may find very
slow recalculation times. This is a problem with custom functions and not
one you can do anything about.

There are tricks for speeding things up. Here are two:

• If you are looping a great deal, be sure to declare your looping index
variables as integers. This will speed up Excel’s handling of these
variables. For example, if you use i as the index in a for loop, use the
statement

Dim i as integer

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

11 MISCELLANY 28

• While a lengthy subroutine is executing, you may wish to turn off
Excel’s screen updating. You do this by

Application.ScreenUpdating = False

This will only work in subroutines, not in functions. If you want to
check the progress of your calculations, you can turn ScreenUpdating
off at the beginning of your subroutine. Whenever you would like to
see your calculation’s progress (for example every 100 th iteration) you
can turn it on and then immediately turn it off again. This will update
the display.

• Finally, here is a good thing to know:

Ctrl-Break will (Usually) stop a recalculation!

Remember this. Someday you will thank me for it. Ctrl-Break is more
reliable if your macro writes output to the screen or spreadsheet.

11.4 Debugging

We will not go into details here, but VBA has very sophisticated debugging
capabilities. For example, you can set breakpoints (i.e. lines in your rou-
tine where Excel will stop calculating to give you a chance to see what is
happening) and watches (which means that you can look at the values of
variables at different points in the routine). Look up “debugging” in the
on-line help.

11.5 Creating an Add-in

Suppose you have written a useful set of option functions and wish to make
them broadly available in your spreadsheets. You can make the functions
automatically available in any spreadsheet your write by creating an add-
in. To do this, you simply switch to a macro module and then Tools|Make
Add-in. Excel will create a file with the XLA extension which contains your
functions. You can then make these functions automatically available by
Tools|Add-ins, and browse to locate your own add-in module if it does not
appear on the list.

Any functions available through an add-in will automatically show up in
the function list under the set of “user-defined” functions.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

12 A SIMULATION EXAMPLE 29

12 A Simulation Example

Suppose you have a large amount of money to invest. Suppose that at the
end of the next five years you wish to have it fully invested in stocks. It
is often asserted in the popular press that it is preferable to invest it in
the market gradually, rather than all at once. In particular, consider the
strategy of each quarter taking a pro rata share of what is left and investing
it in stocks. So the first quarter invest 1/20th in stocks, the second invest
1/19th of money remaining in stocks, etc... It is obvious that the strategy in
which we invest in stocks over time should have a smaller average return and
a lower standard deviation than a strategy in which we plunge into stocks,
but how much lower and smaller? Monte Carlo simulation is a natural tool
to address a question like this. We will first see how to structure the problem
and then analyze it in Excel.9,10 You may not understand the details of how
the random stock price is generated. That does not matter for purposes of
this example; rather, the important thing is to understand how the problem
is structured and how that structure is translated into VBA.

12.1 What is the algorithm?

To begin, we describe the investment strategy and the evolution over time of
the portfolio. Suppose we initially have $100 which is invested in bonds and
nothing invested in stock. Let the variables BONDS and STOCK denote the
amount invested in each. Let h be the fraction of a year between investments
in stock (so for example if h = .25, there are 4 transfers per year from bonds
to stock), and let r, µ, and σ denote the risk-free rate, the expected return
on the stock, and the volatility of the stock.

Suppose we switch from bonds to stock 20 times, once a quarter for
5 years. Let n = the number of times we will switch. We need to know
the stock price each time we switch. Denote these prices by PRICE(0),
PRICE(1), PRICE(2), ... , PRICE(20). Now each period, at the beginning

9The following example is considerably more complicated than those that precede it.
It is designed to illustrate many of the basic concepts in a non-trivial fashion. You may
wish to skip it initally, and return to it once you have had some experience with VBA.

10If you are thinking about option-pricing, you might expect this example to be com-
puted using the risk-neutral distribution. Instead, we will compare the actual payoff dis-
tributions of the two strategies in order to compare the means and standard deviations. If
we wished to value the two strategies, we would substitute the risk-neutral distribution by
replacing the 15% expected rate of return with the 10% risk-free rate. After making this
substitution, both strategies would have the same expected payoff of $161 (100 ×1.15).
Since both strategies entail buying assets at a fair price, there is no need to perform a
valuation! Both will be worth the initial investment.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

12 A SIMULATION EXAMPLE 30

of the period we first switch some funds from bonds to stock. At the end of
the period, we figure out how much we earned over the period. If we wish
to switch a roughly constant proportion each period, we could switch 1/20
the first period, 1/19 with 19 periods to go, and so forth. This suggests that
at the beginning of period j,

bonds(j)=bonds(j−1) ∗ (1−1/(n+1−j))
stock(j)=stock(j−1)+bonds(j−1)/(n+1−j)

At the end of the period we have

stock(j)=stock(j) ∗ price(j)/price(j−1)
bonds(j) = bonds(j) ∗ exp(r ∗ h)

In words, during period j, we earn interest on the bonds and capital gains
on the stock. We can think of the STOCK(j) and BONDS(j) on the right-
hand side as denoting beginning of period values after we have allocated
some dollars from bonds to stock, and the values on the right-hand side as
the end-of-period values after we have earned interest and capital gains.

We compute capital gains on the stock by

price(j) = price(j−1) ∗ exp((mu − 0.5 ∗ v ˆ 2) ∗ h
+ v ∗ h ˆ (0.5) ∗ WorksheetFunction.NormSInv(rnd()))

As mentioned above, it is not important if you do not understand this ex-
pression. It is the standard way to create a random lognormally-distributed
stock price, where the expected return on the stock is mu, the volatility is
v, and the length of a period is h. At the end, j = n, and we will invest all
remaining bonds in stock, and earn returns for one final period.

This describes the stock and bond calculations for a single set of randomly-
drawn lognormal prices. Now we want to repeat this process many times.
Each time, we will save the results of the trial and use them to compute the
distribution.

12.2 VBA code for this example.

We will set this up as a subroutine. The first several lines in the routine
simply activate the worksheet where we will write the data, and then clear
the area. We need two columns: one to store the terminal portfolio value if
we invest fully in stock at the outset, the other to store the terminal value
if invest slowly. Note that we have set it up to run 2000 trials, and we
also clear 2000 rows. We tell VBA that the variables “bonds”, “stock”, and
“price” are going to be arrays of type double, but we do not yet know what
size to make the array. The “Worksheets(“Invest Output”).Activate makes

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

12 A SIMULATION EXAMPLE 31

the “invest output” worksheet the default worksheet, so that all reading and
writing will be done to it unless another worksheet is specified.

1 Sub Monte invest()
2 Dim bonds() As Double
3 Dim stock() As Double
4 Dim price() As Double
5 Worksheets(”Invest Output”).Activate
6 Range(”a1..b2000 ”). Select
7 Selection .Clear
8 ’ number of monte−carlo trials
9 iter = 2000

Now we set the parameters. The risk-free rate, mean return on the stock,
and volatility are all annual numbers. We invest each quarter, so h = 0.25.
There are 20 periods to keep track of since we invest each quarter for 5
years. Note that once we specify 20 periods, we can dimension the bonds,
stock, and price variables to run from 0 to 20. We do this using the “Redim”
command.

10 ’ number of reinvestment periods
11 n = 20
12 ’ Reset the dimension of the bonds and stock variable
13 ReDim bonds(0 To n), stock(0 To n), price(0 To n)
14 ’ length of each period
15 h = 0.25
16 ’ expected return on stock
17 mu = 0.15
18 ’ risk−free interest rate
19 r = 0.1
20 ’ volatility
21 v = 0.3

Now we have an outer loop. Each time through this outer loop, we have
one trial, i.e. we draw a series of 20 random stock prices and we see what the
terminal payoff is from our 2 strategies. Note that before we run through
a single trial we have to initialize our variables: the initial stock price is
100, we have $100 of bonds and no stock, and “Price(0)”, which is the intial
stock price, is set to 100.

22 ’ each time through this loop is one complete iteration
23 For i = 1 To iter price(0) = 100
24 bonds(0) = 100

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

12 A SIMULATION EXAMPLE 32

25 stock(0) = 0

This is the heart of the program. Each period for 20 periods we perform
our allocation as above. Note that we draw a new random stock price using
our standard lognormal expression.

26 For j = 1 To n
27 ’ allocate 1/n of bonds to stock
28 stock(j) = stock(j−1) + bonds(j−1) / (n + 1 − j)
29 bonds(j) = bonds(j−1) ∗ (1 $−$ 1 / (n + 1 $−$ j))
30

31 ’ draw a new lognormal stock price
32 price(j) = price(j−1) ∗ Exp((mu − 0.5 ∗ v ˆ 2) ∗ h +
33 v ∗ h ˆ (0.5) ∗ WorksheetFunctionNormSInv(Rnd()))
34

35 ’ earn returns on bonds and stock
36 bonds(j) = bonds(j) ∗ Exp(r ∗ h)
37 stock(j) = stock(j) ∗ (price(j) / price(j−1))
38

39 Next j

Once through this loop, all that remains is to write the results to “sheet1”.
The following two statements do that, by writing the terminal price to col-
umn 1, row i, and the value of the terminal stock position to column 2, row
i.

40 ActiveSheet.Cells(i , 1) = price(n)
41 ActiveSheet.Cells(i , 2) = stock(n)
42

43 Next i
44

45 End Sub

Note that you could also write the data across in columns: you would
do this by writing

ActiveSheet.Cells (1, i) = p1

This would write the terminal price across the first row.

12.3 A trick to speed up the calculations

Modify the inner loop by adding the two lines referring to “screenupdating”:

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

12 A SIMULATION EXAMPLE 33

’ each time through this loop is one complete iteration
For i = 1 To iter

Application.ScreenUpdating = false
...
If (i mod 100 = 0) then application.screenupdating = true
ActiveSheet.Cells(i , 1) = price(i)
ActiveSheet.Cells(i , 2) = stock(i)

Next i

The first line prevents Excel from updating the display as the subroutine
is run. It turns out that it takes Excel quite a lot of time to redraw the
spreadsheet and graphs when numbers are added.

The second line at the end redraws the spreadsheet every 100 iterations.
The “mod” function returns the remainder from dividing the first number
by the second. Thus,

i mod 100

will equal 0 whenever i is evenly divisible by 100. So on iteration numbers
100, 200, etc..., the spreadsheet will be redrawn. This cuts the calculation
time approximately in half.

Note that “Application.ScreenUpdating” is an example of a command
which only works within a subroutine. It will not work within a function.

Copyright c©1995-2000, Robert L. McDonald. November 3, 2000

	Introduction
	Calculations without VBA
	How to Learn VBA
	Calculations with VBA
	Creating a simple function
	A Simple Example of a Subroutine
	Creating a Button to Invoke a Subroutine
	Functions can call functions
	Illegal Function Names
	Differences Between Functions and Subroutines

	Storing and Retrieving Variables in a Worksheet
	Using a named range to read and write numbers from the spreadsheet
	Reading and Writing to Cells Which are not Named.
	Using the ``Cells'' Function to Read and Write to Cells.

	Using Excel Functions
	Using VBA to compute the Black-Scholes formula
	The Object Browser

	Checking for Conditions
	Arrays
	Defining Arrays

	Iterating
	A simple for loop
	Creating a binomial tree
	Other kinds of loops

	Reading and Writing Arrays
	Arrays as Output
	Arrays as Inputs
	The Array as a Collection
	The Array as an Array

	Miscellany
	Getting Excel to generate your macros for you
	Using multiple modules
	Recalculation speed
	Debugging
	Creating an Add-in

	A Simulation Example
	What is the algorithm?
	VBA code for this example.
	A trick to speed up the calculations

