
Oracle database tips

Summary: DB_BLOCK_BUFFERS size tuning.

Description:

Find Memory/Physical read Hit ratio.

Select decode(name, 'physical reads', value)/

(decode(name, 'consistent gets',value) *

decode(name,'db block gets',value)) as hit_ratio

From v$sysstat

where name IN ('physical reads', 'consistent gets', 'db block gets');

if ratio > 95 you may decrease the buffer size in case required for other purpose

if hit_ratio between 70 and 94 then its OK

if hit_ratio 60 to 69 then one has to add more buffers

==================

suppose it is less than 70, then question arises as to how many buffers to add. In order to determine, there is a view X$KCBRBH, available

only on SYS login and DB_BLOCK_LRU_EXTENDED_STATISTICS set to non-zero value in init.ora file then:

Select 100*TRUNC(indx/100) + 1 || '-' || 100*(TRUNC(indx/100)+1 range,

SUM(count) additional_hits

FROM x$KCBRBH

GROUP BY TRUNC(indx/100);

suppose the result

range additional_hits

=========================

1-100 78002

101-200 105000

201-300 1005

in this case if you notice increasing the buffer size by 200 is sufficient, further increases will not have much effect. Suppose you want to

decrease, then perform above operation with X$KCBCDH view. For this, the init.ora prameter to be set is DB_BLOCK_LRU_STATISTICS

to true

Summary: How to find valid values for NLS_LANG

Description:

Ever spend some time trying to lookup the possible valid

values you can use for the NLS_LANG parameter? You

can easily find the valid values from the

v$nls_valid_values table. This table gives you the

"LANGUAGE", "TERRITORY" and

"CHARACTERSET" that are considered valid for the

release of Oracle you are running. (Also shows the

"SORT" order, if you are interested in that.)

Summary: NLS_LANG parameter can affect your exports.

Description:
While running an export on a database setup with a

character set of WE8ISO8859P1, I noticed Oracle

generated a warning message saying that US7ASCII is

being used and possible character conversion could result.

I tried setting the NLS_LANG parm to

English_Canada.WE8ISO8859P1 and the export worked

properly. This is something to keep in mind when running

exports on any database using something other than the

default character set. Otherwise, you could find that

special characters like accents can mysteriously disappear

from your data! The environment running the export will

need something similar to this:

NLS_LANG=English_Canada.WE8ISO8859P1; export

NLS_LANG

Summary: "Query is executing..."?

Description:

"Query is executing..." isn't

it? Who knows? This does,

if your query uses rollback

segments (updates, inserts,

etc.) Using the statement

below, you can find out if

your UPDATE (or

whatever) is proceeding or

rolling back.

Step 1: Obtain the SID for

the session in question.

There are a few ways to

obtain the (proper) SID, but

this may work as well as

any:

select sid, serial#,

username, terminal from

v$session; Look through

the results to find the SID

you need. In this example,

the SID is 10.

Step 2: select taddr

from v$session

where sid = '10' ;

In this example, the result is

023ED71C

Step 3: Using the value of

taddr returned in step 2, do

this:

select used_ublk

from v$transaction

where

addr='023ED71C'

or, you can

combine steps 2

and 3 as follows:

select used_ublk

from v$transaction

where addr=

(select TADDR from

v$session where

sid='10');

Step 4: Wait a few seconds,

and run STEP 3 again. if

the results show an

increasing number, the

transaction is proceeding. If

the results show a smaller

number, then a rollback is

occurring.

Summary:

Migrating

using

ODMA

Description:

I'm

migrating

more than

242 oracle

7.3.4

databases

to Oracle

8.1.6

Using

ODMA

(Oracle

Data

Migration

Asistant)

could find

a big error

in the

Oracle

Note

76460.1

from

Metalink

(Checklist

for

Migrating

from

Oracle7 to

Oracle8.1

on UNIX).

Step 13,

when you

have to

CONVER

T the

database,

does not

work as

indicated,

so, what

you have

to do is:

1) startup

your db

2) backup

your

control file

to trace

3)

shutdown

your db

4) startup

nomount

5) recreate

your

control

files using

script

generated

in step 2).

6) alter

database

open

7) continue

with

Oracle

Checklist.

Believe

me, it

works fine

!!! Hope

this could

be useful.

Email me

if any

problem

comes up.

Summary: Migrating using ODMA

Description

:

I'm migrating more than 242 oracle 7.3.4

databases to Oracle 8.1.6

Using ODMA (Oracle Data Migration Asistant)

could find a big error in the Oracle Note 76460.1

from Metalink (Checklist for Migrating from

Oracle7 to Oracle8.1 on UNIX).

Step 13, when you have to CONVERT the

database, does not work as indicated, so, what

you have to do is:

1) startup your db

2) backup your control file to trace

3) shutdown your db

4) startup nomount

5) recreate your control files using script

generated in step 2).

6) alter database open

7) continue with Oracle Checklist.

Believe me, it works fine !!! Hope this could be

useful. Email me if any problem comes up.

Summary: Running SQLPLUS in NT scripts

Description:

Be aware, you can't setup an environment

variable SQLPLUS in an NT script. It will fail.

Oracle 8.1.6 has changed from plus80.exe to

sqlplus.exe. If you have an environment

variable set, i.e.

SQLPLUS=d:\oracle\ora81\bin\sqlplus.exe, the

batch job will fail.

Change the environment variable to anything

else other than SQLPLUS. i.e. set

SPLUS=d:\oracle\ora81\bin\sqlplus.exe

Summary: How to cleanup unused temporary segments

Description: To cleanup or remove unused temporary

segments you can use the following SQL

statement on the temporary tablespace:

alter tablespace default

storage (pctincrease)

use the pctincrease value you've already

specified for this tablespace. This SQL "wakes

up" the system monitor process, which

removes all unused temp. segments

Summary:
How to load data from MS excel to an Oracle

table?

Description:

If your Excel sheet has a simple table format

then you can copy it as text file with tab

delimiters. Then create a simple ctl-file from

SQL*Loader just like that:

load data

infile ""

append

into table

fields terminated by ' ' (

)

The key is that in apostrophes you should

specify the tab character (ASCII code 9). Use

one of the text editors that support quoting

(usually with Ctrl+q combination keystroke).

 After that you can issue:

sqlldr80 userid= control= log=

data=

That's all.

Some clarification.

Better use clause "...fields terminated by

X'09'..." in order to specify the tab character

explicitly.

You can also try saving the file from Excel in

text file CSV-format or TAB-delimited and

load with the SQL*Loader (Oracle Utilities)

or Borland DataPump (from Delphi or C++

distribut).

Summary:
How do I restrict a query by "ROWNUM"

range?

Description:

If you try to use rownum to restrict a query

by a range that does not start with 1, you

will quickly find that it does not work. For

example:

SQL> SELECT * from TABLE1

WHERE rownum BETWEEN 5 AND 10

no rows selected

The reason for this, is that rownum is a

pseudo-column produced AFTER the query

returns. Normally, it can only be used to

restrict a query to return a rownumber range

that starts with 1 (like rownum)

<5). However, there is a way to achieve this

using "in-line views".

For this complete tip, visit:

http://www.arrowsent.com/oratip/tip41.htm

For more of Ken's Oracle tips, visit his main

site at:

http://www.arrowsent.com/oratip/frames.ht

m

Tip #15: SQL scripts that compare schemas in two different instances for

differences. (Type: SQL)

So you have your application installed in three different instances (Development, Test,

Production). Or maybe that is six (conversion, demo, training), or eight? Well, how do

you keep all of that in sync? No matter how good your migration procedures, differences

between the instances somehow seem to always creep in. (How is it that something gets

into production, that has never been in development?)

This tip is a couple of SQL scripts that will use database links and the SQL MINUS

operator to compare the objects and table definitions in the same schema in two different

instances.

First, an example of using the two scripts will be shown, then the actual scripts

themselves. They can also be downloaded below.

The first script lists the objects that are not in both of the selected instances:

http://www.arrowsent.com/oratip/tip41.htm
http://www.arrowsent.com/oratip/frames.htm
http://www.arrowsent.com/oratip/frames.htm

SQL> select db_link from user_db_links;

DB_LINK

TESTLINK.WORLD

SQL> @objdiff

Object Owner: SHARED

First instance DB Link (Include @):

Second instance DB Link (Include @):@TESTLINK

OBJDIFF OBJECT DIFFERENCE REPORT Report

Date: 02/10/97

Page: 1

 OWNER: SHARED

 Objects in devl but not demo

Object Name Object Type Status

----------------------------------- --------------- -------

TSU_SELECT_CAD_FN FUNCTION VALID

TSU_SELECT_FN FUNCTION VALID

FMU_PLS INDEX VALID

FMU_PRECIP INDEX VALID

SYSPIPE PACKAGE VALID

SYSPIPE PACKAGE BODY VALID

ABLE_FK_CONSTRAINTS PROCEDURE INVALID

WTRSHD_SEQ SEQUENCE VALID

ADMIN_CODE TABLE VALID

FMPT_FORM_HELP TABLE VALID

FMU_COUNTY_V VIEW VALID

FMU_TRUST_V VIEW VALID

12 rows selected.

OBJDIFF OBJECT DIFFERENCE REPORT Report

Date: 02/10/97

Page: 1

 OWNER: SHARED

 Objects in demo but not devl

Object Name Object Type Status

----------------------------------- --------------- -------

PPR_LABEL_NM FUNCTION VALID

FMA_PEST_PEST_CD_I INDEX VALID

GEO_ADMIN_UNIT_SEQ SEQUENCE VALID

TR_FMA_STATUS TRIGGER INVALID

TR_INSERT_FMA_AREA TRIGGER INVALID

FMA_INS_FMA_AREA_TR TRIGGER VALID

RX_SUM_RPT_VIEW VIEW VALID

7 rows selected.

Notes: If no database link is entered, then the script uses the CURRENT instance. Also,

the title uses the instance name in each instances v$parameter table (Objects in

{instance_1_name} but not in {instance_2_name}.

The second script compares the actual table definitions in two instances:
SQL> @tabdiff

Table Owner: SHARED

First instance DB Link (Include @):

Second instance DB Link (Include @):@TESTLINK

TABDIFF SCHEMA DIFFERENCE REPORT Report

Date: 02/10/97

Page: 1

 OWNER: SHARED

 Differences between

devl and demo

Instance Table Column

DataType Len Pr Null?

-------- ------------------------- ------------------------

- -------- ---- ---- -----

demo FMU FMU_RESTR_BEG_DT_BAD

DATE 7 =0 Y

demo FMU FMU_RESTR_END_DT_BAD

DATE 7 =0 Y

2 rows selected.

And now listings of the actual scripts:
/**

***************/

/* objdiff.sql - Lists the objects in a schema that are not

in both of */

/* two instances. Uses database links and

the SQL MINUS */

/* operator to make the comparison.

*/

/*

*/

/* Author: Ken Atkins (Ken@arrowsent.com)

*/

/* http://www.arrowsent.com/oratip

*/

/*

*/

/* Written: 5/11/95

*/

/*

*/

/* You need to have a database link setup for any instance

that you want */

/* to make a comparison for.

*/

/*

*/

/* Please feel free to use and modify this script as long

it is not sold */

/* or included in any software without the prior permission

of the author*/

/* If you do make some good improvements, please send them

to me, and I */

/* can incorporate them in a future version and make them

available to */

/* others (giving you credit of course!).

*/

/*

*/

/**

***************/

set pagesize 60

set linesize 80

set verify off

set feedback off

set pause off;

--define obj_owner = '&1'

--define inst_1 = '&2'

--define inst_2 = '&3'

accept obj_owner prompt 'Object Owner: '

accept inst_1 prompt 'First instance DB Link (Include @):'

accept inst_2 prompt 'Second instance DB Link (Include @):'

clear breaks

ttitle off

set heading off

column datetime noprint new_value datetime

column inst_code1 noprint new_value inst_code1

column inst_code2 noprint new_value inst_code2

select to_char(sysdate,'MM/DD/YY') datetime

 from dual

/

select value inst_code1

 from v$parameter&inst_1

where name = 'db_name'

/

select value inst_code2

 from v$parameter&inst_2

where name = 'db_name'

/

set feedback on

set heading on

set newpage 0

ttitle left 'OBJDIFF'-

 col 25 'OBJECT DIFFERENCE REPORT' -

 col 53 'Report Date: ' datetime -

 skip 1 col 60 'Page: ' sql.pno -

 skip 1 col 10 'OWNER: ' obj_owner -

 skip 1 center 'Objects in &inst_code1 but not &inst_code2'

-

 skip 2

set null=0

column object_type format a15 heading 'Object Type';

column object_name format a35 heading 'Object Name';

column status format a10 heading 'Status';

column inst_code format a10 heading 'Instance';

select object_name, object_type, status

from all_objects&inst_1

where owner = UPPER('&obj_owner')

-- and object_type != 'SYNONYM'

MINUS

select object_name, object_type, status

from all_objects&inst_2

where owner = UPPER('&obj_owner')

-- and object_type != 'SYNONYM'

order by 2,3

/

set heading off;

set feedback off;

select '

' from dual

/

set heading on;

set feedback on;

ttitle left 'OBJDIFF'-

 col 25 'OBJECT DIFFERENCE REPORT' -

 col 53 'Report Date: ' datetime -

 skip 1 col 60 'Page: ' sql.pno -

 skip 1 col 10 'OWNER: ' obj_owner -

 skip 1 center 'Objects in &inst_code2 but not &inst_code1'

-

 skip 2

select object_name, object_type, status

from all_objects&inst_2

where owner = UPPER('&obj_owner')

 and object_type != 'SYNONYM'

MINUS

select object_name, object_type, status

from all_objects&inst_1

where owner = UPPER('&obj_owner')

 and object_type != 'SYNONYM'

order by 2,3

/

undefine datetime

undefine inst_code1

undefine inst_code2

undefine obj_owner

===

=

/**

***************/

/* tabdiff.sql - Lists the differences in table definitions

in the tables*/

/* for a schema in two different instances.

Uses database*/

/* links and the SQL MINUS operator to make

the comparison.*/

/*

*/

/* Author: Ken Atkins (Ken@arrowsent.com)

*/

/* http://www.arrowsent.com/oratip

*/

/*

*/

/* Written: 5/11/95

*/

/*

*/

/* You need to have a database link setup for any instance

that you want */

/* to make a comparison for.

*/

/*

*/

/* Please feel free to use and modify this script as long

it is not sold */

/* or included in any software without the prior permission

of the author*/

/* If you do make some good improvements, please send them

to me, and I */

/* can incorporate them in a future version and make them

available to */

/* others (giving you credit of course!).

*/

/*

*/

/**

***************/

set pagesize 60

set linesize 105

set verify off

set feedback off

set pause off;

--define obj_owner = '&1'

--define inst_1 = '&2'

--define inst_2 = '&3'

accept obj_owner prompt 'Table Owner: '

accept inst_1 prompt 'First instance DB Link (Include @):'

accept inst_2 prompt 'Second instance DB Link (Include @):'

clear breaks

ttitle off

set heading off

column datetime noprint new_value datetime

column inst_code1 noprint new_value inst_code1

column inst_code2 noprint new_value inst_code2

select to_char(sysdate,'MM/DD/YY') datetime

 from dual

/

select value inst_code1

 from v$parameter&inst_1

where name = 'db_name'

/

select value inst_code2

 from v$parameter&inst_2

where name = 'db_name'

/

set feedback on

set heading on

set newpage 0

ttitle left 'TABDIFF'-

 col 25 'SCHEMA DIFFERENCE REPORT' -

 col 53 'Report Date: ' datetime -

 skip 1 col 60 'Page: ' sql.pno -

 skip 1 col 10 'OWNER: ' obj_owner -

 skip 1 center 'Differences between &inst_code1 and

&inst_code2' -

 skip 2

column table_name format a25 heading 'Table';

column column_name format a25 heading 'Column';

column data_type format a8 heading 'DataType';

column data_length format 999 heading 'Len';

column data_precision format 999 heading 'Pr';

column nullable format a5 heading 'Null?';

column inst_code format a8 heading 'Instance';

(

select '&inst_code1' inst_code, table_name, column_name,

data_type, data_length, data_precision, nullable

from all_tab_columns&inst_1

where owner = UPPER('&obj_owner')

 and table_name in (select table_name from

all_tables&inst_2

 where owner = UPPER('&obj_owner'))

MINUS

select '&inst_code1' inst_code, table_name, column_name,

data_type, data_length, data_precision, nullable

from all_tab_columns&inst_2

where owner = UPPER('&obj_owner')

)

UNION

(

select '&inst_code2' inst_code, table_name, column_name,

data_type,

 data_length, data_precision, nullable

from all_tab_columns&inst_2

where owner = UPPER('&obj_owner')

 and table_name in (select table_name from

all_tables&inst_1

 where owner = UPPER('&obj_owner'))

MINUS

select '&inst_code2' inst_code, table_name, column_name,

data_type,

 data_length, data_precision, nullable

from all_tab_columns&inst_1

where owner = UPPER('&obj_owner')

)

order by 2, 3

/

undefine datetime

undefine inst_code1

undefine inst_code2

undefine obj_owner

Tip #12: SQL Script to show 'hit ratio' of currently running processes.

(Type: SQL)

Have you ever wondered why your server was running so slow? Who else is running

queries and why are they bogging the system down?? So you go round up a DBA and ask

them to monitor the database using one of those shnazzy DBA type tools. But DBAs are

not always had for the asking, and you do not have access to the tools, so what do you

do? This tip is a couple of simple SQL scripts which will show which Oracle processes

are currently running in an instance, and what the buffer hit ratio is for those processes

(low hit ratios are an indication of poorly tuned SQL, which can slow the WHOLE

instance down).

The first script shows the active processes and their current hit ratio.

/**

***************/

/* listproc.sql - Lists currently running processes and

their hit ratios */

/*

*/

/* Author: Ken Atkins (Ken@arrowsent.com)

*/

/* http://www.arrowsent.com/oratip

*/

/*

*/

/* You need select access to V$SESSION, V$PROCESS, and

V$SESS_IO */

/* to run this script.

*/

/*

*/

/* The columns returned by this script are:

*/

/ Oracle ID (schemaname) = The oracle 'schema' or

'user' that is */

/* running the SQL statement.

*/

/* System ID (username) = The system id that the

process is */

/* running under. Will be

the unix userid */

/* if Oracle running on unix.

*/

/* Program = The name of the program that is

running the SQL.*/

/* Physical Reads = The number of physical block

reads. */

/* Hit Ratio = The ratio of buffer to physical

block reads. */

/* be an indication of the

efficiency of the query*/

/* running. Anything under 90% is

bad. Very low */

/* hit ratios (< 10-20%) in a

process can slow */

/* down the whole system.

*/

/**

***************/

column schemaname format a10 heading 'Oracle ID'

column username format a10 heading 'System ID'

column program format a32 heading 'Program'

column hit_ratio format 9.90 heading 'Hit Ratio'

column physical_reads format 9999999 heading 'Reads'

column sid format 99999

SELECT s.schemaname

 , p.username

 , s.program

 ,io.physical_reads

 ,(io.block_gets+io.consistent_gets)/

(io.block_gets+io.consistent_gets+io.physical_reads)

hit_ratio

 FROM V$Session s

 ,V$Process p

 ,V$Sess_io io

WHERE s.paddr = p.addr

 AND s.sid = io.sid

 -- Only look at active processes

 AND s.status = 'ACTIVE'

 -- Need this predicate to prevent division by 0

 AND (io.block_gets+io.consistent_gets+io.physical_reads)

> 0

/

An example of using the script:
SQL> @hitratio

Oracle ID System ID Program

Reads Hit Ratio

---------- ---------- -------------------------------- ----

---- ---------

SYS oracle7

1.00

SYS oracle7

10894 .83

SYS oracle7

18 .95

BDES490 oracle7 C:\ORAWIN\BIN\PLUS31.EXE

1.00

BDES490 oracle7 sqlplus@larabee (TNS interface)

3478 .83

The next script is a simpler version that just shows all of processes and their status, sid

and serial#. The sid and serial# are used in the ALTER SYSTEM KILL SESSION

command to kill oracle processes that are 'stuck'.

/**

***************/

/* listproc.sql - Lists currently processes, status, sid &

serial# */

/*

*/

/* Author: Ken Atkins (Ken@arrowsent.com)

*/

/* http://www.arrowsent.com/oratip

*/

/*

*/

/* You need select access to V$SESSION, V$PROCESS to run

this script */

/*

*/

/**

***************/

column schemaname format a10 heading 'Oracle ID'

column username format a10 heading 'System ID'

column program format a30 heading 'Program'

column user_name format a15 heading 'User Name'

column sid format 99999

SELECT s.schemaname

 ,p.username

 ,s.program

 ,s.sid

 ,s.serial#

 ,s.status

 FROM V$Session s

 ,V$Process p

where s.paddr = p.addr

/

An example of running the script:
SQL> @listproc

Oracle ID System ID Program SID

SERIAL# STATUS

---------- ---------- ------------------------------ ------

--------- --------

KATK490 C:\WINDOWS\SYSTEM32\OLE2.DLL 21

447 KILLED

SYS oracle7 1

1 ACTIVE

SYS oracle7 2

1 ACTIVE

SYS oracle7 3

1 ACTIVE

SYS oracle7 4

1 ACTIVE

SYS oracle7 5

1 ACTIVE

ORAPIPE orapipe ? @gamera (TNS interface) 9

8021 INACTIVE

BDES490 oracle7 C:\ORAWIN\BIN\CKRON10L.DLL 12

105 INACTIVE

JOJJ490 oracle7 C:\ORAWIN\BIN\R25DES.EXE 7

32691 INACTIVE

BDES490 oracle7 C:\ORAWIN\BIN\PLUS31.EXE 16

275 ACTIVE

ARJJ490 oracle7 C:\ORAWIN\BIN\CKRON10L.DLL 6

2029 INACTIVE

BHAR490 oracle7 C:\ORAWIN\BIN\PLUS31.EXE 10

2545 INACTIVE

BDES490 oracle7 sqlplus@larabee (TNS interface) 17

619 ACTIVE

MAJJ490 oracle7 C:\ORAWIN\BIN\CKRON10L.DLL 13

35 INACTIVE

BHAR490 oracle7 C:\ORAWIN\BIN\R25DES.EXE 14

39 INACTIVE

ARJJ490 oracle7 C:\ORAWIN\BIN\R25DES.EXE 8

9173 INACTIVE

MAJJ490 oracle7 C:\ORAWIN\BIN\R25DES.EXE 11

2273 INACTIVE

SHARED oracle7 C:\ORAWIN\BIN\PLUS31.EXE 15

67 INACTIVE

BDES490 oracle7 C:\ORAWIN\BIN\PLUS31.EXE 18

739 INACTIVE

Tip #11: Procedure to disable FK constraints TO a table. (Type: DBA)

So you have to reload the data in a table that is maintained in another system. But there

are these pesky Foreign Keys defined TO this table from other tables in your database.

Oh Well, Select the names of the FKs from the constraints table, enter the commands to

disable them, now load the data. What? You missed one? Disable it, reload. Now enable

all of the constraints again. Kind of tedious. This tip details a stored procedure that can

automatically disable or enable all of the FK constraints *TO* a specified table.

The following procedure uses the following steps to enable or disable all of the FK

constraints *TO* a specified table:

1. Finds the PK of the specified table.

2. Uses this PK to find all of the FKs that are linked to the PK.

3. Puts together an ALTER TABLE DISABLE CONSTRAINT command to disable

each FK.

4. Uses dynamic SQL to execute the commands.

PROMPT

PROMPT Creating Procedure able_fk_constraints

CREATE OR REPLACE PROCEDURE able_fk_constraints(

 pTable IN VARCHAR2 ,

 pAble IN VARCHAR2)

IS

vPKName VARCHAR2(80);

-- This cursor returns the list of FK constraints linked to

the specified

-- PK constraint.

CURSOR curFK(pcPKName IN VARCHAR2) IS

 SELECT constraint_name, table_name

 FROM user_constraints

 WHERE r_constraint_name = pcPKName;

 -- These two variables are used for the dynamic SQL

 nDDLCursor INTEGER;

 nDDLReturn INTEGER;

BEGIN

/**

*********************/

/* ABLE_FK_CONSTRAINTS - This procedure easily

enables/disables FK constraints */

/* pointing TO the specified table.

*/

/*

*/

/* Parameters: pTable - The name of the table to

dis/enable FK */

/* constraints to.

*/

/* pAble - One of: DISABLE or ENABLE

*/

/**

*********************/

 -- Get the name of the PK constraint for the specified

table.

 BEGIN

 SELECT constraint_name INTO vPKName

 FROM user_constraints

 WHERE table_name = pTable

 AND constraint_type = 'P';

 END;

 -- Now get the FK constraints linked to the PK constraint

of the specified table.

 FOR fk IN curFK(vPKName) LOOP

 -- Use dynamic SQL to execute the ALTER TABLE command

and dis/enable the constraint

 nDDLCursor := dbms_sql.open_cursor;

 dbms_sql.parse(nDDLCursor,'ALTER TABLE

'||fk.table_name||' '

 ||pAble||' CONSTRAINT

'||fk.constraint_name, 1);

 nDDLReturn := dbms_sql.execute(nDDLCursor);

 dbms_sql.close_cursor(nDDLCursor);

 END LOOP;

END ABLE_FK_CONSTRAINTS;

/

An example of using the script:
execute able_fk_constraints('MYTABLE','DISABLE');

truncate table mytable;

@load_mytable

execute able_fk_constraints('MYTABLE','ENABLE');

Of course, the procedure has to be installed in a schema

that has the ALTER TABLE system privelege, and

security to modify the specified table. Also, the data that

is loaded into the table may cause an existing FK

contraint to no longer be valid (like if an expected code

is no longer there). In this case, the ENABLE will bomb,

and the data will have to be fixed before the constraint

can be re-enabled. Tip #52: Getting Rid of "Input

truncated to # characters" (Type: SQL*Plus)

Are you getting the annoying message "Input truncated to # characters" whenever you

run a SQL script in SQL*Plus? This can be very annoying, especially if you are running

SQL scripts that produce reports or generate other SQL scripts. This tip will tell you how

to get rid of this message!

An Example of the Problem

Consider the following SQL*Plus report:

set pagesize 30

set linesize 40

set feedback off

ttitle CENTER 'Test Employee Report' skip 2

break on dname skip 1

spool tstrep.lst

SELECT d.dname, e.empno, e.ename

 FROM Dept d, Emp e

 WHERE d.deptno = e.deptno

 ORDER BY d.dname, e.ename

/

spool off

If executed you might see:

Test Employee Report

DNAME EMPNO ENAME

-------------- ---------- ----------

ACCOUNTING 7782 CLARK

 7839 KING

 7934 MILLER

RESEARCH 7876 ADAMS

 7902 FORD

 7566 JONES

 7788 SCOTT

 7369 SMITH

SALES 7499 ALLEN

 7698 BLAKE

 7900 JAMES

 7654 MARTIN

 7844 TURNER

 7521 WARD

Input truncated to 9 characters Problem Message!

As you can see, you have the unwanted message at the bottom of the report.

What Causes The Problem?

This problem is caused by having anything OTHER than a blank line at the bottom of

your SQL*Plus script! The last line of the script *must* be a blank line, that is a line

with a carriage return and NOTHING ELSE. For example:

set pagesize 30

set linesize 40

set feedback off

ttitle CENTER 'Test Employee Report' skip 2

break on dname skip 1

spool tstrep.lst

SELECT d.dname, e.empno, e.ename

 FROM Dept d, Emp e

 WHERE d.deptno = e.deptno

 ORDER BY d.dname, e.ename

/

spool off

 Blank Line!

Tip #44: Ordering by a Hierarchy (Type: SQL)

Have you ever tried to order a hierarchical query? The results are not encouraging. The

ordering returned by Oracle is based on the hierarchy, and there is no easy way to order

WITHIN the hierarchy levels. So how do we get around this problem? Well, there is no

easy way to do it. However, with a little work, the solution presented in this tip will do it.

What Happens if I Order by

I will use the infamous EMP/DEPT tables to illustrate this technique. Using these tables,

you might use the following SQL for a standard hierarchical query:
SQL>
 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno
 2 FROM Emp
 3 CONNECT BY PRIOR emp.empno = emp.mgr
 4* START WITH emp.empno = 7839
SQL> /

 LEVEL ENAME EMPNO MGR DEPTNO

--------- -------------------- --------- --------- ---------

 1 KING 7839 10

 2 JONES 7566 7839 20

 3 SCOTT 7788 7566 20

 4 ADAMS 7876 7788 20

 3 FORD 7902 7566 20

 4 SMITH 7369 7902 20

 2 BLAKE 7698 7839 30

 3 ALLEN 7499 7698 30

 3 WARD 7521 7698 30

 3 MARTIN 7654 7698 30

 3 TURNER 7844 7698 30

 3 JAMES 7900 7698 30

 2 CLARK 7782 7839 10

 3 MILLER 7934 7782 10

Now let's say you want to order alphabetically within each level (i.e. BLAKE, CLARK,

JONES for level 2, and ALLEN, JAMES, MARTIN, TURNER, WARD for level 3 under

BLAKE). Here are some standard attempts at this:

SQL> l

 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno

 2 FROM Emp

 3 CONNECT BY PRIOR emp.empno = emp.mgr

 4* START WITH emp.empno = 7839

 LEVEL ENAME EMPNO MGR DEPTNO

--------- -------------------- --------- --------- ---------

 4 ADAMS 7876 7788 20

 4 SMITH 7369 7902 20

 3 ALLEN 7499 7698 30

 3 FORD 7902 7566 20

 3 JAMES 7900 7698 30

 3 MARTIN 7654 7698 30

 3 MILLER 7934 7782 10

 3 SCOTT 7788 7566 20

 3 TURNER 7844 7698 30

 3 WARD 7521 7698 30

 2 BLAKE 7698 7839 30

 2 CLARK 7782 7839 10

 2 JONES 7566 7839 20

 1 KING 7839 10

14 rows selected.

SQL> l

 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno

 2 FROM Emp

 3 CONNECT BY PRIOR emp.empno = emp.mgr

 4 START WITH emp.empno = 7839

 5* order by emp.ename

SQL> /

 LEVEL ENAME EMPNO MGR DEPTNO

--------- -------------------- --------- --------- ---------

 4 ADAMS 7876 7788 20

 3 ALLEN 7499 7698 30

 2 BLAKE 7698 7839 30

 2 CLARK 7782 7839 10

 3 FORD 7902 7566 20

 3 JAMES 7900 7698 30

 2 JONES 7566 7839 20

 1 KING 7839 10

 3 MARTIN 7654 7698 30

 3 MILLER 7934 7782 10

 3 SCOTT 7788 7566 20

 4 SMITH 7369 7902 20

 3 TURNER 7844 7698 30

 3 WARD 7521 7698 30

14 rows selected.

SQL> l

 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno

 2 FROM Emp

 3 CONNECT BY PRIOR emp.empno = emp.mgr

 4 START WITH emp.empno = 7839

 5* order by level,emp.ename

SQL> /

 LEVEL ENAME EMPNO MGR DEPTNO

--------- -------------------- --------- --------- ---------

 1 KING 7839 10

 2 BLAKE 7698 7839 30

 2 CLARK 7782 7839 10

 2 JONES 7566 7839 20

 3 ALLEN 7499 7698 30

 3 FORD 7902 7566 20

 3 JAMES 7900 7698 30

 3 MARTIN 7654 7698 30

 3 MILLER 7934 7782 10

 3 SCOTT 7788 7566 20

 3 TURNER 7844 7698 30

 3 WARD 7521 7698 30

 4 ADAMS 7876 7788 20

 4 SMITH 7369 7902 20

None of these give us what we want.

Use a Hierarchy Order Key

The only way I have found to truly resolve this problem is to add a hierarchy ordering

key column to the table with the hierarchy. This column needs to be populated

programmatically in such a way that you get the desired ordering. This key has to be the

concatenation of some sort of order key for EACH of the parent levels above the

hierarchy node. This will allow the hierarchy to be ordered within each level while

allowing the children to be placed directly underneath their parent. For example,

consider the EMP_HIER_ORDER column that I added to the standard emp table below:

 EMPNO ENAME EMP_HIER_ORDER

--------- -------------------- -----------------------------

 7369 SMITH 0008000700050012

 7499 ALLEN 000800030002

 7521 WARD 000800030014

 7566 JONES 00080007

 7654 MARTIN 000800030009

 7698 BLAKE 00080003

 7782 CLARK 00080004

 7788 SCOTT 000800070011

 7839 KING 0008

 7844 TURNER 000800030013

 7876 ADAMS 0008000700110001

 7900 JAMES 000800030006

 7902 FORD 000800070005

 7934 MILLER 000800040010

Now if I order by EMP_HIER_ORDER I get:

SQL> l

 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno,

 2 FROM Emp

 3 CONNECT BY PRIOR emp.empno = emp.mgr

 4 START WITH emp.empno = 7839

 5 order by emp_hier_order

SQL> /

 LEVEL ENAME EMPNO MGR EMP_HIER_ORDER

--------- -------------------- --------- --------- --------------

 1 KING 7839 0008

 2 BLAKE 7698 7839 00080003

 3 ALLEN 7499 7698 000800030002

 3 JAMES 7900 7698 000800030006

 3 MARTIN 7654 7698 000800030009

 3 TURNER 7844 7698 000800030013

 3 WARD 7521 7698 000800030014

 2 CLARK 7782 7839 00080004

 3 MILLER 7934 7782 000800040010

 2 JONES 7566 7839 00080007

 3 FORD 7902 7566 000800070005

 4 SMITH 7369 7902

0008000700050012

 3 SCOTT 7788 7566 000800070011

 4 ADAMS 7876 7788

0008000700110001

Which is exactly what I want. The first four characters of EMP_HIER_ORDER are used

for ordering the top level of the hierarchy ("0008"), the second four are used for ordering

the second level ("0003","0004","0007"), and the third four for the third level, etc.

NOTE: The above query used the hierarchical clauses (CONNECT BY, etc.) Using the

hierarchy ordering column you could construct a query that does not need it. For

instance:

SELECT length(emp_hier_order)/4 lvl, LPAD('

',(length(emp_hier_order)/2)-2)||emp.ename ename,

 FROM Emp

order by emp_hier_order

Populating The Hierarchy Ordering Key

The main problem with this technique is that it requires that extra code be written and

executed to populate the hierarchy ordering key. I used the following stored procedure to

populate the EMP_HIER_ORDER key in the above example:

CREATE OR REPLACE PROCEDURE Update_Emp_Hier IS

 -- Cursor to return the ordering key for emp

 CURSOR emp_order_cur IS

 SELECT empno

 FROM Emp

 ORDER BY ename;

 -- Hierarchy query

 CURSOR hier_cur IS

 SELECT LEVEL lvl, empno

 FROM Emp

 START WITH emp.empno = 7839

 CONNECT BY PRIOR emp.empno = emp.mgr;

 TYPE vc_tabtype IS TABLE OF VARCHAR2(4) INDEX BY

BINARY_INTEGER;

 t_ordkey vc_tabtype;

 t_key vc_tabtype;

 v_hier_key VARCHAR2(30);

 v_OrdCnt NUMBER := 0;

BEGIN

 --

 -- Load the ordering key into a PL/SQL table to save table

access

 FOR e IN emp_order_cur LOOP

 v_OrdCnt := v_OrdCnt + 1;

 t_ordkey(e.empno) := LPAD(TO_CHAR(v_OrdCnt),4,'0');

 END LOOP;

 -- Now open the hierarchy query

 FOR h IN hier_cur LOOP

 -- Store the order key for the current level in the hierarchy

 t_key(h.lvl) := t_ordkey(h.empno);

 -- Build the full ordering key for the current record. This

will

 -- consist of the current record's ordering key preceded in

order

 -- by the ordering keys of every level above it in the

hierarchy.

 v_hier_key := '';

 FOR i IN 1..h.lvl LOOP

 v_hier_key := v_hier_key||t_key(i);

 END LOOP;

 UPDATE Emp

 SET emp_hier_order = v_hier_key

 WHERE empno = h.empno;

 END LOOP;

END;

/

This stored procedure can be called from the client that maintains the hierarchy, executed

either manually (i.e. when the user says they are done editing the hierarchy), or

automatically. But a better method would be to put a call to this procedure into a trigger

for the table. The following trigger definition would work:

CREATE OR REPLACE TRIGGER emphierorder

 AFTER INSERT OR DELETE OR UPDATE OF mgr

 ON Emp

BEGIN

 update_emp_hier;

END;

 This trigger would automatically maintain the hierarchy after any updates to the table

that would affect the hierarchy (i.e. updates to the MGR column).

Drawbacks to This Technique

Of course there are a few drawbacks to this technique:

1. You have to create and maintain a "denormalized" column.

2. You have to write and maintain the code that populates the column.

3. Since ANY update to the table causes ALL of the rows to be updated, there may

be some performance problems for large frequently updated hierarchies. (There

are ways to reduce this impact, but they are usually design specific, and out of the

scope of this tip).

Tip #42: A Single Hierarchy View for Multiple

Hierarchies (Type: SQL)

When you use hierarchical queries (queries using CONNECT BY and PRIOR), you

always have to specify the top of a particular hierarchy using the "START WITH"

syntax. This is often done by hard coding the PK of the top of the hierarchy in the

"START WITH" clause. However, if you have many hierarchies in the same table, you

might want to be able to have the same program use ANY of the hierarchies, and specify

which hierarchy (and thus, which "START WITH" key) at runtime. Wouldn't it be nice

if you could put the hierarchy query in a view, and simply specify the hierarchy to use at

runtime? Well, you can! This tip will show one technique for doing this.

Starting With A Standard Hierarchy Query

I will use the infamous EMP table to illustrate this technique. However, since the

standard emp table only has one hierarchy (starting with "KING"), I added a second

hierarchy. I also updated the DEPTNO for all of the standard records to have the same

DEPTNO (which I use to differentiate the two hierarchies). Using this tables, you might

use the following SQL for a standard hierarchical query:

 SQL>
 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno
 2 FROM Emp
 3 CONNECT BY PRIOR emp.empno = emp.mgr
 4* START WITH emp.empno = 7839
SQL> /

 LEVEL ENAME EMPNO MGR DEPTNO
--------- -------------------- --------- --------- ---------
 1 KING 7839 10
 2 BLAKE 7698 7839 10
 3 MARTIN 7654 7698 10
 3 ALLEN 7499 7698 10
 3 TURNER 7844 7698 10
 3 JAMES 7900 7698 10
 3 WARD 7521 7698 10
 2 CLARK 7782 7839 10
 3 MILLER 7934 7782 10
 2 JONES 7566 7839 10
 3 FORD 7902 7566 10
 4 SMITH 7369 7902 10
 5 Ken 999 7369 10
 3 SCOTT 7788 7566 10
 4 ADAMS 7876 7788 10

I placed a second hierarchy in the same table, this one starting with

"SONG":
SQL>
 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno

 2 FROM Emp
 3 CONNECT BY PRIOR emp.empno = emp.mgr
 4* START WITH emp.empno = 6000
SQL> /

 LEVEL ENAME EMPNO MGR DEPTNO
--------- -------------------- --------- --------- ---------
 1 SONG 6000 40
 2 GOMEZ 6001 6000 40
 3 WILLIAMS 6002 6001 40
 4 DIRKSEN 6003 6002 40
 5 ATKINS 6004 6003 40
 5 DESZELL 6005 6003 40
 5 DEVITT 6006 6003 40
 2 SMITH 6007 6000 40
 3 GEORGE 6008 6007 40
 3 JONES 6009 6007 40
 4 MILLER 6010 6009 40
 4 BAKER 6011 6009 40

Trying to Make The Query more Generic

Let's try leaving off the "START WITH" in a view in an attempt to make a generic

hierarchy view:
SQL> CREATE OR REPLACE VIEW Emp_Hier AS
 2 SELECT level lvl, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno
 3 FROM Emp
 4 CONNECT BY PRIOR emp.empno = emp.mgr
 5 /

Now if we select from this view without any predicates, the query will still return, but it

will return the results of a hierarchy starting with EVERY record in the table. For

example:
SQL> SELECT lvl, ename, empno, mgr, deptno
 2 FROM Emp_Hier
 3 /

 LEVEL ENAME EMPNO MGR DEPTNO
--------- -------------------- --------- --------- ---------
 1 KING 7839 10
 2 BLAKE 7698 7839 10
 3 MARTIN 7654 7698 10
 3 ALLEN 7499 7698 10
 3 TURNER 7844 7698 10
 3 JAMES 7900 7698 10
 3 WARD 7521 7698 10
 2 CLARK 7782 7839 10
 3 MILLER 7934 7782 10
 2 JONES 7566 7839 10
 3 FORD 7902 7566 10
 4 SMITH 7369 7902 10
 5 Ken 999 7369 10
 3 SCOTT 7788 7566 10
 4 ADAMS 7876 7788 10
 1 BLAKE 7698 7839 10
 2 MARTIN 7654 7698 10
 2 ALLEN 7499 7698 10

 2 TURNER 7844 7698 10
 2 JAMES 7900 7698 10
 2 WARD 7521 7698 10
 1 CLARK 7782 7839 10
 2 MILLER 7934 7782 10
 1 JONES 7566 7839 10
 2 FORD 7902 7566 10
 3 SMITH 7369 7902 10
 4 Ken 999 7369 10
 2 SCOTT 7788 7566 10
 3 ADAMS 7876 7788 10
 1 MARTIN 7654 7698 10
 1 ALLEN 7499 7698 10
 1 TURNER 7844 7698 10
 1 JAMES 7900 7698 10
 1 WARD 7521 7698 10

1 SONG 6000 40
2 GOMEZ 6001 6000 40
3 WILLIAMS 6002 6001 40
4 DIRKSEN 6003 6002 40
5 ATKINS 6004 6003 40
5 DESZELL 6005 6003 40
5 DEVITT 6006 6003 40
2 SMITH 6007 6000 40
3 GEORGE 6008 6007 40
3 JONES 6009 6007 40
4 MILLER 6010 6009 40
4 BAKER 6011 6009 40
1 GOMEZ 6001 6000 40
2 WILLIAMS 6002 6001 40
3 DIRKSEN 6003 6002 40
.
.
.
(NOTE: I did not display the complete results of this query)

Notice that the results start with the standard hierarchy (beginning with "KING"),

followed by another hierarchy starting with "BLAKE" (which is a child of "KING", and

should not have it's own hierarchy), followed by "CLARK", "JONES", etc. There are

even one level hierarchies for the records at the bottom of the tree (i.e. "MARTIN",

"ALLEN", etc.). Now this query is generic, and it will also pick up the 2nd complete

hierarchy (starting with "SONG"). You can use the DEPTNO column to select one or the

other of the hierarchies:
SQL> SELECT lvl, ename, empno, mgr, deptno
 2 FROM Emp_Hier
 3 WHERE deptno = 40
 3 /

 LEVEL ENAME EMPNO MGR DEPTNO
--------- -------------------- --------- --------- ---------

1 SONG 6000 40
2 GOMEZ 6001 6000 40
3 WILLIAMS 6002 6001 40
4 DIRKSEN 6003 6002 40
5 ATKINS 6004 6003 40
5 DESZELL 6005 6003 40
5 DEVITT 6006 6003 40
2 SMITH 6007 6000 40

3 GEORGE 6008 6007 40
3 JONES 6009 6007 40
4 MILLER 6010 6009 40
4 BAKER 6011 6009 40
1 GOMEZ 6001 6000 40
2 WILLIAMS 6002 6001 40
3 DIRKSEN 6003 6002 40

 4 ATKINS 6004 6003 40
 4 DESZELL 6005 6003 40
 4 DEVITT 6006 6003 40
 1 WILLIAMS 6002 6001 40
 2 DIRKSEN 6003 6002 40
 3 ATKINS 6004 6003 40
 3 DESZELL 6005 6003 40
 3 DEVITT 6006 6003 40
 1 DIRKSEN 6003 6002 40
 2 ATKINS 6004 6003 40
 2 DESZELL 6005 6003 40
 2 DEVITT 6006 6003 40
 1 ATKINS 6004 6003 40
 1 DESZELL 6005 6003 40
 1 DEVITT 6006 6003 40
 1 SMITH 6007 6000 40
 2 GEORGE 6008 6007 40
 2 JONES 6009 6007 40
 3 MILLER 6010 6009 40
 3 BAKER 6011 6009 40
 1 GEORGE 6008 6007 40
 1 JONES 6009 6007 40
 2 MILLER 6010 6009 40
 2 BAKER 6011 6009 40
 1 MILLER 6010 6009 40
 1 BAKER 6011 6009 40

This limits the query to one of the hierarchies, but it does not eliminate the spurious

hierarchies. Therefore, leaving off the START WITH predicate is fairly useless

Using a Database Function to Dynamically Determine the Top of the

Hierarchy

In order to add the "START WITH" back into the view, yet make the view dynamic, you

can create a database function that returns the top parent of a hierarchy given a key that

identifies the hierarchy (the deptno in this example). The following function does this for

our example:
CREATE OR REPLACE FUNCTION Get_Emp_Top(p_DeptNo IN NUMBER) RETURN

NUMBER IS
 v_TopParent NUMBER;
BEGIN

 SELECT empno INTO v_TopParent
 FROM Emp
 WHERE Deptno = p_Deptno
 AND mgr IS NULL;

 RETURN(v_TopParent);

END;
/

Now, we update the view, adding a START WITH clause that uses the function:
SQL> CREATE OR REPLACE VIEW Emp_Hier AS
 2 SELECT level lvl, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno
 3 FROM Emp
 4 CONNECT BY PRIOR emp.empno = emp.mgr
 5 START WITH emp.empno = Get_Emp_Top(emp.deptno)
 6 /

SQL> SELECT lvl, ename, empno, mgr, deptno
 2 FROM Emp_Hier
 3 /

 LVL ENAME EMPNO MGR DEPTNO
--------- -------------------- --------- --------- ---------
 1 KING 7839 10
 2 BLAKE 7698 7839 10
 3 MARTIN 7654 7698 10
 3 ALLEN 7499 7698 10
 3 TURNER 7844 7698 10
 3 JAMES 7900 7698 10
 3 WARD 7521 7698 10
 2 CLARK 7782 7839 10
 3 MILLER 7934 7782 10
 2 JONES 7566 7839 10
 3 FORD 7902 7566 10
 4 SMITH 7369 7902 10
 5 Ken 999 7369 10
 3 SCOTT 7788 7566 10
 4 ADAMS 7876 7788 10
 1 SONG 6000 40
 2 GOMEZ 6001 6000 40
 3 WILLIAMS 6002 6001 40
 4 DIRKSEN 6003 6002 40
 5 ATKINS 6004 6003 40
 5 DESZELL 6005 6003 40
 5 DEVITT 6006 6003 40
 2 SMITH 6007 6000 40
 3 GEORGE 6008 6007 40
 3 JONES 6009 6007 40
 4 MILLER 6010 6009 40
 4 BAKER 6011 6009 40

As you can see, we now have a view that will return ONLY the complete hierarchy of

both hierarchies we have defined. We can simply add a predicate to the SELECT from

the view to only display one of the hierarchies, thereby giving us the dynamic selection of

the hierarchy from the view:
SQL> SELECT lvl, ename, empno, mgr, deptno
 2 FROM Emp_Hier
 3 WHERE DEPTNO = 40
 4 /

 LVL ENAME EMPNO MGR DEPTNO
--------- -------------------- --------- --------- ---------
 1 SONG 6000 40
 2 GOMEZ 6001 6000 40
 3 WILLIAMS 6002 6001 40
 4 DIRKSEN 6003 6002 40
 5 ATKINS 6004 6003 40
 5 DESZELL 6005 6003 40
 5 DEVITT 6006 6003 40
 2 SMITH 6007 6000 40
 3 GEORGE 6008 6007 40
 3 JONES 6009 6007 40
 4 MILLER 6010 6009 40
 4 BAKER 6011 6009 40

Putting a couple of Tips Together

In a previous tip (Tip #40), I detailed a method to allow joins to hierarchical queries. We

can combine that technique with the one from this tip to give us a very powerful view:
CREATE OR REPLACE VIEW emp_hier AS
SELECT emphier.emplevel, emphier.ename ind_ename, emphier.ename

,emphier.empno
 ,dept.deptno, dept.dname, dept.loc
 ,emp.ename mgr_ename
FROM Dept, Emp
 ,(select level emplevel, LPAD(' ',2*level-2)||ename ename,

empno, mgr, deptno
 from Emp
 connect by prior empno = mgr
 start with empno = Get_Emp_Top(emp.deptno)
) emphier
WHERE emphier.deptno = dept.deptno
 AND emphier.mgr = emp.empno (+)

Here is an example of using the view:
SQL> select ind_ename, mgr_ename, dname, loc
 2 from emp_hier
 3 where deptno = 40
 4 /

IND_ENAME MGR_ENAME DNAME LOC
-------------------- ---------- -------------- -------------
SONG OPERATIONS BOSTON
 GOMEZ SONG OPERATIONS BOSTON
 WILLIAMS GOMEZ OPERATIONS BOSTON
 DIRKSEN WILLIAMS OPERATIONS BOSTON
 ATKINS DIRKSEN OPERATIONS BOSTON
 DESZELL DIRKSEN OPERATIONS BOSTON
 DEVITT DIRKSEN OPERATIONS BOSTON
 SMITH SONG OPERATIONS BOSTON
 GEORGE SMITH OPERATIONS BOSTON
 JONES SMITH OPERATIONS BOSTON
 MILLER JONES OPERATIONS BOSTON
 BAKER JONES OPERATIONS BOSTON

 Click [here] for a SQL script that creates and populates

the EMP table used in this example, then runs the

example queries. Tip #40: Using "Inline Views" to Join

to Hierarchical Queries (Type: SQL)

Have you ever tried to join to a hierarchical query (a query using CONNECT BY and

PRIOR) only to get this message:
ORA-01437: cannot have join with CONNECT BY

One of the limitations of hierarchical queries is that you cannot join to them. However,

there are often times you would like to join to them anyway. For instance, if the

hierarchy table only has surrogate keys, and you would like to display the real value.

This tip shows how you can use "Inline Views" (which are SELECTs in the FROM

clause) to join tables to a hierarchical query.

http://www.arrowsent.com/oratip/tip40.htm
http://www.arrowsent.com/oratip/tip42.sql

Starting With A Standard Hierarchy Query

I will use the infamous EMP/DEPT tables to illustrate this technique. Using these tables,

you might use the following SQL for a standard hierarchical query:
SQL>
 1 SELECT level, LPAD(' ',2*level-2)||emp.ename ename,

emp.empno, emp.mgr, emp.deptno
 2 FROM Emp
 3 CONNECT BY PRIOR emp.empno = emp.mgr
 4* START WITH emp.empno = 7839
SQL> /

 LEVEL ENAME EMPNO MGR DEPTNO
--------- -------------------- --------- --------- ---------
 1 KING 7839 10
 2 BLAKE 7698 7839 30
 3 MARTIN 7654 7698 30
 3 ALLEN 7499 7698 30
 3 TURNER 7844 7698 30
 3 JAMES 7900 7698 30
 3 WARD 7521 7698 30
 2 CLARK 7782 7839 30
 3 MILLER 7934 7782 10
 2 JONES 7566 7839 20
 3 FORD 7902 7566 20
 4 SMITH 7369 7902 20
 5 Ken 999 7369 20
 3 SCOTT 7788 7566 20
 4 ADAMS 7876 7788 20

Try to Join This Query To the DEPT Table

If you try to join this query to the DEPT table, it won't work:
SQL> l
 1 select level, LPAD(' ',2*level-2)||ename ename, empno, mgr,

dept.deptno, dept.dname
 2 from emp, dept
 3 where emp.deptno = dept.deptno
 4 connect by prior empno = mgr
 5* start with empno = 7839
SQL> /
from emp, dept
 *
ERROR at line 2:
ORA-01437: cannot have join with CONNECT BY

Place the Hierarchical Query in an "Inline View"

Since Oracle 7.3, we could actually use a complete SELECT statement as one of the

"tables" in a query. Using this technique, we can turn the hierarchical query into a

"table" and join it do the DEPT table:
SQL> l
 1 SELECT emphier.emplevel, emphier.ename, emphier.empno,

dept.deptno, dept.dname
 2 FROM Dept
 3 ,(select level emplevel, LPAD(' ',2*level-2)||ename

ename, empno, mgr, deptno

 4 from Emp
 5 connect by prior empno = mgr
 6 start with empno = 7839
 7) emphier
 8* WHERE emphier.deptno = dept.deptno
SQL> /

 EMPLEVEL ENAME EMPNO DEPTNO DNAME
--------- -------------------- --------- --------- --------------
 1 KING 7839 10 ACCOUNTING
 2 BLAKE 7698 30 SALES
 3 MARTIN 7654 30 SALES
 3 ALLEN 7499 30 SALES
 3 TURNER 7844 30 SALES
 3 JAMES 7900 30 SALES
 3 WARD 7521 30 SALES
 2 CLARK 7782 30 SALES
 3 MILLER 7934 10 ACCOUNTING
 2 JONES 7566 20 RESEARCH
 3 FORD 7902 20 RESEARCH
 4 SMITH 7369 20 RESEARCH
 5 Ken 999 20 RESEARCH
 3 SCOTT 7788 20 RESEARCH
 4 ADAMS 7876 20 RESEARCH

The SELECT statement inside the parentheses is treated just as if it were a view that you

are joining to. It is given an alias, "emphier", which is used to refer to it in the SELECT

clause (i.e. "emphier.ename"), and in the WHERE clause (i.e. "emphier.deptno"). Since

it is treated like a view, we can join it to the Dept table with the following predicate:
WHERE emphier.deptno = dept.deptno

This will allow you to display the department name ("DNAME") in your hierarchical

query.

Putting the Query into a View

Quite often, these hierarchical queries can be useful in many programs and reports. It is

often helpful to create a view that lists the hierarchy and joins to useful tables. Here is an

example of a view using the EMP/DEPT tables. This view allows you to list the

department name and location and the manager name in the query:
CREATE OR REPLACE VIEW emp_hier AS
SELECT emphier.emplevel, emphier.ename ind_ename, emphier.ename

,emphier.empno
 ,dept.deptno, dept.dname, dept.loc
 ,emp.ename mgr_ename
FROM Dept, Emp
 ,(select level emplevel, LPAD(' ',2*level-2)||ename ename,

empno, mgr, deptno
 from Emp
 connect by prior empno = mgr
 start with empno = 7839
) emphier
WHERE emphier.deptno = dept.deptno
 AND emphier.mgr = emp.empno (+)

Here is an example of using the view:
SQL> select ind_ename, mgr_ename, dname, loc
 2 from emp_hier

 3
SQL> /

IND_ENAME MGR_ENAME DNAME LOC
-------------------- ---------- -------------- -------------
KING ACCOUNTING NEW YORK
 BLAKE KING SALES CHICAGO
 MARTIN BLAKE SALES CHICAGO
 ALLEN BLAKE SALES CHICAGO
 TURNER BLAKE SALES CHICAGO
 JAMES BLAKE SALES CHICAGO
 WARD BLAKE SALES CHICAGO
 CLARK KING SALES CHICAGO
 MILLER CLARK ACCOUNTING NEW YORK
 JONES KING RESEARCH DALLAS
 FORD JONES RESEARCH DALLAS
 SMITH FORD RESEARCH DALLAS
 Ken SMITH RESEARCH DALLAS
 SCOTT JONES RESEARCH DALLAS
 ADAMS SCOTT RESEARCH DALLAS

 Tip #38: Listing Records with the Highest Values using

SQL Only. (Type: SQL)

There are times where you want to simply return the rows with a certain number of the

highest (or lowest) values for a certain column. This type of functionality is easy to

implement in PL/SQL (just order by the column and grab the first n rows from the

query), but more difficult to do using SQL only. This tip shows you a method to do this

in SQL.

Data Used for The Examples in this Tip

The following data (from the infamous EMP table) will be used for all of the examples in

this Tip:

SQL> desc emp
 Name Null? Type
 ------------------------------- -------- ----
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 HIREDATE DATE
 SAL NUMBER(7,2)
 COMM NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)

SQL> SELECT empno, sal FROM EMP;

 EMPNO SAL
--------- ---------
 41 4200
 46 6800
 99 9000
 23 2000
 11 4000
 10 3500
 51 4500
 52 4500

 53 8000
 54 2900

10 rows selected.

ROWNUM does not work!

Many SQL begginers are tempted to try to use ROWNUM along with an ORDER BY to

limit the rows returned to the highest values. However, this does not work, becuase

Oracle sets the ROWNUM value before the query results are ordered! Consider the

following query:

SQL> SELECT empno, sal, rownum
 2 FROM Emp
 3 ORDER BY sal DESC
 4
SQL> /

 EMPNO SAL ROWNUM
--------- --------- ---------
 99 9000 3
 53 8000 9
 46 6800 2
 51 4500 7
 52 4500 8
 41 4200 1
 11 4000 5
 10 3500 6
 54 2900 10
 23 2000 4

Notice that the records are ordered by the SAL column, but not the ROWNUM column.

If you added a where clause to limit the query to the first three ROWNUMs, you would

get:

SQL> l
 1 SELECT empno, sal, rownum
 2 FROM Emp
 3 WHERE ROWNUM < 4
 4* ORDER BY sal DESC
SQL> /

 EMPNO SAL ROWNUM
--------- --------- ---------
 99 9000 3
 46 6800 2
 41 4200 1

Which does NOT return the three highest SALs!

Solution: Correlated SubQuery to Same Table

One solution for this problem is to use a correlated subquery to the same table. The

following select will return the correct rows:

SQL> l
 1 SELECT empno, sal
 2 FROM Emp e1
 3 WHERE 3 > (SELECT COUNT(*) FROM Emp e2
 4 WHERE e1.sal < e2.sal)
 5* ORDER BY SAL desc
SQL> /

 EMPNO SAL
--------- ---------
 99 9000
 53 8000
 46 6800

For every row processed by the main query, the correlated subquery returns a count

(COUNT(*)) of the number of rows with higher salaries (WHERE e1.sal < e2.sal). Then

the main query only returns rows that have fewer than three salaries that are higher

(WHERE 3 > ...). For example, for EMPNO=46, the salary is "6800". There is only 1

row with a higher salary (EMPNO=99), so the subquery returns "1", which is less than 3,

causing the "WHERE 3 > ..." to evaluate to TRUE, thereby returning the row.

A Problem With This Technique

However, there is a problem with this method. What if there are more than one row with

the same salary? Consider the following query, where we change it to return the first 4

rows:

SQL> l
 1 SELECT empno, sal
 2 FROM Emp e1
 3 WHERE 4 > (SELECT COUNT(*) FROM Emp e2
 4 WHERE e1.sal < e2.sal)
 5* ORDER BY SAL desc
SQL> /

 EMPNO SAL
--------- ---------
 99 9000
 53 8000
 46 6800
 51 4500
 52 4500

Instead of returning 4 rows, it returned 5! This is because this technique returns ALL of

the rows with the highest 4 salaries, not the first 4 rows. This is a problem with this

technique, so you need to make sure that it is acceptible in your design before you use it.

An Alternative Technique which Lists Rank

If you want to use a join instead of a correlated subquery, you could use the following

select:

SQL> l
 1 SELECT e1.deptno, e1.empno, e1.sal, COUNT(distinct e2.empno)
 2 FROM Emp e1, Emp e2
 3 WHERE e1.sal <= e2.sal
 4 GROUP BY e1.deptno, e1.empno, e1.sal
 5* ORDER BY COUNT(distinct e2.empno)
SQL> /

 DEPTNO EMPNO SAL COUNT(DISTINCTE2.EMPNO)
--------- --------- --------- -----------------------
 30 99 9000 1
 50 53 8000 2
 20 46 6800 3
 40 51 4500 5
 50 52 4500 5
 20 41 4200 6
 40 11 4000 7
 40 10 3500 8
 50 54 2900 9
 30 23 2000 10

This select turns the correlated subquery into a self-join with a GROUP BY. This allows

us to change the count into a sort of RANK. However, the problem with equal salaries

remains (notice the two records with a "rank" of 5).

This rank can then be used to select the first three rows:

SQL> l
 1 SELECT e1.deptno, e1.empno, e1.sal, COUNT(distinct e2.empno)
 2 FROM Emp e1, Emp e2
 3 WHERE e1.sal <= e2.sal
 4 GROUP BY e1.deptno, e1.empno, e1.sal
 5 HAVING COUNT(distinct e2.empno) < 4
 6* ORDER BY COUNT(distinct e2.empno)
SQL> /

 DEPTNO EMPNO SAL COUNT(DISTINCTE2.EMPNO)
--------- --------- --------- -----------------------
 30 99 9000 1
 50 53 8000 2
 20 46 6800 3

One advantage of this method is that it can be easily used to return the record for just one

ranking. For example:

SQL> l
 1 SELECT e1.deptno, e1.empno, e1.sal, COUNT(distinct e2.empno)

 2 FROM Emp e1, Emp e2
 3 WHERE e1.sal <= e2.sal
 4 GROUP BY e1.deptno, e1.empno, e1.sal
 5 HAVING COUNT(distinct e2.empno) = 7
 6* ORDER BY COUNT(distinct e2.empno)
SQL> /

 DEPTNO EMPNO SAL COUNT(DISTINCTE2.EMPNO)
--------- --------- --------- -----------------------
 40 11 4000 7

Tip #32: Script to List Trigger Errors & Line Numbers (Type: PL/SQL)

When a trigger is created for a table, sometimes there are compilation errors (hey, were

not all perfect programmers). When you have errors, you can list the trigger's syntax

errors by using the SHOW ERRORS TRIGGER <Trigger_Name> command. However,

many times these messages are cryptic, and it can be difficult to match the error to the

specific line of code in the trigger. This tip shows a method that can be used to list the

errors, along with the trigger source, and indicating which line of source has each error.

My thanks to Tim Onions, a Principal Technical Consultant at AT&T in the UK for

asking if it was possible to do this, and spurring me on to attempting it. He also reviewed

the script and made improvement suggestions. Also, thanks to Jurij Modic of the

Republic of Slovenia Ministry of Finance for pointing out a major flaw in the original

tip.

The Stanard SHOW_ERRORS command

Here is an example of using the SHOW ERRORS command for triggers:
 KATKINS> CREATE OR REPLACE TRIGGER Test_Trigger

 2 before insert or update of price on items

 3 for each row

 4 BEGIN

 5 -- If extended amout is greater than $10,000 set the

status

 6 -- to pending approval, else approve the item.

 7 IF (new.price*new.amount) > 10000 THEN

 8 :new.status = 'P';

 9 ELSE

 10 :new.status := 'A';

 11 END IF;

 12 END;

 /

Warning: Trigger created with compilation errors.

KATKINS> show errors trigger Test_Trigger

LINE/COL

ERROR

--------- ---

5/17 PLS-00103: Encountered the symbol "=" when

expecting one of the following:

 := . (@ % ; indicator

 The symbol ":= was inserted before "=" to

continue.

The errors go into USER_ERRORS, just like stored procedure errors:
DES2OWNER> l

 1 SELECT line, text FROM User_Errors

 2 WHERE name = 'PVNT_DUP_ENT_ER_TR'

 3* order by sequence

DES2OWNER> /

>

 LINE

TEXT

---------- --

 5 PLS-00103: Encountered the symbol "=" when

expecting one of the following:

 := . (@ % ; indicator

 The symbol ":= was inserted before "=" to

continue.

DES2OWNER>

Merging the errors with the source.

As you can see, it is fairly easy to select from this table to see the errors. But I wanted to

do something more. I want to list the code of the trigger along with the arrows, and have

the listing point to the line in the code with the error, just like I did for packages,

procedures, & Functions in Tip #3.

The PL/SQL source for packages, procedures, & functions is stored in USER_SOURCE.

However, the source of the trigger is NOT stored in USER_SOURCE. Instead, it is stored

in the TRIGGER_BODY column of USER_TRIGGER. Since TRIGGER_BODY is a

LONG column, it is difficult to work with directly (i.e. you cannot use SUBSTR and

INSTR on it). Because of this, I wrote a stored procedure that parses it into lines, gives

the lines line numbers, then matches those lines to the value in the LINE column of

USER_ERRORS. Then, using DBMS_OUTPUT to display the results, I can get the

output of this program to look very similar to the stored programs error output I got in

Tip #3.

Here is the procedure:

/**

**/

/* LIST_TRIG_ERR - A procedure that uses DBMS_OUTPUT to list the

*/

http://www.arrowsent.com/oratip/tip3.htm
http://www.arrowsent.com/oratip/tip3.htm

/* compilation errors of a trigger, along with the

*/

/* trigger's source. Also indicates the source line

*/

/* with the error.

*/

/*

*/

/* Inputs: p_Trigger = The trigger name.

*/

/*

*/

/* Author: Ken Atkins

(Ken@arrowsent.com) */

/* Principal Consultant - ARIS Corporation

*/

/*

*/

/* Please feel free to use and modify this script as long as it is not

*/

/* sold or included in any software without the prior permission of

*/

/* the author. If you do make good improvements, please send them to

*/

/* me and I will incorporate them in a future version of the script

*/

/* (giving you credit of course!).

*/

/*

*/

/* Modifications:

*/

/*---

-*/

/* Ver Date By Change

*/

/* --- --------- -------------- ---------------------------------------

-*/

/* 1.0 05-MAR-98 Ken Atkins Written.

*/

/**

**/

CREATE OR REPLACE PROCEDURE LIST_TRIG_ERR(p_Trigger IN VARCHAR2) AS

 v_Trig LONG;

 b_Continue BOOLEAN := True;

 v_NumLines NUMBER := 0;

 v_Line VARCHAR2(240);

 v_NxtChr NUMBER := 0;

 v_LstChr NUMBER := 0;

 TYPE LineTabTyp IS TABLE OF VARCHAR2(240)

 INDEX by BINARY_INTEGER;

 t_Lines LineTabTyp;

 CURSOR err_cur IS SELECT line, text

 FROM User_Errors

 WHERE name = p_Trigger

 AND text not like '%Statement ignored%';

 i NUMBER;

 v_Prefix CHAR(10);

 v_DDLCursor NUMBER;

 v_DDLReturn NUMBER;

BEGIN

 --

 -- Fetch the trigger code into a variable that will be used to parse

it.

 --

 BEGIN

 SELECT trigger_body INTO v_Trig

 FROM User_Triggers

 WHERE Trigger_Name = p_Trigger;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 Raise_Application_Error(-20001,'Trigger does not exist:

'||p_Trigger);

 END;

 --

 -- Use DBMS_SQL to execute the command that places the errors into

USER_ERRORS

 --

 v_DDLCursor := dbms_sql.open_cursor;

 DBMS_SQL.Parse(v_DDLCursor,'ALTER TRIGGER '||p_Trigger||' COMPILE

DEBUG',1);

 v_DDLReturn := dbms_sql.execute(v_DDLCursor);

 DBMS_SQL.Close_Cursor(v_DDLCursor);

 --

 -- Now loop through the lines in the trigger code and parse it into

separate

 -- record in a PL/SQL table.

 --

 WHILE b_Continue LOOP

 v_NumLines := v_NumLines + 1;

 v_NxtChr := INSTR(v_Trig, CHR(10),1,v_NumLines);

 v_Line := SUBSTR(v_Trig, v_LstChr+1, (v_NxtChr-v_LstChr));

 t_Lines(v_NumLines) := v_Line;

 IF v_NxtChr = 0 THEN

 b_Continue := False;

 ELSE

 v_LstChr := v_NxtChr;

 END IF;

 END LOOP;

 --

 -- Loop through all of the errors in USER_ERRORS for this trigger,

displaying

 -- each error, followed by the triggers code, with an ===>

pointing to the

 -- error line.

 --

 DBMS_OUTPUT.Put_Line('.');

 FOR e IN err_cur LOOP

 DBMS_OUTPUT.Put_Line(e.text);

 DBMS_OUTPUT.Put_Line('.');

 FOR i IN 1..v_NumLines LOOP

 IF e.line = i THEN

 v_Prefix := '========> ';

 ELSE

 -- Note: The dots (...) are used because DBMS_OUTPUT normally

strips leading spaces

 v_Prefix := '......... ';

 END IF;

 DBMS_OUTPUT.Put_Line(v_Prefix||to_char(i)||': '||t_Lines(i));

 END LOOP;

 DBMS_OUTPUT.Put_Line('.');

 END LOOP;

END;

/

Here is an example of using the procedure. First, I created a simple sql script to call the

procedure:
set serveroutput on size 100000

execute list_trig_err(UPPER('&1'));

Then, after creating the trigger, I can call this script to detail the errors.

An Example of Using the Scripts

Here is an example of listing the errors for a trigger::
KATKINS> CREATE OR REPLACE TRIGGER Test_Trigger

 2 before insert or update of price on items

 3 for each row

 4 BEGIN

 5 -- If extended amout is greater than $10,000 set the

status

 6 -- to pending approval, else approve the item.

 7 IF (new.price*new.amount) > 10000 THEN

 8 :new.status = 'P';

 9 ELSE

 10 :new.status := 'A';

 11 END IF;

 12 END;

 /

Warning: Trigger created with compilation errors.

KATKINS> @trigerr TEST_TRIGGER

PLS-00103: Encountered the symbol "=" when expecting one of

the following:

 := . (@ % ; indicator

The symbol ":= was inserted before "=" to continue.

.

......... 1: BEGIN

......... 2: -- If extended amout is greater than $10,000

set the status

......... 3: -- to pending approval, else approve the

item.

......... 4: IF (new.price*new.amount) > 10000 THEN

========> 5: :new.status = 'P';

......... 6: ELSE

......... 7: :new.status := 'A';

......... 8: END IF;

......... 9: END;

.........

10:

.

Tip #30: An easy way to EXPLAIN and get some statistics on your SQL.

(Type: SQL*Plus)

Haven't you ever thought there should be an easier way to do the EXPLAIN PLAN and

TKPROF statistics than to edit your queries to add the commands (like EXPLAIN PLAN

SET...), or to have to find or write a script that automates this? It should be an automatic

part of SQL*Plus. Well, as of SQL*Plus 3.3 it is!! The command is called 'SET

AUTOTRACE ON'!

My thanks go out to Jack Applewhite for pointing out this command in a post to the

ODTUG email lists.

The SET AUTOTRACE Command

In SQL*Plus 3.3 there is a little known command (at least I didn't know about it until

recently) called SET AUTOTRACE. It is documented in the newest SQL*Plus document

set, but who really reads the whole document set for changes? Well I did not. It is very

simple to use. Just type the command:

SET AUTOTRACE ON

And then run your select statement. Example:

emailto:Japplewh@sbti.com
http://www.odtug.com/

SQL> SET AUTOTRACE ON

SQL> SELECT d.deptno, d.dname, e.empno, e.ename

 2 FROM dept d, emp e

 3 WHERE d.deptno = e.deptno

 4 /

 DEPTNO DNAME EMPNO ENAME

---------- -------------- ---------- ----------

 10 ACCOUNTING 7839 KING

.

.

 30 SALES 7900 JAMES

 30 SALES 7521 WARD

14 rows selected.

Execution Plan

--

 0 SELECT STATEMENT Optimizer=CHOOSE

 1 0 MERGE JOIN

 2 1 SORT (JOIN)

 3 2 TABLE ACCESS (FULL) OF 'EMP'

 4 1 SORT (JOIN)

 5 4 TABLE ACCESS (FULL) OF 'DEPT'

Statistics

--

 0 recursive calls

 4 db block gets

 2 consistent gets

 0 physical reads

 0 redo size

 670 bytes sent via SQL*Net to client

 376 bytes received via SQL*Net from client

 3 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 14 rows processed

There are also some other options, for example there is a TRACEONLY option which

supresses the SQL output. See the SQL*Plus 3.3 manual for a full description.

Some setup issues:

If you go off and try this on your instance, you may run into some problems. There are a

few setup steps that need to be taken to make this work:

1. Make sure you have access to PLAN_TABLE. If you don't, create it using

utlxplan.sql (It should be in a directory like $ORACLE_HOME/rdbms73/admin/)

and make sure you have access to it from the user you are using to tune the SQL.

2. You also need to create the PLUSTRACE role, and grant it to the desired users.

The script to create this role is in:

$ORACLE_HOME/plus33/Plustrce.sql

It has to be run from SYS in order to have the correct security access. Then grant

the role to the desired users or ROLEs.

Tip #28: Setting the SQL*Plus prompt to the current directory. (Type:

SQL*Plus)

Have you ever had a SQL*Plus window open, and did not remember what it's current

directory was? This tip will show a method to set your SQL*Plus prompt to include the

current directory.

The SET SQLPROMPT command can be used to set the SQL*Plus prompt to any text

string you want. The trick is to get access to the current directory from SQL*Plus, so you

can use it in SET SQLPROMPT.

We have access to the current directory from the OS (via 'cd' in DOS/NT and 'pwd' in

Unix). We can also call an OS script by using the SQL*Plus HOST command. Using

these two capabilities, I wrote two scripts that together performed the function I wanted:

1. A .bat script that writes a SQL script to do the actual SET SQLPROMPT, using

the 'cd' command to insert the current directory.

2. A sql script that executes the .bat script and runs the SQL script that it has written.

Here are the two scripts:

setprmpt.bat

echo set define $ > tmp.sql

echo column curdir noprint new_value curdir >> tmp.sql

echo SELECT REPLACE(' >> tmp.sql

cd >> tmp.sql

echo ',CHR(10),'') curdir FROM DUAL; >> tmp.sql

echo set sqlprompt "($curdir) SQL> " >> tmp.sql

setprmpt.sql

host setprmpt.bat

@tmp

set define &

Here is an example of using the scripts to set the prompt:

SQL> @setprmpt

(C:\d2k\working) SQL>

How these scripts work

The 'host' command in the .sql scriptexecutes the .bat script. The .bat script then writes

the following commands to a temporary sql script (called tmp.sql):

set define $

column curdir noprint new_value curdir

SELECT REPLACE('

C:\d2k\working

',CHR(10),'') curdir FROM DUAL;

set sqlprompt "($curdir) SQL> "

The .sql script then executes this temporary script file. The TMP.SQL script had to be so

complicated because I was only using the DOS output redirection capabilities ('>' and

'>>') and I could only get the current directory into the file on it's own line. The

REPLACE(..,CHR(10),'') command removes the carriage return before and after the

directory line.

The 'column .. new_value' command is a SQL*PLUS command that allows the value of a

selected column to be placed into a SQL*Plus variable (in this case 'curdir'). Therefore,

when the following SELECT.. is run, the text string of the current directory is placed in

the 'curdir' SQL*Plus variable. Then the SET SQLPROMPT uses this variable to set the

prompt.

Another feature of this technique, is that you now have the SQL*Plus variable with the

current directory available for other uses in this SQL*Plus session. For example, it can be

used in a select like:

(C:\fmpt\sql) SQL> select '&curdir' from dual;

old 1: select '&curdir' from dual

new 1: select 'C:\fmpt\sql' from dual

'C:\FMPT\SQ

C:\fmpt\sql

The above .bat file is NOT pretty. Using Perl or some other scripting language, I could

write a simple script that would just write the SET SQLPROMPT command directly

without the use of the 'column' command or the 'SELECT'.

Tip #24: Ordering numerically in a VARCHAR2 column. (Type: SQL)

Have you ever tried to order by a VARCHAR2 column that has numeric information in

it? Your query is sorted ALPHABETICALLY instead of numerically. That is, your order

is 1,10,2,20,200,3,4... instead of 1,2,3,4,10,20,200. If you try to use TO_NUMBER in the

order_by your query blows up if there are any alpha characters in the column. This tip

details a method that can be used to have the order_by return the columns numerically

even if there are some alpha characters in the column.

Consider the following table:

SQL> desc NUMBER_SORT

Name Null? Type

------------------- -------- ------------

sortby NOT NULL VARCHAR2(20)

SQL> SELECT * from NUMBER_SORT

SORTBY

100

A

1

10

1AB

2

20

BBBB

1000

11

30

3

200

21

14 rows selected.

If you do a simple order_by your result will be:
SQL> SELECT sortby

 2 FROM Number_Sort

 3 ORDER BY sortby;

SORTBY

1

10

100

1000

11

1AB

2

20

200

21

3

30

A

BBBB

14 rows selected.

Which is not what you want! However, the following select WILL return the column

ordered numerically:
SQL> SELECT sortby
 2 FROM Number_Sort

 3 ORDER BY

DECODE(TO_CHAR(NVL(LENGTH(TRANSLATE(sortby,'A1234567890','A')),0)),'0',LPAD(sor

tby,8),sortby)

 4 /

SORTBY

1

2

3

10

11

20

21

30

100

200

1000

1AB

A

BBBB

14 rows selected.

Now let's take that construct apart to see how it works:

1. TRANSLATE(sortby,'A1234567890','A') - This usage of TRANSLATE strips

all of the numeric characters (1..9) out of the value of sortby. For any row where

sortby ONLY contains numeric characters, it returns a null string ('').

2. NVL(LENGTH(....),0)) - This part determines the length of the TRANSLATEd

string, and NVLs it to 0 if the string is null. The SQL construct up to this point

will return 0 if sortby has only numeric characters, and will return a positive

integer if there are any non-numeric characters. .

3. TO_CHAR(....) - Converts the number returned by the LENGTH into a varchar.

This needs to be done so that the DECODE will work correctly.

4. DECODE(....,'0',LPAD(sortby,8),sortby) - Now we come to the guts of this

technique. This DECODE checks to see if the value is numeric only (a LENGTH

of '0'), and if so, returns the value of sortby LPADed to 8 characters. If the value

has any alpha characters (LENGTH > 0) it just returns sortby without any

modification.

Now why do we want to LPAD the numeric values only? Because space (' ') sorts

BEFORE the numbers! This allows for a decimal place by decimal place comparison of

the two numbers. The '1' will return with 7 leading blanks, the '10' with 6, ect. When the

alphabetical sort is done, the values are compared, character by character, and blank sorts

before the numbers. If you selected the SQL construct that you are sorting by, you would

see something like:
SQL> SELECT
DECODE(TO_CHAR(NVL(LENGTH(TRANSLATE(sortby,'A1234567890','A')),0)),'0',LPAD(sortby,8),s

ortby)

 2 FROM Number_Sort

 3 ORDER BY

DECODE(TO_CHAR(NVL(LENGTH(TRANSLATE(sortby,'A1234567890','A')),0)),'0',LPAD(sortby,8),s

ortby)

 4 /

SORTBY

1

2

3

10

11

20

21

30

100

200

1000

1AB

A

BBBB

14 rows selected.

The '8' I used in the LPAD is just arbitrary. If I had 15 digit numbers in

the SORTBY column, I would use a value greater than 15 so that any

number would sort correctlyTip #23: Using a Database Function to Query

by a LONG Column. (Type: SQL)

Have you ever tried to use LONG columns in the WHERE clause of your SQL

statement? Something

like 'WHERE long_column like '%SEARCH%'? If so, you know this does not work!

(You get 'ORA-00932:

inconsistent datatypes') This tip shows how you can use database functions to avoid this

limitation, and

query by LONG columns anyway.

Consider the following table:

LONG_WHERE

==========

Name Null? Type

------------------- -------- ----

LONG_ID NOT NULL NUMBER

LONG_DESC LONG

If you tried to select by the long column, you might use something like:

SQL> SELECT * FROM Long_Where

 2 WHERE long_desc like '%SEARCH%';

WHERE long_desc like '%SEARCH%'

 *

ERROR at line 2:

ORA-00932: inconsistent datatypes

Which does not work! One way around this limitation is to write a database function

'wrapper' for the

long column. This function would accept the PK of the table as an input parameter, and

return the

LONG column's value, converted to a VARCHAR2. Here is an example of such a

function:

CREATE OR REPLACE FUNCTION vc_desc(p_ID IN NUMBER) RETURN

VARCHAR2 IS

v_desc VARCHAR2(2000);

v_Long LONG;

BEGIN

 SELECT long_desc INTO v_Long

 FROM Long_where

 WHERE long_id = p_ID;

 v_Desc := SUBSTR(v_Long,1,2000);

 RETURN(v_Desc);

END;

Now you can use this function in the where clause instead of using the LONG column

directly. For example:

SQL> SELECT long_id, long_desc

 2 FROM Long_Where

 3 WHERE vc_desc(long_id) like '%SEARCH%'

 4 /

 LONG_ID

LONG_DESC

--------- ---

 2 Another bunch of text to

 place into a long value. Search for SEARCH2 somewhere

 4 Search for SEARCH3 in here

You are limited to searching the first 2000 characters of the long column, but this is often

good enough.

Tip #19: Selecting ONLY the group with the maximum Sum in a group

query. (Type: SQL)

Let's say you have a select that is summing by a key value, and you want to only return

the key that has the maximum sum (not ALL of the rows like a group by will). This tip

will show a SQL statement that does this.

Consider the following tables and data:

SUM_PARENT

 Name Null? Type

 ------------------- -------- ----

 SUM_ID NUMBER

 SUM_NAME VARCHAR2(10)

SELECT * FROM Sum_Parent;

 SUM_ID SUM_NAME

--------- ----------

 1 ONE

 2 TWO

 3 THREE

 4 FOUR

 5 FIVE

SUM_CHILD

 Name Null? Type

 ------------------- -------- ----

 SUM_ID NUMBER

 QTY NUMBER

SELECT * FROM Sum_Child;

 SUM_ID QTY

--------- ---------

 1 10

 1 20

 1 5

 2 10

 2 5

 3 3

 3 2

 4 30

 4 2

 5 10

The following simple GROUP BY select will return the sum of the QTY for each key

(SUM_NAME):
SELECT p.sum_name, sum(c.qty)

 FROM Sum_Parent p, Sum_Child c

 WHERE p.sum_id = c.sum_id

GROUP BY p.sum_name

/

SUM_NAME SUM(C.QTY)

---------- ----------

FIVE 10

FOUR 32

ONE 35

THREE 5

TWO 15

Let's say you only want to return the row with the MAXIMUM quantity

(SUM_NAME=ONE). To do this, you can add a HAVING predicate related to a sub-

query. The HAVING is needed to be able to use the SUM(c.qty) in a predicate. An

example of this follows:
SELECT p.sum_name, sum(c.qty)

 FROM Sum_Parent p, Sum_Child c

 WHERE p.sum_id = c.sum_id

GROUP BY p.sum_name

HAVING SUM(c.qty) =

 (SELECT MAX(SUM(c2.qty))

 FROM Sum_Child c2

 GROUP BY c2.sum_id

)

/

SUM_NAME SUM(C.QTY)

---------- ----------

ONE 35

Which is the desired result. One caution however, if there are more than one key with the

maximum sum, the query will return ALL of them. For instance, if the following data is

added to the SUM_CHILD table:
 SUM_ID QTY

--------- ---------

 3 30

The above query will return the following result.
SUM_NAME SUM(C.QTY)

---------- ----------

ONE 35

THREE 35

This query is not very efficient however. If you have PL/SQL available to you, you can

get the same result by creating a cursor with the first query, adding an order by clause,

and only fetching the first row. This will avoid the second sum, which will give it better

performance. Here is an example of this:
set serveroutput on

DECLARE

 CURSOR sum_cur IS

 SELECT p.sum_name, sum(c.qty)

 FROM Sum_Parent p, Sum_Child c

 WHERE p.sum_id = c.sum_id

 GROUP BY p.sum_name

 ORDER BY sum(c.qty) desc;

 SumName VARCHAR2(10);

 SumQty NUMBER;

BEGIN

 OPEN sum_cur;

 FETCH sum_cur INTO SumName, SumQty;

 CLOSE sum_cur;

 DBMS_OUTPUT.PUT_LINE('SUM_NAME: '||SumName||' Sum(Qty):

'||to_char(SumQty));

END;

/

SUM_NAME: ONE Sum(Qty): 35

PL/SQL procedure successfully completed.

If there are more than one row with the same maximum sum, this PL/SQL program will

only return the first one it encounters. Therefore, the program should be expanded to

handle this by either returning multiple values, or ordering by the key also (which will

ensure consistancy if nothing else).

Tip #18: Using Database Functions to Eliminate Outer Joins. (Type:

PL/SQL & SQL)

Outer joins are very useful in SQL to return data from queries where some of the

relationships are optional. However, there are times when the outer joins can cause some

problems. Sometimes they will make the query run very slowly. There is also a restriction

that you can only outer a table to ONE other table. In these cases, database functions can

be used to eliminate the need for the outer joins. This tip will detail how to do this for the

following two examples:

 Elimination of Multiple Outer Joins in ARC usage.

 Allowing 'Outer Join' to Multiple Tables.

Consider the following data model:

Assuming the data looks like:

OUTER_ELIM

==========

 PK KTYPE KEY1 KEY2 KEY3

--------- ----- --------- --------- ---------

 1 1 1

 2 1 2

 3 1 3

 5 2 1

 6 2 2

 7 2 3

 9

 10 3 1

 11 3 2

LOOKUP1 LOOKUP2 LOOKUP3

======= ======= =======

 KEY1 LABEL1 KEY2 LABEL2 KEY3

LABEL3

--------- ---------- --------- ---------- ---------

 1 1-ONE 1 1-TWO 1

1-THREE

 2 2-ONE 2 2-TWO 2

2-THREE

 3 3-ONE 3 3-TWO 3

3-THREE

OUTER_ELIM_CLD CROSS_LABEL

============== ===========

 PK KEY4 KEY1 KEY4

CROSS_LABEL

--------- --------- --------- --------- --------

 1 1 1 2 L1-1 X

L4-2

 1 2 3 1 L1-3 X

L4-1

 1 3

 2 1

 2 2

 2 3

 3 1

 3 2

 3 3

This data model will be used to illustrate both examples of using a database function to

eliminate outer joins:

Elimination of Multiple Outer Joins in ARC usage.

Let's say you need a SQL select statement to implement the above arc (from

OUTER_ELIM to LOOKUP1,2,3). For example, you want to display only ONE of the

labels (either LABEL1, LABEL2, or LABEL3) depending on the value of the

KEY_TYPE column. The following SQL statement could be used to do this:

/* tip18q1.sql */

SELECT oe.pk,

DECODE(ktype,'1',l1.label1,'2',l2.label2,'3',l3.label3)

Label

 FROM outer_elim oe, lookup1 l1, lookup2 l2, lookup3 l3

 WHERE oe.key1 = l1.key1 (+)

 AND oe.key2 = l2.key2 (+)

 AND oe.key3 = l3.key3 (+)

ORDER BY

DECODE(ktype,'1',l1.label1,'2',l2.label2,'3',l3.label3)

/

This SQL statement will return:

PK LABEL

--------- ----------

 1 1-ONE

 10 1-THREE

 5 1-TWO

 2 2-ONE

 11 2-THREE

 6 2-TWO

 3 3-ONE

 7 3-TWO

 9

However, sometimes having multiple outer joins can cause performance problems.

Especially when there are many tables joined together.

A database function can be used to get the same query results without using an outer join.

To do this, first create the following database function:

/* tip18fun.sql */

CREATE OR REPLACE

FUNCTION comb_label(pType IN VARCHAR2

 ,pKey1 IN NUMBER,pKey2 IN NUMBER,pKey3 IN NUMBER)

RETURN VARCHAR2 IS

 vReturn VARCHAR2(10);

BEGIN

 IF pType = '1' THEN

 BEGIN

 SELECT label1 INTO vReturn

 FROM lookup1

 WHERE key1 = pKey1;

 END;

 ELSIF pType = '2' THEN

 BEGIN

 SELECT label2 INTO vReturn

 FROM lookup2

 WHERE key2 = pKey2;

 END;

 ELSIF pType = '3' THEN

 BEGIN

 SELECT label3 INTO vReturn

 FROM lookup3

 WHERE key3 = pKey3;

 END;

 END IF;

RETURN(vReturn);

END;

/

This function can be used in the following SQL to return the same results as the first

query, but without any outer joins:

/* tip18q2.sql */

column label format a12;

SELECT oe.pk, comb_label(ktype,key1,key2,key3) Label

 FROM outer_elim oe

ORDER BY comb_label(ktype,key1,key2,key3)

/

Using a Database Function to allow Outer Join to Multiple Tables.

There are times when you really want to outer join one table to two different tables.

When this happens, the restriction can be frustrating. In the above data model, you might

want to do an outer join from the CROSS_LOOKUP table to both the OUTER_ELIM

and OUTER_ELIM_CLD tables. To do this, you might try to use a SQL statement like:

/* tip18q3.sql */

SELECT oe.pk, l1.label1, l4.label4, cl.cross_label

 FROM outer_elim oe, outer_elim_cld cld, lookup1 l1,

lookup4 l4

 ,cross_lookup cl

 WHERE oe.pk = cld.pk

 AND oe.key1 = l1.key1

 AND cld.key4 = l4.key4

 AND cl.key1 (+) = oe.key1

 AND cl.key4 (+) = cld.key4

/

Which will cause the following error:
 AND cl.key1 (+) = oe.key1

 *

ERROR at line 7:

ORA-01417: a table may be outer joined to at most one other

table

This error occurs because Oracle will not let you have an outer join from ONE table to

two DIFFERENT tables.

However, you CAN get the desired effect using a database function. If the following

function is created:
/* tip18fn2.sql */

CREATE OR REPLACE

FUNCTION cross_label(pKey1 IN NUMBER,pKey4 IN NUMBER)

RETURN VARCHAR2 IS

 vReturn VARCHAR2(15);

BEGIN

 SELECT cross_label INTO vReturn

 FROM cross_lookup

 WHERE key1 = pKey1

 AND key4 = pKey4;

 RETURN(vReturn);

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN('');

END;

/

then the following SQL can be used to return the 'outer join' values from the

CROSS_LOOKUP:
/* tip18q4.sql */

column cross_label format a15

SELECT oe.pk, l1.label1, l4.label4, cross_label(oe.key1,

cld.key4) cross_label

 FROM outer_elim oe, outer_elim_cld cld, lookup1 l1,

lookup4 l4

 WHERE oe.pk = cld.pk

 AND oe.key1 = l1.key1

 AND cld.key4 = l4.key4

/

This select will return:
 PK LABEL1 LABEL4 CROSS_LABEL

--------- ---------- ---------- ---------------

 1 1-ONE 1-FOUR

 1 1-ONE 2-FOUR L1-1 X L4-2

 1 1-ONE 3-FOUR

 2 2-ONE 1-FOUR

 2 2-ONE 2-FOUR

 2 2-ONE 3-FOUR

 3 3-ONE 1-FOUR L1-3 X L4-1

 3 3-ONE 2-FOUR

 3 3-ONE 3-FOUR

Stored procedures and functions are very powerful. These are just some simple examples

to get people thinking about some possible ways of using them.

Tip #17: Calculating a running total with SQL only. (Type: SQL)

There are applications where the running total for a series of numbers needs to be

calculated and displayed. While this might be normally considered something that would

be done with 3GL programming techniques, it IS possible to calculate and query a

running total with SQL only.

First, we need to have a 'key' column to order the query by

Let's assume we have a table with a numeric column that we want. We also need to have

a column to order the display by, or a running total does not make sense! Many times this

will be a date column. This could also be the PK of the table, or a single or multiple

column UK. I will use a date column in the following example. Consider the table:

 SQL> desc Run_Total

 Name Null? Type

 ------------------------------- -------- ----

 RUN_DATE DATE

 RUN_VALUE NUMBER

 SQL> select * from Run_Total;

 RUN_DATE RUN_VALUE

 --------- ---------

 02-APR-97 10

 03-APR-97 5

 04-APR-97 20

 05-APR-97 15

 06-APR-97 45

 07-APR-97 12

 08-APR-97 37

 09-APR-97 9

 10-APR-97 23

 11-APR-97 19

 12-APR-97 10

 11 rows selected.

A self-join is needed to perform the correct sum

In order to produce the running total, a self-join is needed to sum all of the values of the

table less than or equal to each row. The query is grouped by the records in the 'driving'

table in the join, and ordered by the run_date:

 SELECT r1.run_date, r1.run_value, sum(r2.run_value)

Running_Total

 FROM Run_Total r1, Run_Total r2

 WHERE r2.run_date <= r1.run_date

 GROUP BY r1.run_date, r1.run_value

 ORDER BY r1.run_date

 /

This query will produce the following output:

 RUN_DATE RUN_VALUE RUNNING_TOTAL

 --------- --------- -------------

 02-APR-97 10 10

 03-APR-97 5 15

 04-APR-97 20 35

 05-APR-97 15 50

 06-APR-97 45 95

 07-APR-97 12 107

 08-APR-97 37 144

 09-APR-97 9 153

 10-APR-97 23 176

 11-APR-97 19 195

 12-APR-97 10 205

 11 rows selected.

Tip #6: Using SQL only to Determine the Business Days Between Two

Dates. (Type: SQL)

There are many times in reports or in calculations for forms where the number of

business days between two dates needs to be determined. Here is a method for

caluculating this (excluding holidays) using SQL only.

The following SQL script shows an algorythm that uses the standard Oracle date

functions to calculate the number of business days between to dates. This method cannot

exclude holidays (obviously), however there are many times that just the standard

business days is useful. I am sure there are other algorythms that could be used, however

this one has worked for me. The algorythm is described below in the comments of the

script.

/**

*******/

/* An example of business days calculation in SQL

*/

/*

*/

/* The algorythm is:

*/

/*

*/

/* 1) Take the absolute difference between the dates

*/

/* to_date('&todate') - to_date('&frdate')

*/

/* 2) Subtract the weekends (number of weeks in the range

*/

/* TRUNC(to_date('&todate'),'D') = 1st day of week

that */

/* end of period is

in */

/* TRUNC(to_date('&frdate'),'D') = Last day of week

that */

/* start of period

is in */

/* So subtracting these two gives the number of days

*/

/* between the two dates but including all of the

days in */

/* the weeks that the dates start and end in. When

this */

/* number is divided by 7 it gives the number of

weeks. */

/* Multiplying by 2 gives the number of weekend

days. */

/* 3) Subtract 1 day if the ending date is on a saturday

*/

/* DECODE(to_char(to_date('&todate'),'D'),7,-1,0)

*/

/* --> If the day of the week is saturday (7),

returns -1 */

/* 4) Subtract 1 day if the start date is on a sunday

*/

/* DECODE(to_char(to_date('&frdate'),'D'),1,-1)

*/

/* --> If the day of the week is sunday (1), returns

1 */

/* 5) Add one day to make the range inclusive (The '1 + '

) */

/*---

------*/

/* Author: Kenneth Atkins (Ken@arrowsent.com)

*/

/* http://www.olywa.net/katkins/oratip

*/

/**

*******/

define frdate = '&1'

define todate = '&2'

set verify off

select

 '&frdate' From_Date

 ,'&todate' To_Date,

 1 + to_date('&todate') - to_date('&frdate') -

 ((TRUNC(to_date('&todate'),'D') -

TRUNC(to_date('&frdate'),'D'))/7)*2

 + DECODE(to_char(to_date('&todate'),'D'),7,-1,0)

 + DECODE(to_char(to_date('&frdate'),'D'),1,-1,0)

Business_Days

 from dual

/

Here is an example of running the script:

SQL> @busdays 01-AUG-96 15-AUG-96

FROM_DATE TO_DATE BUSINESS_DAYS

--------- --------- -------------

01-AUG-96 15-AUG-96 11

1 row selected.

This same algorythm can also be put into a stored function:

CREATE OR REPLACE FUNCTION business_days(p_from_date IN

DATE, p_to_date IN DATE)

 RETURN NUMBER IS

busdays NUMBER;

BEGIN

/**

*******/

/* BUSINESS_DAYS - Database Function to Calculate number

of */

/* business days between two dates

*/

/*---

------*/

/* Author: Kenneth Atkins (Ken@arrowsent.com)

*/

/* http://www.olywa.net/katkins/oratip

*/

/**

*******/

 -- Get the absolute date range

 busdays := TRUNC(p_to_date) - TRUNC(p_from_date)

 -- Now subtract the weekends

 -- this statement rounds the range to whole weeks

(using

 -- TRUNC and determines the number of days in the

range.

 -- then it divides by 7 to get the number of

weeks, and

 -- multiplies by 2 to get the number of weekend

days.

 - ((TRUNC(p_to_date,'D')-

TRUNC(to_date(p_from_date),'D'))/7)*2

 -- Add one to make the range inclusive

 + 1;

 /* Adjust for ending date on a saturday */

 IF TO_CHAR(p_to_date,'D') = '7' THEN

 busdays := busdays - 1;

 END IF;

 /* Adjust for starting date on a sunday */

 IF TO_CHAR(p_from_date,'D') = '1' THEN

 busdays := busdays - 1;

 END IF;

 RETURN(busdays);

END;

/

show errors;

Here is an example of calling this database function:

SQL> select business_days('01-AUG-96','15-AUG-96') from

dual;

BUSINESS_DAYS('01-AUG-96','15-AUG-96')

 11

1 row selected.

Of course in a stored function, you could add code to substract holidays also. Perhaps

something like:
SELECT COUNT(*) INTO nHolidays

 FROM Holiday_Table

 WHERE holiday_date BETWEEN p_from_date AND p_to_date;

Then substract nHolidays from your business_days variable before returning.

Tip #3: Script to List PL/SQL Errors & Line Numbers (Type: PL/SQL)

When PL/SQL stored packages, procedures, or functions are loaded into the database and

compiled (using CREATE OR REPLACE) any syntax errors in the code can be listed

using the 'SHOW ERROR' command. However, many times these messages are cryptic,

and the line numbers specified do not correspond to the line number in the SQL file used

to load the code (because blank lines and comments before the 'CREATE' statement are

not loaded. For large procedures, this can be very frustrating. This hint will show how a

SQL script can be used to list the errors along with the actual source lines, indicating the

line with the error (with a '-->').

The Oracle views USER_SOURCE, and USER_ERRORS (or ALL_SOURCE and

ALL_ERRORS) can be used to list the source of the program the way the compiler sees it

(without blank lines and leading comments). USER_ERRORS is the view used by

SHOW ERRORS to display the errors for a PL/SQL program. The following select

statement will join these two views to list all of the compile errors, and point out

specifically which line the errors are on (using '-->').
/**

*******************/

/* listerr.sql - Lists errors and source for errors for

PL/SQL programs. */

/*

*/

/* Parameter: &1 = The name of the PROCEDURE, PACKAGE,

or FUNCTION */

/*

*/

/* Author: Ken Atkins (Ken@arrowsent.com)

*/

/* http://www.arrowsent.com/oratip

*/

/*

*/

/* This script uses the 'USER' views. It could easily

be modified to use */

/* the 'ALL' views by changing the 'user_' to 'all_' in

the view names */

/* and by adding an owner as another parameter

*/

/**

*******************/

set verify off

define obj_name = '&1';

column outline format a105 heading 'Error Listing';

break on err_text skip 2;

set linesize 105;

set pagesize 0;

set pause off;

spool listerr

SELECT

decode(to_char(us.line), to_char(ue.line-7),ue.text,

 to_char(ue.line-6),'',

 to_char(ue.line+6),'',

 to_char(ue.line) ,' -->

'||to_char(us.line,'99990')

 ||'

'||us.text

 ,'

'||to_char(us.line,'99990')

 ||'

'||us.text) outline

from user_source us, user_errors ue

 where us.name = '&obj_name'

and us.line between (ue.line-7) and (ue.line+6)

and us.name = ue.name

and us.type = ue.type

-- This predicate is put here to elminate this useless

fallout error

and ue.text != 'PL/SQL: Statement ignored'

/

spool off

set pause on;

set pagesize 22;

Here is an example of using the script. A SQL script called 'hint3pck' has the definition of

a package with a few errors. The above SQL script is called 'listerr.sql':
CASE:KENNEA> @hint3pck

Package created.

No errors.

Warning: Package Body created with compilation errors.

Errors for PACKAGE BODY PACK_WITH_ERROR:

>

LINE/COL ERROR

-------- --

7/1 PL/SQL: Statement ignored

9/1 PLS-00201: identifier 'VVAR' must be declared

9/1 PL/SQL: Statement ignored

19/11 PLS-00201: identifier 'NO_DTA_FOUND' must be

declared

CASE:KENNEA> @listerr PACK_WITH_ERROR

PLS-00201: identifier 'VVAR' must be declared

 4 vUSER VARCHAR2(30);

 5 vTest VARCHAR2(30);

 6 nTest NUMBER;

 7 BEGIN

 8 /* Comment line */

 --> 9 vVar := to_num('12');

 10 /* Comment line */

 11 /* The next line has an error (missing

semicolon) */

 12 nVar := 1;

 13 /* more comments */

 14 nVar := 3;

PLS-00201: identifier 'NO_DTA_FOUND' must be declared

 14 nVar := 3;

 15 BEGIN

 16 SELECT user INTO vUSER

 17 FROM dual;

 18 EXCEPTION

 --> 19 WHEN NO_DTA_FOUND THEN

 20 NULL;

 21 END;

 22 BEGIN

 23 SELECT user INTO vUSER

 24 FROM dual;

28 rows selected.

The following select can also be used to just list the source for a stored procedure,

package or function, putting in the line numbers the compiler uses:
/**

*******************/

/* listsource.sql - Lists source for PL/SQL programs.

*/

/*

*/

/* Parameter: &1 = The name of the PROCEDURE, PACKAGE,

or FUNCTION */

/*

*/

/* Author: Ken Atkins (Ken@arrowsent.com)

*/

/* http://www.arrowsent.com/oratip

*/

/*

*/

/**

*******************/

define obj_name = '&1';

column text format a74 heading 'Source Listing';

column line format 9999 heading 'Line';

set verify off

set linesize 80;

set pagesize 0;

set pause off;

spool &obj_name

SELECT

us.line, us.text

from user_source us

 where us.name = '&obj_name'

order by type, line

/

spool off

set pause on;

set pagesize 22;

Tip #2: Determining Instance Name from SQL. (Type: SQL*Plus)

Sometimes it is useful to be able to get the name of the current instance from within

SQL*Plus or another development tool (such as Oracle*Forms or Oracle*Reports). Here

is a simple SQL statement that can be used to get the instance name. Also presented is an

example of using the SQL statement to set the SQL prompt to the instance name.

There is an internal oracle view called 'V$PARAMETER' which holds the values of

many parameters that the database uses. One of these parameters is called 'DB_NAME'.

This parameter holds the name of the database (kind of makes sense, doesn't it?). The

V$PARAMETER view looks like:
desc v$parameter

 Name Null? Type

 ------------------------------- -------- ----

 NUM NUMBER

 NAME VARCHAR2(64)

 TYPE NUMBER

 VALUE VARCHAR2(512)

 ISDEFAULT VARCHAR2(9)

The following SQL statement will return the database name from this view:
SELECT UPPER(value)

 FROM V$Parameter

 WHERE UPPER(name) = 'DB_NAME';

A SQL statement like this can be used to replace the standard sql prompt ('SQL>') with

the instance name. This can be useful if you are accessing many different instances in

SQL*Plus. It has saved me from messing up data in the wrong instance many times (like

deleting data from the production instance instead of test). Add the following SQL to

your login.sql file:
rem Create _DB_Name variable for general use.

set termout off

column upper(VALUE) new_value _DB_NAME;

select upper(value), from v$parameter

 where upper(name) = 'DB_NAME';

rem

rem Put SGA Name in sql prompt

set SQLPROMPT '&_DB_NAME.> '

rem

rem If pause is on, say something when needed.

set pause '> '

rem

clear breaks

set termout on

set pause on

set feedback on

If the instance name is something like 'TESTINST' then the above SQL in the login.sql

file will change the prompt to:

TESTINST>

Ken Atkins' Oracle Database Tip of the week.

Tip #1: Conditional loading of PL/SQL code. (Type: PL/SQL)

Because of varying requirements in distributed databases or multi-organizational

companies, there is sometimes a need to impliment a PL/SQL package or procedure with

slight differences in the code when installed on separate instances or schemas. Quite

often this was done by maintaining a version of the code for each site. However, the

following technique can be used to keep all of the source in one file, and have the

differences implemented when the code is installed.

A SQL*Plus variable (& (ampersand) variable) can be dynamically loaded using the

'new_value' clause of the SQL*Plus column command. This variable can be dynamically

based upon the schema, or instance, or data in an existing table. These variables are

scanned and replaced in the SQL code before the code is installed or compiled. Therefore

the '&' variables can be used to change the code that is installed. Below is an example of

using this technique to 'comment out' a call to a procedure for one schema only:
set pause off

column comvar new_value comment_var

SELECT DECODE(user,'CWVND','--','') comvar

 FROM DUAL

/

CREATE OR REPLACE PACKAGE test_package AS

 PROCEDURE main;

 PROCEDURE conditional_proc(parm1 IN VARCHAR2);

END test_package;

/

CREATE OR REPLACE PACKAGE BODY test_package AS

 PROCEDURE main IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Beginning of main

procedure.');

 &comment_var conditional_proc('Test');

 DBMS_OUTPUT.PUT_LINE('End of main procedure.');

 END main;

 PROCEDURE conditional_proc(parm1 IN VARCHAR2) IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Conditional_proc called with

parm1='||parm1);

 END conditional_proc;

END test_package;

/

If the above package is installed in the 'USER1' schema, then the 'conditional_proc'

procedure will be commented out, and therefore will not run. For all other schemas, the

procedure will NOT be commented out, and will run. Some other ways to use this

technique:

 Make the parameter to a procedure conditional. For example, the call to the

'conditional_proc' procedure above could be changed to:
 column userval new_value user_val;

 SELECT user userval FROM DUAL;

http://www.oracle.com/

 .

 .

 conditional_proc('&user_val');

 Make the name of a procedure conditional. The following lines could be used to

call a procedure that is called _setup, where is the name of the oracle instance.
 column procname new_value proc_name;

 SELECT value||'_setup' procname

 FROM v$parameter

 WHERE upper(name) = 'DB_NAME';

 .

 .

 &proc_name;

Tip #57: Procedure to show all of an Oracle Portal

session variable's attributes (Type: Oracle on the Web)

Oracle When you are using Oracle Portal session variables, it is useful to be able to see

the values of it's attributes when you are testing and debugging an application that uses

them. This tip is a PL/SQL package that can be run from the browser to list all of a

session variable's attributes to the browser.

A PL/SQL Procedure to do the job

Here is a simple PL/SQL procedure that accepts the domain and sub-domain of the

Oracle Portal session and prints the names and values of all of the sessions attributes to

the browser.

CREATE OR REPLACE PROCEDURE show_session(p_domain IN

VARCHAR2, p_subdomain IN VARCHAR2) IS

/**

******************************/

/* SHOW_SESSION - Shows the names and values of all of the

attributes of an Oracle */

/* Portal session variable. */

/* */

/* Parameters: p_domain = The name of

the session domain. */

/* p_subdomain = The name of

the session subdomain. */

/* */

/* Written by ken atkins (ken@arrowsent.com). Copywrite

2001, all rights reserved. */

/* You may use this script for any purpose as long as you

do not include it in any */

/* commercial software for sale. If you make changes to

improve the script, please */

/* send them to me so I can make them available for other

users. */

/* */

/* Check out my oracle tip site at:

http://www.arrowset.com/oratips */

/* */

/* Vers Date By Change History */

/* ----- --------- --------------- -----------------------

------------------------- */

/* 1.0 14-FEB-01 Ken Atkins Written. */

/**

******************************/

 v_session portal30.wwsto_api_session;

 v_elements portal30.wwsto_session_elements;

 v_num_attr INTEGER;

 v_element portal30.wwsto_session_element;

BEGIN

 v_session := wwsto_api_session.load_session(p_domain,

p_subdomain);

 v_elements := v_session."_element_data";

 v_num_attr := v_elements.count;

 htp.p('Session attributes for:

<TABLE

BORDER=0><TR><TD>DOMAIN:</TD><TD>'||p_domain||'</TD>

</TR>');

 htp.p('<TR><TD>SUB-

DOMAIN:</TD><TD>'||p_subdomain||'</TD></TR></TABLE>'

);

 htp.br;

 htp.p('Number of Attributes: '||to_char(v_num_attr));

 htp.br;

 htp.br;

 htp.p('<TABLE BORDER="0">');

 FOR i IN 1..v_num_attr LOOP

htp.p('<TR><TD>'||v_elements(i).name||'</TD><TD>=</TD><TD>'

||v_elements(i).varchar2_data||'</TD></TR>');

 END LOOP;

 htp.p('</TABLE>');

END;

/

show errors

You can download the script by clicking here.

Installation

To install the procedure, do the following:

1. Install the procedure either in the PORTAL30 schema, or a schema that has

access to the PORTAL30 programs (for instance a provider schema).

2. Grant execute on the procedure to the portal30 public schema (usually

PORTAL30_PUBLIC). For instance:
3. GRANT EXECUTE ON show_session TO portal30_public;

Using the procedure

http://www.arrowsent.com/oratip/show_session.sql

To use the procedure, simply open a separate navigator window (after you have run the

application which has set some session attributes), and type a call to the procedure into

the URL field. For example, the following URL will call the procedure on a local install

of portal30 with the standard dad:

http://localhost/pls/portal30/portal30.show_session?p_domain=CONTEX

T&p_subdomain=SESS_CRT

This call assumes the procedure is installed in the PORTAL30 schema. If it is installed in

another schema, replace the "portal30" immediately before "show_session" with the

name of the schema in which it is installed.

Replace "localhost/pls/portal30" with the appropriate dad-path for your installation.

The value for p_domain and p_subdomain are set to the domain and subdomain of the

session variable you want to see.

Here is an example of the output:

Summary: How do I implement a running clock on forms?

Description:

Many form implementations implement a simple date and time field in the form header that is populated when the form starts. However, this field is static and the time does not change if the user remains in the form. This can cause confusion and

be annoying to the user.

This tip details how you can have a date & time field that is automatically kept up to date.

For the complete tip, visit: http://www.arrowsent.com/oratip/tip35.htm

For more of Ken's Oracle tips, visit his main site at: http://www.arrowsent.com/oratip/frames.htm

Summary:
Generate PDF output from

Applications Reports

http://www.arrowsent.com/oratip/tip35.htm
http://www.arrowsent.com/oratip/frames.htm

Description:

Steps to generate the PDF output

from Applications Report are as

follows:

1. Login as a System

Administrator or Application

Developer.

2. Navigate to Concurrent-

>Program.

3. Query the report and set the

Option Field to

OUTPUT_FORMAT=PDF.

4. To view the report, set the

profile option Editor to your

path of Acrobat Reader

Summary:

Reorging a Table -

How To (Oracle

8.1.x)

Description:

A table can be

reorged using the

alter table move

command as below:

alter table

move

tablespace

 storage ();

Be sure to include a

tablespace name

otherwise the table

will be moved to

your default

tablespace. Make

sure there is enough

space in the

tablespace to hold

an extra copy of the

table. The one

gotcha with this

method is that all

indexes for the table

are marked as

unusable and must

also be rebuilt. You

can use the

following to rebuild

any index that is

marked unusable

keeping the same

storage parms.

Again, make sure

there is enough

space in the

tablespace to hold

an extra copy of the

index.

set echo off

set termout

on

set verify

off

set feedback

off

set pagesize

999

set linesize

132

set heading

off

ttitle off

spool

fix_idx.lst

select 'alter

index ' ||

t.owner ||

'.' ||

t.index_name

||

 '

rebuild

tablespace '

||

tablespace_na

me ||';'

 from

sys.dba_index

es t

 where

t.status =

'UNUSABLE'

 order by

t.owner,

t.index_name;

spool off

set heading

on

set feedback

on

set echo on

@fix_idx.lst

Summary: Migrating to Oracle 8i - a senior DBA's experience

Description:

Have you seen the Oracle demo where a member of the audience is called up on stage to click the mouse button that launches an Oracle 8 migration? While salespeople tell

you how easy it is to migrate your entire enterprise to the latest Oracle release, a live migration takes place before your very eyes. If you have been an Oracle DBA in the

real world, you might be just a little bit skeptical. Rigorous planning and testing are critical in order to minimize risk and down time, and the actual migration process itself

is complicated and error-prone. In this presentation we will look at the real life story of how a high-profile, high-traffic internet e-business migrated all of its databases from

Oracle 7.3 to Oracle 8i release 8.1.5 and 8.1.6 on Solaris. This company was getting 60 million hits per day, and had database tables over 25 Gb in size. This very technical

session will cover the strategy used, the steps followed, and the pitfalls encountered. PS: There was more to it than one mouse click. Read this valuable article at:

http://www.dbspecialists.com/4dbas/presos/8imigrate.html

Summary: Installing Oracle 8i - beginner's guide, step-by-step

Description:
Although geared to users at the University of Arizona, this article is still a friendly, step-by-step way to learn more about installing Oracle 8i.

http://oratech.arizona.edu/how_to/nt_install/Installing_Oracle_8i_on_Windows_NT.htm

Summary: Using Oracle8i Personal Edition to practice DBA skills

Description:

Visit Oracle's TechNet site at http://technet.oracle.com/ where you can download a

copy.

It is a great way to practice your DBA skills at home on your Windows 98 or

Windows 2000 PC.

Summary: Oracle reorg nights... watch out for hidden monsters!

Description:

Typical Oracle reorg night. You know, export the database, validate it

completed successfully, then blow away the objects and import right?

Wrong! Remember to check which database you are exporting from,

especially where all the objects are the same (test vs. production). This

particular incident prompted an emergency recovery from a hot backup and

then a rerun of the initial work.

Summary:
How to disable the INTERNAL password for

Oracle 8i on Windows NT

Description:

You need to enable NT authentication to disable the

INTERNAL password. There is actually a couple of

things you need to do for this to operate correctly.

http://www.dbspecialists.com/4dbas/presos/8imigrate.html
http://oratech.arizona.edu/how_to/nt_install/Installing_Oracle_8i_on_Windows_NT.htm
http://technet.oracle.com/

1) Set the Oracle initialization parameter

REMOTE_LOGIN_PASSWORDFILE=NONE.

Shutdown the Oracle database. Rename or delete

the prior password file so Oracle does not look for it

by default. Restart the Oracle database.

2) Set the Net8 parameter

SQLNET.AUTHENTICATION_SERVICES=(nts).

3) From the NT User Manager, you need to define a

LOCAL NT Group called ORA_DBA or

ORA__DBA. The group name is not user setable, it

must be one of these two group names. Next, the

DBA or other Oracle operational NT accounts need

to be granted access to this group from NT User

Manager. Once the access has been granted, the NT

account then needs to logoff and logon again to

enable the new NT group access privilege.

From this point forward, only NT user accounts

granted the corresponding NT group privilege can

use INTERNAL. All others will be rejected, no

passwords will be accepted. Another side benefit is

that Server Manager is no longer useable except by

the same privileged NT user accounts.

Summary:

How do I view the

rollback segment

optimal size in

Oracle?

Description:

select

optsize from

v$rollstat

Summary:

Working with time-

senesitive applications

in SQL (as pulled from

Newsgroup)

Description:

I am designing a

database which has a

table in it called jobs.

This table shows all

the jobs that the

company has done and

the employee who has

worked on them. I also

have an employee

table which has a

record of all the

employees and their

wages. The jobs table

will work out the cost

of the job by

multiplying the time

spent on the job by the

wage. I have done this

and think it's quite

easy. However, when

an employee leaves,

the employee will then

have no entry on the

employee table so

when looking back to

when they did a job

there will be no value

for the cost of it.

One way of solving

problem was to avoid

physically deleting the

records from the

employee table, but to

mark them deleted.

(This can be done by

adding start_date,

end_date columns to

the employee table,

allowing you to

reference past

employees. Instead of

deleting an employee,

you assign SYSDATE

to his end_date,

thereby logically

deleting him.) Of

course this solution

calls for some

management when

quering current

employees, but this

can easily be solved by

creating a view like:

CREATE VIEW

current_employe

es

AS SELECT *

FROM employees

WHERE end_date

IS NULL;

The above code

assumes that current

employees have a

NULL end_date, you

could also choose a

very large date for

currently active

employees.

The Start date/End

date worked OK.

However, you can also

address the problem

simply by adding a

checkbox called

"archive" that users

could check. (they

were more likely to

check a box than enter

a date correctly) This

works exceptionally

well because I could

then build my forms

from a query that

eliminated the

archived entries, yet I

could still build

reports from everyone.

I.e. staff couldn't see

them or accidently use

them if they were

archived yet I can pull

up their data or include

their statistics in a

report, and it saved me

some coding.

Richard T. Snodgrass

has written a whole

book on how to

manage temporal data

(as this), it's called

"Developing Time-

Oriented Database

Applications in SQL",

it takes a very

practically approch to

temporal data.

Summary:

Query a table to find the

id for the most recent

modified_date of a

given set of file_id's

Description:

I have table (call it

file_info) with the

following columns:

id, file_id,

modified_date

Each time the file

refered to by file_id is

modified, a new entry is

added to this table. I'd

like to query this table

to find the id for the

most recent

modified_date of a

given set of file_id's.

When I try:

select id,

max(modified_dat

e) from

file_info group

by file_id

I do get the maximum

modified_date for all

matching file_id's, but I

seem to get the first id

within a group of

records with the same

file_id and not the one

associated with

max(modified_date). I

understand that the use

of 'group by' is what is

causing this behaivor,

so here's how I got what

I wanted in a single

SQL statement:

SELECT id,

modified_date

FROM file_info

WHERE

modified_date =

(SELECT

MAX(modified_dat

e) FROM

file_info WHERE

file_id IN (...)

-- Or whatever other

filters you need);

Summary:
Query a table to find the id for the most recent modified_date of a given

set of file_id's

Description:

I have table (call it file_info) with the following columns:

id, file_id, modified_date

Each time the file refered to by file_id is modified, a new entry is added to

this table. I'd like to query this table to find the id for the most recent

modified_date of a given set of file_id's.

When I try:

select id, max(modified_date) from file_info group

by file_id

I do get the maximum modified_date for all matching file_id's, but I seem

to get the first id within a group of records with the same file_id and not

the one associated with max(modified_date). I understand that the use of

'group by' is what is causing this behaivor, so here's how I got what I

wanted in a single SQL statement:

SELECT id, modified_date FROM file_info WHERE

modified_date = (SELECT MAX(modified_date) FROM

file_info WHERE file_id IN (...) -- Or whatever other

filters you need);

Summary: Improve data load speeds by creating "empty indexes" before load.

Description:

Often when loading large amounts of data (via SQL*Loader for

example), reindexing the table after the data load can take a

considerable amount of time.

Occasionally applications index obscure table fields that may not be

used by your specific implementation. Thus these indexes will contain

no rows (even though the table may contain millions of rows).

Application queries may still reference these columns and hence

having the index present even though it contains no rows may be

necessary for performance reasons.

While it is considerably faster to drop indexes, load data, and then re-

index, you may spend hours letting Oracle read table blocks building

an index that will eventually contain zero rows. On the other hand, if

the index is present during the load, each row will be validated against

the index as it is inserted which will slow down the load process.

Experimentation has shown that the overhead of loading the data with

an index that will remain empty is negligible (less than 1% increase in

load time) and will save a considerable amount of time compared to

loading the data and building the index afterwards (even with the

NOSORT clause).

Summary:
Query a table to find the id for the most recent modified_date of a

given set of file_id's

Description:

I have table (call it file_info) with the following columns:

id, file_id, modified_date

Each time the file refered to by file_id is modified, a new entry is

added to this table. I'd like to query this table to find the id for the

most recent modified_date of a given set of file_id's.

When I try:

select id, max(modified_date) from file_info

group by file_id

I do get the maximum modified_date for all matching file_id's, but I

seem to get the first id within a group of records with the same file_id

and not the one associated with max(modified_date). I understand

that the use of 'group by' is what is causing this behaivor, so here's

how I got what I wanted in a single SQL statement:

SELECT id, modified_date FROM file_info WHERE

modified_date = (SELECT MAX(modified_date)

FROM file_info WHERE file_id IN (...) -- Or

whatever other filters you need);

Summary: Determine the values of bind variables in a PL/SQL statement

Description:

How do you dump out the values of the bind variables in a PL/SQL

statement?

An event can be setup to dump the PL/SQL and the associated

values to the trace file. Perform the following:

1) Set EVENT = "10046 TRACE NAME CONTEXT FOREVER,

LEVEL 4" in the init.ora file or for the session ALTER SESSION

SET EVENTS '10046 TRACE NAME CONTEXT FOREVER,

LEVEL 4';

2) Run the PL/SQL which uses the bind variables

3) View the trace file in the user_dump_dest directory. Reference

the Oracle MetaLink document 1068973.6 for more information.

Summary: Forcing Bind variables when executing SQL statements

Description:

In the past if you wanted to optimize the execution of Oracle

statements one trick would be to use bind variables in identical

SQL statements to speed up the parsing step required to execute a

particular SQL statement. One problem with this is that if the

code uses literal values and the literals change ever so slightly, the

SQL statement would have to be reparsed, causing a slow down.

Oracle 8.1.6 has a new feature/option called

CURSOR_SHARING which is an init parameter. Valid values are

EXACT and FORCE. (EXACT is the DEFAULT) If you indicate

FORCE, Oracle forces statements that may differ in some literals,

but are otherwise identical, to share a cursor, unless the literals

affect the meaning of the statement. This is achieved by replacing

the literals with system generated bind variables. Please reference

MetaLink paper# 94036.1

Note there is a bug with this option, BUG 984132, Setting the

CURSOR_SHARING = FORCE will cause statements with

literals in a cursor expression to possibly CORE DUMP. There is

no workaround at this point.

Summary:
Extracting Oracle data into a flat file in one full string without

any field separators

Description:

When extracting Oracle data into a flat file in one full string

without any field separators, the easiest way is to:

set head off title off pages 0 lines 100

feedback off

spool flatfile.lst

select col1, col2, col3,... from table

where

spool off

N.B. this will avoid any separators within a line. However, it

will not avoid an end-of-line separator. Note that the flat file

would have

to be edited afterwards to avoid an end-of-line separator.

Summary:
Enforce a primary key/unique constraint with a non-unique

index.

Description:

A little unknown, unpublicized feature in Oracle 8i is the

capability to enforce a primary key/unique constraint by using

a non-unique index.

This is accomplished by:

1. Creating an disabled primary key/unique constraint,

2. Creating a non-unique index,

3. Enabling the disabled constraint.

Here's an example

1. Create table with DISABLED primary key.

Create table person

 (emp_nbr number

 constraint PERSON_PK primary key,

 last_nm varchar2(30),

 first_nm varchar2(30),

 city_nm varchar2(15),

 state_nm varchar2(2))

 disable constraint PERSON_PK

/

2. Create non-unique index.

create index PERSON_IX1

 on person(emp_nbr,

 last_nm,

 first_nm)

/

3. ENABLE disabled constraint

alter table PERSON enable

 constraint PERSON_PK

/

The results:

insert into person

 values

 (0001, 'THOMAS', 'FRANK',

 'BOSTON','MA');

1 row created.

insert into person

 values

 ('0001,'JOHNSON','JAMES',

 'ERIE','PA');

insert into person

*

ERROR at line 1:

ORA-00001: unique constraint

(TEST.PERSON_PK) violated

Summary:
How do you load a text file into a large varchar2 column in

SQL *PLUS?

Description:

When loading a text file into a large varchar2 column in

SQL*PLUS:

The maximum length of a VARCHAR2 column is 4000 bytes

so the text file will be small. I would just edit the text file to

add an INSERT statement in the beginning of the file then

rename the file to have a .sql extension and run it as a script.

You can also use SQLOADER! It works great for this.

(SQLLOADER is a utility in Oracle to load flat file data into

tables. It's very easy and fast.)

Summary:
How do I export explicit privileges created in the SYS

schema?

Description:

Remember, when you do a full export any explicit privileges

or objects created on the SYS schema will NOT get

exported. You must do a USER level export for SYS to get

these.

Summary: Exporting from Oracle 8 down to Oracle 7

Description:

Here is the procedure to export from Oracle 8 to Oracle 7.

Note these steps assume you have multiple .profile files

available for you to login with in your unix environment.

Follow these steps precisely please:

1) From the Oracle 8 environment as sys run

$ORACLE_HOME/rdbms/admin/catexp7.sql script

2) From oracle's home directory in unix execute this

statement: cp .profile.733 .profile

3) re-login as oracle with the new environment settings

pointing you at the Oracle 7 binaries.

4) execute the export connecting to the 8.1.6 database using

SQLNET i.e. exp userid@dev.....

5) upon completion of the export from oracle's home

directory in unix execute this statement: cp .profile.816

.profile

6) re-login as oracle with the environment settings pointing

you to the Oracle 8 binaries

7) From the Oracle 8 environment as sys run

$ORACLE_HOME/rdbms/admin/catexp.sql script

Summary: How to determine the time and date an Instance was started

Description:

There is information available in the Oracle system tables to determine the startup time and date of an instance. However,

this informatoin is not in a convenient format. Here is a technique to use to determine the time an Oracle instance was last

started. I have found it to be handier than looking in alert logs for this information.

SELECT TO_DATE(VALUE, 'J') “Instance start date”

 FROM V$INSTANCE

WHERE key = 'STARTUP TIME - JULIAN';

SELECT TRUNC(VALUE/(60*60)) || ':' || TRUNC(MOD(VALUE,60*60) / 60) “Instance

startup time”

 FROM V$INSTANCE

WHERE KEY = 'STARTUP TIME - SECONDS';

This information applies to version 7 and earlier.

This will not work for Oracle 8, so use this instead:

select to_char(startup_time,'HH24:MI:SS,DD-MM-YYYY')

 from v$instance

Summary: How do I load a large (more than 4K) HTML file to a varchar2?

Description:

To load a large HTML file into a varchar2, you would have to write a

program to split the data into multiple rows before inserting into the

table.

Then you would also need a program to read it back. Oracle cannot do

this on its own. The other option is to use the LONG data type rather

than the VARCHAR2 datatype. This can handle long data types of any

length, but there are some restrictions with the LONG datatype

Summary:
How do I import data from an excel spreadsheet into an

Oracle table?

Description:

Two ways I can think of to import data from an Excel

spreadsheet into an Oracle table:

1. Use an ODBC connection from Excel and insert rows from

spreadsheet into table.

2. Export data from Excel spreadsheet to flat file and use

sqlloader to load the table from the flat file.

Either way is available, however, ODBC can be difficult to

set up - sql*net has to be set up on the pc. Sqlloader has some

quirks also, but it is usually faster to load an entire file into an

empty table rather than insert row by row via ODBC.

Summary:
Use NLS_UPPER function to increase

speed of case-insensitive searches.

Description:

The NLS_UPPER function is useful if

you want to create an index on a column,

where your search queries are case

insensitive, and the data could contain

either upper or lower case.

To use:

create index x on table_y

(NLS_UPPER(col_1));

select * from table_y where

NLS_UPPER(col_1)='ABC';

This is much faster (so I've read) than...

create index x on

table_y(col_1);

select * from table_y where

upper(col_1)='ABC';

..because in the first case, the index has

already converted everything to upper

case, and in the second case, it has to do

the conversion as it queries.

Summary:
8.1.5 Export and it's parameters behaves

differently.

Description:

I happened on a problem regarding export and it's

parameter files in 8.1.5. I have the following

parameter file:

userid=scott/tiger

rows=n

indexes=n

grants=n

file=temp_inside.dmp

tables=(user1.Table_x)

In 7.3.3 if I run the following statement:

exp parfile=temp.par file=temp_outside.dmp

the file written to is temp_outside.dmp.

In 8.1.5 if I run the same statement the file

written to is temp_inside.dmp.

According to Oracle's 8.1.5 documentation:

'You can use a combination of the first and

second options. That is, you can list parameters

both in the parameters file and on the command

line. In fact, you can specify the same parameter

in both places. The position of the PARFILE

parameter and other parameters on the command

line determines what parameters override others.

For example, assume the parameters file

params.dat contains the parameter INDEXES=Y

and Export is invoked with the following line:

exp system/manager PARFILE=params.dat

INDEXES=N

In this case, because INDEXES=N occurs after

PARFILE=params.dat, INDEXES=N overrides

the value of the INDEXES parameter in the

PARFILE.' Clearly this is not true. Beware of this

problem.

Summary:
How much "true" data is in a

table, in blocks?

Description:

Need to know how much data is

in a table, I don't mean reserved

space from dba_extents, I mean

real amount in something useful

like blocks:

For v7.x DBs:

select count(distinct

substr(rowid,1,8)||substr(rowid,15

,4)) from ;

For v8.x DBs:

select count(distinct

substr(rowid,10,6)||substr(rowid,7

,3)) from ;

Replace with your table name.

This will produce a total of

blocks that have been used by the

data in the table, simply multiply

the figure by your block size to

get the actual bytes figure.

Summary:

Adjustment of

scripts following

de-support of

svrmgrl.

Description:

Oracle has

announced

future desupport

of svrmgrl. You

may ask

yourself, self,

how am I going

to adjust my

scripts to

SQLPLUS and

include the

shutdown/startu

p stuff.

Use the

following

command:

sqlplus

/nolog

SQL>connect

internal;

connected

SQL>shutdow

n

immediate;

Cool huh!

Summary:

How can I write a message to

the ORACLE Alert log from

a PL/SQL program?

Descriptio

n:

Use the following pl/sql:

dbms_system.ksdwrt(2,'A

line of text');

Will write the text to the alert

log.

Use 1 instead of 2 to write to

the trace file

Use 3 to write to both.

Thanks to: Jonathan Lewis

Yet another Oracle-related

web site:

http://www.jlcomp.demon.co

.uk

Summary:

Setting up custom authentication (authenticate users using your own algorithm) is Oracle Application Server - PL/SQL Cartridge

applications is not intuitive, and the manuals leave out some important steps. Here are step by step instructions for setting up custom

authentication.

Description:

1) Install the PL/SQL toolkit in the OAS_PUBLIC

schema.

2) Find the file privcust.sql (i.e. D:ORANT\ows\cartx\plsql\admin)

Edit this file to read:

Rem Copyright (c) 1996, 1997 by Oracle Corp. All Rights

Reserved.

Rem

Rem NAME

Rem privcust.sql - Oracle Web Agent PL/SQL

customization package.

Rem PURPOSE

Rem Set up some values to be used by Web Agent

packages.

Rem NOTES

Rem

Rem MODIFIED (MM/DD/YY)

Rem mpal

07/09/97 - Creation

Rem

create or replace package body OWA_CUSTOM is

/***/

/* Global PLSQL Agent Authorization callback function

-

*/

/* It is used when PLSQL Agent's authorization

scheme is set to */

http://www.jlcomp.demon.co.uk/
http://www.jlcomp.demon.co.uk/

/* GLOBAL or CUSTOM when there is

overriding OWA_CUSTOM package.*/

/* This is a default implementation.

User should modify. */

/***/

 function authorize return boolean is

 begin

 return TRUE;

 end;

 begin /* OWA_CUSTOM package customization */

/***/

/* Set the PL/SQL Agent's authorization scheme -- */

/* This should be modified to reflect the authorization need

of */

/* your PLSQL Agent

*/

/***/

 owa_sec.set_authorization(OWA_SEC.CUSTOM);

 end;

/

show errors

(Note the line owa_sec.set_authorization(OWA_SEC.CUSTOM) has been changed

to set up the authentication.

3) Log into the database as sys and type in alter user OAS_PUBLIC

identified by OAS_PUBLIC so that you know the OAS_PUBLIC password.

4) Log into the database as OAS_PUBLIC. Run your edited privcust.sql at

the sqlplus prompt to put the new OWA_CUSTOM in the OAS_PUBLIC schema.

5) Log in as the database user that owns the PL/SQL procedures for your

application and create this package:

 create or replace package OWA_CUSTOM is

 function authorize return boolean;

 end;

 create or replace package body OWA_CUSTOM is

 procedure print_page is

 begin

 htp.print('Hello World');

 end;

 function authorize return boolean is

 begin

owa_sec.set_protection_realm('vendors');

 if ((owa_sec.get_user_id

= 'guest') and

 &

nbsp; (owa_sec.get_password =

'welcome') then

return TRUE;

 else

 &

nbsp; return FALSE;

 end if;

 end; -- authorize function

 end; -- package body foo

You will want to replace the above code for the authorize function with

your own authorization algorithm.

6) Restart OAS (important!, it won't work otherwise) and try to run a

procedure from your application - it should ask for authorization.

Note: When you set this up it applies globally to all procedures in the

database instance, but, because the authorize function in oas_public

always returns true, PL/SQL cartridge applications stored in other schema

(without their own owa_custom packages) will not run custom

authentication. You can leave these other aplications

unauthorized,create an owa_custom of their own, OR use the Basic_Oracle

or Digest or

other standard authentication schemes for them. You also have to use the

PL/SQL toolkit installed in the OAS_PUBLIC

schema, so install the toolkit, and drop any other toolkit that is in the

database.

Summary: Update GLOBAL_NAME

Description:

To Update the global_name in the

database,

update value$ column in sys.prop$ table

update sys.prop$

 set value$=<global_name>

 where name='GLOBAL_DB_NAME';

Summary:
How to determine if a datafile is in

autoextend or not!

Description:

FILEXT$ is the only place you can

query where

datafiles have autoextend turned

on, and the current settings of

their parameter

values. The data in the table is

based on the file# and what the

upper

limit and increment sizes are for

that file#

Summary: Migrate 250 GB of data in 24 hours or less!

Description:

A to-the-point PowerPoint presentation that outlines the

steps and

procedures taken to migrate 250GB of data from one

platform to

another using HP and Oracle technology.

Summary:
Use this to decide whether a table de-frag will actually improve

performance of table scan operations.

Description:

Each table has a highwater mark that records the number of the highest

block in which records have been stored. The highwater mark is

incremented as more blocks are used but is only decremented by the

truncate command.

Therefore, when you have insert and delete activity on the table, the

highwater mark may no longer reflect the true number of blocks

needing to be read during a full-table scan.

Oracle developed a measure called "omega1" which is:

 1-(r/h)

with r = the number of blocks in the table that contain at least one row

of data

and h = the number of blocks below the table's highwater mark

A table with an omega1 value of 0 means that every block in the table

up to the highwater mark has at least one row in it.

A table with an omega1 value of 1 means that every block in the table

up to the highwater mark is empty.

A bad omega1 value in itself is not the final indication - you should

also count the number of blocks that are scanned that contain no data to

get a measure of true impact.

This script provides you with h, r, omega1 and waste scans.

Tables must be analyzed for this script to work correctly as it uses

values created during the analyze command.

Credit to Gaylen Royal of Oracle Corporation for the theories behind

this script.

Summary: Oracle8 installation creates a new account, tracesvr/trace, with SELECT ANY TABLE

Description:

The Oracle8 install has provided a very dangerous back door. It creates a new account to manage Oracle

Trace. The new account is TRACESVR, and the default password is well-known, (TRACE). And this

account is granted SELECT ANY TABLE.

This feature was discovered on a V8.0.6 install.

Summary: SQL Loader parameters when fields contain line feeds or carriage returns

Description:
SQL Loader control files use line feed or CR to signify the end of the record. Some programs allow data

entry of these characters (most commonly as part of a description or text field). When SQL Loader

encounters these line feeds, it assumes the end of the record and generates errors.

To get around this:

1. when you generate the ascii file, put a field delimiter after each column (including the last) - I use the '|'

character as the delimiter.

2. in the SQL Loader control file, add the line:

continueif last !='|'

This will cause SQL Loader to correctly interpret data where line feeds or

CRs are a legitimate part of the data.

Summary: SQL Loader parameters when fields contain line feeds or carriage returns

Description:

SQL Loader control files use line feed or CR to signify the end of the record. Some programs allow data

entry of these characters (most commonly as part of a description or text field). When SQL Loader

encounters these line feeds, it assumes the end of the record and generates errors.

To get around this:

1. when you generate the ascii file, put a field delimiter after each column (including the last) - I use the

'|' character as the delimiter.

2. in the SQL Loader control file, add the line:

continueif last !='|'

This will cause SQL Loader to correctly interpret data where line feeds or

CRs are a legitimate part of the data.

Summary: Stored procedure to recompile schema

Description: EXEC DBMS_UTILITY.COMPILE_SCHEMA('schema-name');

