
Test 1 - Introduction to Oracle: SQL and PL/SQL (Exam #1Z0-

001) 

Selecting Data 
The most common manipulation of data in the Oracle database is to select it, and the means 
by which to select data from Oracle is the select statement. The select statement has two 
basic parts, the select clause and the from clause. 

The select clause identifies the column of the table that the user would like to view contents 
of. The from clause identifies the table in which the data selected is stored. 

Performing Arithmetic Equations 

Often, users will want to perform calculations involving the data selected from a table. Oracle 
allows for basic, intermediate, and complex manipulation of data selected from a database 

table through the use of standard arithmetic notation such as plus (+), minus(-), multiply (*), 
and divide (/). These operators can be used to perform math calculations on the data 
selected from a table or as math operators on numbers in calculator-like fashion. In order to 

perform calculations on numbers that are not selected from any table, the user must utilize 
the DUAL table. DUAL is simply an empty table with one column that fulfills the syntactic 
requirements of SQL statements like select, which need a table name in the from clause in 
order to work. 

Handling NULL Values 

When manipulating data from a table, the user must remember to handle cases when column 
data for a particular row is nonexistent. Nonexistent column data in a table row is often 
referred to as being NULL. These NULL values can be viewed either as blank space, by default, 
or the user can account for the appearance of null data by using a special function that will 
substitute null fields with a data value. The name of this special function is nvl( ). The nvl( ) 

function takes two parameters: the first is the column or value to be investigated for being 

null, and the second is the default value nvl( ) will substitute if the column or value is null. 
The nvl( ) function operates on all sorts of datatypes, including CHAR, VARCHAR2, NUMBER, 
and DATE. 

"Renaming" Columns with Column Aliases 

When performing special operations on columns in a select statement, Oracle often displays 

hard-to-read headings for the column name because Oracle draws the column name directly 
from the select clause of the select statement. The user can avoid this problem by giving a 
column alias for Oracle to use instead. For example, the following select may produce a 
cryptic column heading: select nvl(empid,'00000') EMPID …, while a column alias would 
allow Oracle to provide a more meaningful heading: select nvl(empid,'00000') EMPID …. 
Column aliases are specified as character strings following the function and/or column name 
the alias will substitute. Be sure to include white space between the function and/or column 
name and the alias. 

Putting Columns Together with Concatenation 

Columns can be concatenated together using the double-pipe (||) delimiter. This operation is 
useful for placing information closer together, or to use special characters to separate the 
output, such as commas or others. 

Editing SQL Queries Within SQL*Plus 



The SQL statement itself is entered using the SQL*Plus tool. If a user makes an error while 

typing in the line of SQL, the user can use the backspace key to erase characters until he or 
she reaches the mistake; however, this approach only works if the user is still on the same 
line in the SQL entry buffer. If the user has already proceeded to another line, or if he or she 

has already tried to execute the command, then he or she can type in the number 
corresponding to the line to be corrected to select that line for editing. Then, the user can 
type in the change command, abbreviated c/old/new, where old is the existing version of 
the string containing the mistake, and new is the correction. If this all sounds complicated, 
the user can simply type edit, or ed from the prompt in SQL*Plus, and Oracle will 
immediately bring up the user's favorite text editor. The text editor used here can be specified 
or changed with the define_editor="youreditor" command. 

Limiting Selected Output 

The number or order of selected rows from the database can be limited with various options. 

The Order by clause 

This is a clause that allows the user to specify two things-the first is a column on which to list 
the data in order, the second is whether Oracle should use ascending or descending order. 
Usage of the order by clause can make output from an Oracle select statement more 
readable, since there is no guarantee that the data in Oracle will be stored in any particular 
order. 

The Where close 

The second means of limiting selected output is the where clause. Proper use of this clause is 
key to successful usage of Oracle and SQL. In the where clause, the user can specify one or 
more comparison criteria that must be met by the data in a table in order for Oracle to select 
the row. A comparison consists of two elements that are compared using a comparison 

operator, which may consist of a logic operator such as equality (=), inequality (<>,!=, or 

^=), less than (<) or greater than (>), or a combination of less or greater than and equality. 
Alternately, the user can also utilize special comparison operators that enable for pattern 
matches using like %, range scans using between x and y, or fuzzy logic with the 
soundex(x) = soundex(y) statement. In addition, one or more comparison operations may 
be specified in the where clause, joined together with and or the or operator, or preceded by 
not. 

Using Single-row Functions 

Data selected in Oracle can be modified with the use of several functions available in Oracle. 
These functions may work on many different types of data, as is the case with nvl( ) other 
functions called decode( ), greatest( ), or least( ). Alternately, their use may be limited to 

a particular datatype. These functions may be divided into categories based on the types of 
data they can handle. Typically, the functions are categorized into text or character functions, 
math or number functions, and date functions. 

Various Single-row Functions Explained 

Related to the set of functions designed to convert data from one thing to another are several 
functions that manipulate text strings. These functions are similar in concept to nvl( ) and 
decode( ) in that they can perform a change on a piece of data, but the functions in this 
family can perform data change on only one type of data-text. As such, the functions in this 
family are often referred to as text, or character functions. In this family are several functions 
in Oracle, for which some of the highlighted functions that are most used are listed below. 



   

lpad(x,y[,z]) 
rpad(x,y[,z]) 

Returns the column "padded" on the left or right side of the data in the 
column passed as x to a width passed as y. The optional passed value z 
indicates the character that lpad or rpad will insert into the column. 

lower(x) 
upper(x) 
initcap(x) 

Returns the column value passed as x into all lowercase or uppercase, or 
changes the initial letter in the string to a capital letter. 

length(x) 
Returns a number indicating the number of characters in the column value 
passed as x. 

substr(x,y[,z]) 
Returns a substring of string x, starting at character number y to the end, 
which is optionally defined by the character appearing in position z of the 
string. 

Others are designed to perform specialized mathematical functions such as those used in 

scientific applications like sine and logarithm, which should already be fairly well understood 
by those with a background in trigonometry. These operations are commonly referred to as 

math or number operations. The functions falling into this category are listed below. These 
functions are not all the ones available in Oracle, but rather are the most commonly used ones 
that will likely be used on OCP Exam 1. 

   

abs(x) 
Obtains the absolute value for a number. For example, the absolute value of (-1) 
is 1, while the absolute value of 6 is 6. 

ceil(x) 
Similar to executing round (see below) on an integer (i.e., round(x,0), except 
ceil always rounds up. For example, ceil(1.6) = 2. Note that rounding "up" on 
negative numbers produces a value closer to zero (e.g., ceil(-1.6) = -1, not -2). 

floor(x) 
Similar to ceil (see above), except floor always rounds down. For example, 
floor(1.6) = 1. Note that rounding "down" on negative numbers produces a 
value further away from zero (e.g., floor(-1.6) = -2, not -1. 

mod(x,y) 

The modulus of x, as defined by long division as the integer remainder left over 

when x is divided by y until no further whole number can be produced. An 
example is mod(10,3) = 1, or mod(10,2) = 0. 

round(x,y) 

Round x to the decimal precision of y. If y is negative, round to the precision of y 

places to the left of the decimal point. For example, round(134.345,1) = 
134.3, round(134.345,0) = 134, round(134.345,-1) = 130. 

sign(x) 
Displays integer value corresponding to the sign of x, 1 if x is positive, -1 if x is 

negative. 

sqrt(x) The square root of x. 

trunc(x,y) 
Truncate value of x to decimal precision y. If y is negative, then truncate to y 
number of places to the left of the decimal point. 

vsize(x) The storage size in bytes for value x. 

The final category of number functions that is the set of list functions. These functions are 

actually used for many different datatypes, including text, numeric, and date. The list 
functions are listed below. 

   



greatest(x,y,…) 
Returns the highest value from list of text strings, numbers, or dates 

(x,y…). 

least(x,y,…) Returns the lowest value from list of text strings, numbers, or dates (x,y…). 

Another class of data functions available in Oracle correspond to another commonly used 

datatype in the Oracle database-the DATE datatype. The functions that perform operations on 
dates are known as date functions. Before diving into the functions, a useful item in Oracle 

related to dates will be presented. There is a special keyword that can be specified to give 
Oracle users the current date. This keyword is called sysdate. The functions that can be used 
on DATE columns are listed in the following definitions: 

   

add_months(x,y) Returns a date corresponding to date x plus y months. 

last_day(x) Returns the date of the last day of the month that contains date x. 

months_between(x,y) 
Returns a number of months between y and x as produced by y-x. 
Can return a decimal value. 

new_time(x,y,z) 
Returns the current date and time for date x in time zone y as it 
would be in time zone z. 

Why use functions at all? The functions available in Oracle are highly useful for executing well-

defined operations on data in a table or constant values in an easy way. For example, if the 
user were working with a scientific organization to produce a report of data for that 

organization, the user may want to use some of the math functions available in Oracle. Rather 
than selecting data from a table and performing standard mathematical calculations using a 
scientific calculator, the user may instead execute the functions on that data and produce the 
report cleanly, in one step. The use of functions in Oracle often saves time and energy. 

Conversion functions 

Still other functions are designed to convert columns of one datatype to another type. As 
these functions are simply designed to change the datatype of the column value, not actually 
modify the data itself, the functions are called conversion functions. There are several different 
conversion functions available in the Oracle database. The ones available appear in the 
following list: 

   

to_char(x) Converts noncharacter value x to character 

to_number(x) Converts nonnumeric value x to number 

to_date(x[,y]) Converts nondate value x to date, using format specified by y 

to_multi_byte(x) 
Converts single-byte character string x to multibyte characters according 

to national language standards 

to_single_byte(x) 
Converts multibyte character string x to single-byte characters according 
to national language standards 

chartorowid(x) Converts string of characters x into an Oracle ROWID 

rowidtochar(x) Converts string of characters x into an Oracle ROWID 

hextoraw(x) Converts hexadecimal (base-16) value x into raw (binary) format 

rawtohex(x) Converts raw (binary) value x in to hexadecimal (base-16) format 



convert(x[,y[,z]]) 
Executes a conversion of alphanumeric string x from the current 

character set optionally specified as z to the one specified by y 

translate(x,y,z) 
Executes a simple value conversion for character or numeric string x into 
something else based on the conversion factors y and z 

Advanced Data Selection in Oracle 

Displaying Data from Multiple Tables 

Data in a table can be linked if there is a common or shared column between the two tables. 
This shared column is often referred to as a foreign key. Foreign keys establish a relationship 
between two tables that is referred to as a parent/child relationship. The parent table is 
typically the table in which the common column is defined as a primary key, or the column by 
which uniqueness is identified for rows in the table. The child table is typically the table in 
which the column is not the primary key, but refers to the primary key in the parent table. 

Types of joins 

There are two types of joins. One of those types is the "inner" join, also known as an equijoin. 
An inner join is a data join based on equality comparisons between common columns of two or 

more tables. An "outer" join is a nonequality join operation that allows the user to obtain 
output from a table even if there is no corresponding data for that record in the other table. 

Select Statements that Join Data from More than One Table 

Joins are generated by using select statements in the following way. First, the columns desired 

in the result set are defined in the select clause of the statement. Those columns may or may 
not be preceded with a table definition, depending on whether or not the column appears in 
more than one table. If the common column is named differently in each table, then there is 
no need to identify the table name along with the column name, as Oracle will be able to 

distinguish which table the column belongs to automatically. However, if the column name is 
duplicated in two or more tables, then the user must specify which column he or she would 
like to obtain data from, since Oracle must be able to resolve any ambiguities clearly at the 

time the query is parsed. The columns from which data is selected are named in the from 
clause, and may optionally be followed by a table alias. A table alias is similar in principle to a 
column alias. The where clause of a join statement specifies how the join is performed. 

Creation of inner and outer join 

An inner join is created by specifying the two shared columns in each table in an equality 

comparison. An outer join is created in the same way, with an additional special marker placed 
by the column specification of the "outer" table, or the table in which there need not be data 
corresponding to rows in the other table for that data in the other table to be returned. That 
special marker is indicated by a (+). 

Joining a Table to Itself 

Finally, a table may be joined to itself with the use of table aliases. This activity is often done 
to determine if there are records in a table with slightly different information from rows that 
otherwise are duplicate rows. 

Group Functions and Their Uses 



Another advanced technique for data selection in Oracle databases is the use of grouping 

functions. Data can be grouped together in order to provide additional meaning to the data. 
Columns in a table can also be treated as a group in order to perform certain operations on 
them. These grouping functions often perform math operations such as averaging values or 

obtaining standard deviation on the dataset. Other group functions available on groups of data 
are max( ), min( ), sum( ), and count( ). 

Using the GROUP BY Clause 

One common grouping operation performed on data for reporting purposes is a special clause 

in select statements called group by. This clause allows the user to segment output data and 
perform grouping operations on it. There is another special operation associated with grouping 
that acts as a where clause for which to limit the output produced by the selection. This 
limiting operation is designated by the having keyword. The criteria for including or excluding 
data using the having clause can be identified in one of two ways. Either criterion can be a 
hard-coded value or it can be based on the results of a select statement embedded into the 
overarching select statement. This embedded selection is called a subquery. 

Using Subqueries 

Another advanced function offered by select statements is the use of subqueries in the where 
clause of the select statement. A select statement can have 16 or more nested subqueries in 
the where clause, although it is not generally advisable to do so based on performance. 

Subqueries allow the user to specify unknown search criteria for the comparisons in the where 
clause as opposed to using strictly hard-coded values. Subqueries also illustrate the principle 
of data scope in SQL statements by virtue of the fact that the user can specify columns that 
appear in the parent query, even when those columns do not appear in the table used in the 
subquery. 

Another use of subqueries can be found in association with a special operation that can be 
used in the where clause of a select statement. The name of this special operation is exists. 

This operation produces a TRUE or FALSE value based on whether or not the related subquery 
produces data. The exists clause is a popular option for users to incorporate subqueries into 
their select statements. 

Output from the query can be placed into an order specified by the user with the assistance of 
the order by clause. However, the user must make sure that the columns in the order by 

clause are the same as those actually listed by the outermost select statement. The order by 
clause can also be used in subqueries; however, since the subqueries of a select statement 
are usually used to determine a valid value for searching or as part of an exists clause, the 
user should be more concerned about the existence of the data than the order in which data is 
returned from the subquery. Therefore, there is not much value added to using the order by 
clause in subqueries. 

Using Runtime Variables 

One final advanced technique is the specification of variables at run time. This technique is 
especially valuable in order to provide reusability in a data selection statement. In order to 
denote a runtime variable in SQL, the user should place a variable name in the comparison 
operation the user wants to specify a runtime value for. The name of that variable in the 

select statement should be preceded with a special character to denote it as a variable. By 
default, this character is an ampersand (&). However, the default variable specification 
character can be changed with the use of the set define command at the prompt. 

Runtime variables can be specified for SQL statements in other ways as well. The define 
command can be used to identify a runtime variable for a select statement automatically. After 



being defined and specified in the define command, a variable is specified for the entire 

session or until it is altered with the undefine command. In this way, the user can avoid the 
entire process of having to input values for the runtime variables. The final technique covered 
on select statements is the usage of accept to redefine the text displayed for the input prompt. 

More cosmetic than anything else, accept allows the user to display a more direct message 
than the Oracle default message for data entry. 

NEW FEATURES IN SQL*Plus 8.0 

CONNECT command incites the user to change an expired password. 

EXIT command has a :BindVariable clause and thus, can be referenced in PL/SQL. 

The limits of CLOB and NCLOB datatypes is determined by LONG and LONGCHUNKSIZE 
datatypes. 

ATTRIBUTE command. For a given column, the attributes are displayed. 

SET command has a LOBOFFSET clause that sets the beginning position from which CLOB 
and NCLOB data is returned. 

A NONE clause is attached to the SET NEWPAGE command. Its function is to disallow blank 
lines and formfeed between pages during printing. 

PASSWORD command, passwords can be modified with no echo of password to the input 
device. 

VARIABLE command comprises clauses NCHAR, NVARCHAR2 (NCHAR VARYING), CLOB 
and NCLOB. 

4000 is the maximum length of VARCHAR2 and NVARCHAR2. The maximum length of 
CHAR and NCHAR bind variables are 2000. 

  

Overview of Data Modeling and Database Design 

Stages of System Development 

In order to create a database in Oracle, it is important that all stages of system development 
be executed carefully. Some of the stages include needs assessment, requirements definition, 
database design, application development, performance tuning, security enforcement, and 

enhancements development. The final stage in that life cycle is really a miniature version of 
the first several stages rolled into one. 

The needs assessment stage is a critical one. It is the period of time where the users of the 

system are identified, and the desired and required features of the system are documented. 
After needs assessment, a full list of requirements should be agreed upon and documented so 
as to avoid costly rework later. Once the requirements of the system are completely 
understood, the developers of the database portion of the application should model the 
business process required into an entity-relationship diagram, which consists of entities, or 
persons, places, things, or ideas involved in the process flow, and the relationships between 

each entity. This entity-relationship diagram will then be used to create a logical data model, 
or a pictorial diagram of the tables that will represent each entity and the referential integrity 
constraints that will represent each relationship. Ordinality is a key point here. 



Ordinality defines whether the relationship is mandatory for the entities partaking of the 

relationship, and the record-to-record correspondence of one record in a database. There are 
three types of record-to-record correspondence in the database-one-to-one, one-to-many, and 
many-to-many. 

A one-to-one correspondence means that one record of one table corresponds to one record in 
another. 

One-to-many correspondence means that one record from one table corresponds to many 
records of another table. 

Many-to-many correspondence means that several records from one table correspond to 
several records on another table. 

Creating the Tables of an Oracle Database 

Once the planning is complete, than developers and DBAs can move forward with the process 
of actually creating the database. A table can be created with several different columns. The 
allowed datatypes for these columns in Oracle7 are VARCHAR2, CHAR, NUMBER, DATE, RAW, 
LONG, LONG RAW, MLSLABEL and ROWID. More datatypes are available in Oracle8. One or 

more of these columns is used to define the primary key, or element in each row that 
distinguishes one row of data from another in the table. 

A primary key is one type of integrity constraint. Another type of integrity constraint is the 
foreign key, which defines referential integrity on the table, creating table relationships and 
often modeling the relationships between entities from the entity-relationship diagram. 
Referential integrity produces a parent/child relationship between two tables. 

Using Table Naming Conventions 

Sometimes it is useful to name tables according to conventions that have the child objects 
take on the name of the parent object as part of their own name. The three other constraints 
available on the database are unique, check, and NOT NULL. Unique constraints prevent 
duplicate non-NULL values from appearing in a column for two or more rows. Check 
constraints verify data in a column against a set of constants defined to be valid values. NOT 
NULL constraints prevent the entry of NULL data for a column on which the NOT NULL 

constraint is defined. Two of the five constraints create indexes to help enforce the integrity 
they are designed to enforce. Those two constraints are the ones designed to enforce 
uniqueness, the unique constraint and the primary key. Finally, a table is created with no data 
in it, except in the case of the create table as select. This statement allows the user to 
create a table with row data prepopulated from another table. All options available for regular 
select statements are available in this statement as well. 

The Oracle Data Dictionary 

The data dictionary contains information about all objects created in the database. It also 

contains a listing of available columns in each object created in the database. Information 
about table columns can be obtained using the describe command, followed by the name of 
the table the user wants to view the columns on. Information is kept in data dictionary tables 

about the objects created in Oracle, where they are stored, and performance statistics. 
However, the user will not usually access the tables of the data dictionary directly. Rather, the 
user generally will look at that data using data dictionary views. Data can be selected from 
views in the same way it can be selected from tables. No user is able to delete data from the 
data dictionary, because doing so could permanently damage the Oracle database. All tables 
and views in the Oracle data dictionary are owned by SYS. 



Available Dictionary Views & Querying the Data Dictionary 

Those views are divided into three general categories that correspond to the scope of data 
availability in the view. The USER_ views show information on objects owned by the user, the 
ALL_ views show information on all the objects accessible by the user, and the DBA_ views 
show information on all objects in the database. Data dictionary views are available on every 
type of object in the database, including indexes, constraints, tables, views, synonyms, 

sequences, and triggers. Additionally, information is available to help the user understand 
which columns are available in indexes or primary-key constraints. Several views exist to 
show the position of columns in composite indexes, which are indexes that contain several 
columns. 

Manipulating Oracle Data 

There are three types of data change statements available in the Oracle database. They are 
update, insert, and delete. The update statement allows the user to change row data that 

already exists in the database. The insert statement allows the user to add new row data 
records to the tables of a database. The delete statement allows the user to remove records 
from the database. 

The Importance of Transaction Controls 

The various data change operations are supported in Oracle with the usage of transaction-
processing controls. There are several different aspects to transaction processing. These 
include the commands used to set the beginning, middle, and end of transactions, rollback 
segments designed to store uncommitted data changes, and the locking mechanisms that 
allow one and only one user at a time to make changes to the data in the database. 

Table and Constraint Modifications 

There are several activities a developer or DBA can do in order to alter tables and constraints. 

Some of these activities include adding columns or constraints, modifying the datatypes of 
columns, or removing constraints. 

Adding and modifying columns is accomplished with the alter table command, as are adding 
or modifying constraints on the table. There are several restricting factors on adding 

constraints, centering around the fact that adding a constraint to a column means that the 
data already in the column must conform to the constraint being placed upon it. 

With respect to adding columns or changing the datatype of a column, there are some general 

rules to remember. It is easier to increase the size of a datatype for a column, and to add 
columns to the table. More difficult is changing the datatype of a column from one thing to 
another. Generally, the column whose datatype is being altered must have NULL values for 
that column specified for all rows in the table. A table can be dropped with the drop table 
statement. Once dropped, all associated database objects like triggers and constraints, and 
indexes automatically created to support the constraints, are dropped as well. Indexes that 

were manually generated by the DBA to improve performance on the table will also be 
dropped. 

There are several other tricks to table alteration. If the user wants to delete all data from a 
table but leave the definition of the table intact, the user can use the alter table truncate 
command. A database object can be renamed with use of the rename command. 
Alternatively, the DBA can create a synonym, which allows users to reference the database 
object using a different name. One final option offered to the DBA is to make notes in the 
database about objects by adding comments. Comments are added with the comment on 
statement. 



Sequences 

Creation of sequences is another important area of advanced Oracle object creation. A 
sequence is an object that produces integers on demand according to rules that are defined 
for the sequence at sequence creation time. Some uses for a sequence include using a 
sequence to generate primary keys for a table or to generate random numbers. Creating a 
sequence is accomplished with the create sequence command in Oracle. To use a sequence, 

the user must reference two virtual columns in the sequence, known as CURRVAL and 
NEXTVAL. The CURRVAL column stores the current value generated by the sequence, while 
referencing NEXTVAL causes the sequence to generate a new number and replace the value in 
CURRVAL with that new number. 

Several rules can be used to govern how sequences generate their numbers. These rules 
include the first number the sequence should generate, how the sequence should increment, 
maximum and minimum values, whether values can be recycled, and others. Modifying the 
rules that govern sequence integer generation is accomplished with the alter sequence 

statement, while removal of the sequence is accomplished with the drop sequence 
statement. 

Views 

Views are used to distill data from a table that may be inappropriate for use by some users. 
Other uses for views include the creation of views that mask the complexity of certain data 

(such as joins from multiple tables), data that has single-row operations performed on it, and 
other things. One common example of view usage is the data dictionary, which stores all data 
about the Oracle database in tables but disallows direct access to the tables in favor of 
providing views through which the user can select data. There are two categories of views, 
simple and complex. A simple view is one that draws data from only one table. A complex 
view is one that draws data from two or more tables. Simple views sometimes allow the user 
to insert, update, or delete data from the underlying table, while complex views never allow 

this to occur. A view can also have the option of enforcing a check on the data being inserted. 
This means that if the user tries to make a change, insertion, or deletion to the underlying 

table, the view will not allow it unless the view can then select the row being changed. 
Modifying the definition of a view requires dropping the old view and re-creating it or, 
alternately, creating the view again with the or replace option. The alter view statement is 
used for recompiling an existing view due to a problem with the object dependencies of the 
database. Removing a view from the database is done with the drop view statement. 

Indexes 

There are several indexes created automatically to support enforcement of uniqueness 
constraints such as the primary key or the unique constraint. However, the DBA can also 
create nonunique indexes to support performance improvements on the database application. 

The traditional index consists of a binary search tree structure. The search algorithm 
supported by this structure operates by dividing a sorted list of elements in half and 
comparing the value at hand to the midpoint value, then searching the greater or lesser half 
depending on whether the value at hand is greater or less than the midpoint value. This 

process is repeated until the index values are exhausted or the value is found. Studies have 
shown that this algorithm can find a value from a list of one million elements in 20 or fewer 
tries. In order for a column to be indexed and used effectively using the B-tree index, the 

cardinality, or number of distinct values in the column, should be high. To change storage 
parameters about the index, the DBA can issue the alter index statement. To change the 
number of columns in an index, the index must be dropped and rebuilt. To drop an index, use 
the drop index statement. 

Another index available in Oracle is the bitmap index. This index stores each ROWID in the 
table along with a series of bits, one for every distinct value in the column. The values that are 



not used in the column are set off, while the value that is present in the column is set on. 
Bitmap indexes work well for improving performance on columns with few distinct values. 

User Access Control 

The Oracle database security model contains three major areas-user authentication, system 
privileges to control the creation of database objects, and object privileges to control usage of 
database objects. To change a password, the user can issue the alter user identified by 
statement, specifying the person's username and the desired password. System privileges 
govern the creation of new database objects, such as tables, sequences, triggers, and views, 

as well as the execution of certain commands for analyzing and auditing database objects. 
Three general object maintenance activities are governed by system privileges, and they are 
the creation, change, and dropping of database objects. Object privileges govern access to an 
object once it is created, such as selects, updates, inserts, and deletes on tables, execution of 
packages or procedures, and reference of columns on tables for foreign key constraints. 

In situations where there are many users and many privileges governing database usage, the 
management of privilege granting to users can be improved using roles. Roles act as "virtual 
users" of the database system. The DBA first defines the privileges a user may need, groups 
them logically by function or job description, then creates an appropriate role. Privileges to 

support the function or the job description are then granted to the role, and the role is granted 
to the user. Roles help to alleviate the necessity of granting several privileges each time a 
user is added to an application. 

Using Synonyms for Database Transparency 

Database objects are owned by users and accessible to their schema only, unless permission 

is explicitly granted by the owner to another user to view the data in the table. Even then, the 
schema owning the object must be referenced in the statement the user issues to reference 
the object. Public synonyms can eliminate that requirement, making the schema ownership of 
the database object transparent. A public synonym is created with the create public 
synonym statement. 

Overview of PL/SQL 

PL/SQL is the best method available for writing and managing stored procedures that work 
with Oracle data. PL/SQL code consists of three subblocks-the declaration section, the 
executable section, and the exception handler. In addition, PL/SQL can be used in four 
different programming constructs. The types are procedures and functions, packages, and 
triggers. Procedures and functions are similar in that they both contain a series of instructions 

that PL/SQL will execute. However, the main difference is that a function will always return 
one and only one value. Procedures can return more than that number as output parameters. 
Packages are collected libraries of PL/SQL procedures and functions that have an interface to 
tell others what procedures and functions are available as well as their parameters, and the 
body contains the actual code executed by those procedures and functions. Triggers are 
special PL/SQL blocks that execute when a triggering event occurs. Events that fire triggers 
include any SQL statement. 

Declaring and Using Variables 

The declaration section allows for the declaration of variables and constants. A variable can 
have either a simple or "scalar" datatype, such as NUMBER or VARCHAR2. Alternately, a 
variable can have a referential datatype that uses reference to a table column to derive its 

datatype. Constants can be declared in the declaration section in the same way as variables, 
but with the addition of a constant keyword and with a value assigned. If a value is not 
assigned to a constant in the declaration section, an error will occur. In the executable 



section, a variable can have a value assigned to it at any point using the assignment 
expression (:=). 

Using Implicit Cursor Attributes 

Using PL/SQL allows the developer to produce code that integrates seamlessly with access to 
the Oracle database. There are no special characters or keywords required for "embedding" 
SQL statements into PL/SQL, because SQL is an extension of PL/SQL. As such, there really is 
no embedding at all. Every SQL statement executes in a cursor. When a cursor is not named, 
it is called an implicit cursor. PL/SQL allows the developer to investigate certain return status 
features in conjunction with the implicit cursors that run. 

These implicit cursor attributes include %notfound and %found to identify if records were 
found or not found by the SQL statement; %notfound, which tells the developer how many 

rows were processed by the statement; and %isopen, which determines if the cursor is open 
and active in the database. 

Conditional Statements and Process Flow 

Conditional process control is made possible in PL/SQL with the use of if-then-else 

statements. The if statement uses a Boolean logic comparison to evaluate whether to execute 
the series of statements after the then clause. If the comparison evaluates to TRUE, the then 
clause is executed. If it evaluates to FALSE, then the code in the else statement is executed. 
Nested if statements can be placed in the else clause of an if statement, allowing for the 
development of code blocks that handle a number of different cases or situations. 

Using Loops 

Process flow can be controlled in PL/SQL with the use of loops as well. There are several 
different types of loops, from simple loop-exit statements to loop-exit when statements, 
while loop statements, and for loop statements. A simple loop-exit statement consists of 

the loop and end loop keywords enclosing the statements that will be executed repeatedly, 
with a special if-then statement designed to identify if an exit condition has been reached. 

The if-then statement can be eliminated by using an exit when statement to identify the 
exit condition. The entire process of identifying the exit condition as part of the steps 
executed in the loop can be eliminated with the use of a while loop statement. The exit 
condition is identified in the while clause of the statement. Finally, the for loop statement 
can be used in cases where the developer wants the code executing repeatedly for a specified 
number of times. 

Explicit Cursor Handling 

Cursor manipulation is useful for situations where a certain operation must be performed on 
each row returned from a query. A cursor is simply an address in memory where a SQL 
statement executes. A cursor can be explicitly named with the use of the cursor cursor_name 
is statement, followed by the SQL statement that will comprise the cursor. The cursor 

cursor_name is statement is used to define the cursor in the declaration section only. Once 
declared, the cursor must be opened, parsed, and executed before its rows can be 
manipulated. This process is executed with the open statement. Once the cursor is declared 
and opened, rows from the resultant dataset can be obtained if the SQL statement defining 
the cursor was a select using the fetch statement. Both loose variables for each column's 
value or a PL/SQL record may be used to store fetched values from a cursor for manipulation 
in the statement. 

CURSOR FOR Loops 



Executing each of the operations associated with cursor manipulation can be simplified in 

situations where the user will be looping through the cursor results using the cursor for loop 
statement. The cursor for loops handle many aspects of cursor manipulation explicitly. These 
steps include including opening, parsing, and executing the cursor statement, fetching the 

value from the statement, handling the exit when data not found condition, and even implicitly 
declaring the appropriate record type for a variable identified by the loop in which to store the 
fetched values from the query. 

Error Handling 

The exception handler is arguably the finest feature PL/SQL offers. In it, the developer can 
handle certain types of predefined exceptions without explicitly coding error-handling routines. 
The developer can also associate user-defined exceptions with standard Oracle errors, thereby 
eliminating the coding of an error check in the executable section. This step requires defining 
the exception using the exception_init pragma and coding a routine that handles the error 
when it occurs in the exception handler. 

For completely user-defined errors that do not raise Oracle errors, the user can declare an 
exception and code a programmatic check in the execution section of the PL/SQL block, 
followed by some routine to execute when the error occurs in the exception handler. A special 

predefined exception called others can be coded into the exception handler as well to function 
as a catchall for any exception that occurs that has no exception-handling process defined. 
Once an exception is raised, control passes from the execution section of the block to the 
exception handler. Once the exception handler has completed, control is passed to the process 
that called the PL/SQL block. 

 


