
Test 2 - Oracle 8: Database Administration (Exam # 1Z0-013)

The Oracle Architecture The Diagram below gives a clear idea of the background processes,
memory structures, and disk resources that comprise the Oracle instance, and also of the
methods in which they act together to allow users to access information.

Several memory structures exist on the Oracle database to improve performance on various
areas of the database. The memory structures of an Oracle instance include the System Global
Area (SGA) and the Program Global Area (PGA).

The SGA

The SGA, in turn, consists of a minimum of three components: the data block buffer cache,
the shared pool, and the redo log buffer. Corresponding to several of these memory areas are
certain disk resources. These disk resources are divided into two categories: physical
resources and logical resources.

Oracle Disk Utilization Structures

The physical disk resources on the Oracle database are datafiles, redo log files, control files,
password files, and parameter files. The logical resources are tablespaces, segments, and
extents. Tying memory structures and disk resources together are several memory processes

that move data between disk and memory, or handle activities in the background on Oracle's
behalf.

The Oracle PGA

The PGA is an area in memory that helps user processes execute, such as bind variable
information, sort areas, and other aspects of cursor handling. From the prior discussion of the
shared pool, the DBA should know that the database already stores parse trees for recently
executed SQL statements in a shared area called the library cache. So, why do the users need
their own area to execute? The reason users need their own area in memory to execute is

that, even though the parse information for SQL or PL/SQL may already be available, the
values that the user wants to execute the search or update upon cannot be shared. The PGA
is used to store real values in place of bind variables for executing SQL statements.

Oracle Background Processes

In any Oracle instance, there will be user processes accessing information. . Likewise, the

Oracle instance will be doing some things behind the scenes, using background processes.
There are several background processes in the Oracle instance. It was mentioned in the
discussion of the SGA that no user process ever interfaces directly with I/O. This setup is
allowed because the Oracle instance has its own background processes that handle everything
from writing changed data blocks onto disk to securing locks on remote databases for record
changes in situations where the Oracle instance is set up to run in a distributed environment.
The following list presents each background process and its role in the Oracle instance.

DBWR

The database writer process. This background process handles all data block
writes to disk. It works in conjunction with the Oracle database buffer cache
memory structure. It prevents users from ever accessing a disk to perform a data

change such as update, insert, or delete.

LGWR

The log writer process. This background process handles the writing of redo log
entries from the redo log buffer to online redo log files on disk. This process also

writes the log sequence number of the current online redo log to the datafile
headers and to the control file. Finally, LGWR handles initiating the process of
clearing the dirty buffer write queue. At various times, depending on database
configuration, those updated blocks are written to disk by DBWR. These events
are called checkpoints. LGWR handles telling DBWR to write the changes.

SMON

The system monitor process. The usage and function of this Oracle background

process is twofold. First, in the event of an instance failure-when the memory
structures and processes that comprise the Oracle instance cannot continue to
run-the SMON process handles recovery from that instance failure. Second, the
SMON process handles disk space management issues on the database by taking

smaller fragments of space and "coalescing" them, or piecing them together.

PMON

The process monitor process. PMON watches the user processes on the database
to make sure that they work correctly. If for any reason a user process fails
during its connection to Oracle, PMON will clean up the remnants of its activities

and make sure that any changes it may have made to the system are "rolled
back," or backed out of the database and reverted to their original form.

RECO

(optional) The recoverer process. In Oracle databases using the distributed

option, this background process handles the resolution of distributed transactions
against the database.

ARCH
(optional) The archiver process. In Oracle databases that archive their online

redo logs, the ARCH process handles automatically moving a copy of the online

redo log to a log archive destination.

CKPT
(optional) The checkpoint process. In high-activity databases, CKPT can be used
to handle writing log sequence numbers to the datafile headers and control file,
alleviating LGWR of that responsibility.

LCK0..LCK9
(optional) The lock processes, of which there can be as many as ten. In
databases that use the Parallel Server option, this background process handles
acquiring locks on remote tables for data changes.

S000..S999

The server process. Executes data reads from disk on behalf of user processes.
Access to Server processes can either be shared or dedicated, depending on
whether the DBA uses MTS or not. In the MTS architecture, when users connect
to the database, they must obtain access to a shared server process via a
dispatcher process, described below.

D001..D999

(optional) The dispatcher process. This process acts as part of the Oracle MTS
architecture to connect user processes to shared server processes that will handle
their SQL processing needs. The user process comes into the database via a
SQL*Net listener, which connects the process to a dispatcher. From there, the
dispatcher finds the user process a shared server that will handle interacting with

the database to obtain data on behalf of the user process.

Starting and Stopping the Oracle Instance

Selecting an Authentication Method

Before starting the instance, the DBA must figure out what sort of database authentication to
use both for users and administrators. The options available are operating system

authentication and Oracle authentication. The factors that weigh on that choice are whether
the DBA wants to use remote administration via network or local administration directly on the

machine running Oracle. If the DBA chooses to use Oracle authentication, then the DBA must
create a password file using the ORAPWD utility. The password file itself is protected by a
password, and this password is the same as the one used for authentication as user SYS and
when connecting as internal. To have database administrator privileges on the database, a
DBA must be granted certain privileges. They are called sysdba and sysoper in environments
where Oracle authentication is used, and osdba or osoper where operating system
authentication is used.

Starting the Oracle Instance and Opening the Database

In order to start a database instance, the DBA must run Server Manager and connect to the

database as internal. The command to start the instance from Server Manager is called
startup. There are several different options for starting the instance. They are nomount,

mount, open, restrict, recover, and force. The nomount option starts the instance without
mounting a corresponding database. The mount option starts the instance and mounts but
does not open the database. The open option starts the instance, mounts the database, and
opens it for general user access. The restrict option starts the instance, mounts the database,
and opens it for users who have been granted a special access privilege called restricted
access. The recover option starts the instance, but leaves the database closed and starts the
database recovery procedures associated with disk failure. The force option gives the

database startup procedure some extra pressure to assist in starting an instance that either
has trouble opening or trouble closing normally. There are two alter database statements
that can be used to change database accessibility once the instance is started as well.

Shutting Down the Oracle Database

Several options exist for shutting down the database as well. The DBA must again connect to
the database as internal using the Server Manager tool. The three options for shutting down

the Oracle database are normal, immediate, and abort. When the DBA shuts down the
database with the normal option, the database refuses new connections to the database by
users and waits for existing connections to terminate. Once the last user has logged off the
system, then the shutdown normal will complete. The DBA issuing a shutdown immediate

causes Oracle to prevent new connections while also terminating current ones, rolling back
whatever transactions were taking place in the sessions just terminated. The final option for
shutting down a database is shutdown abort, which disconnects current sessions without
rolling back their transactions and prevents new connections to the database as well.

Creating an Oracle Database

After developing a model of the process to be turned into a database application, the designer
of the application must then give a row count forecast for the application's tables. This row

count forecast allows the DBA to size the amount of space in bytes that each table and index
needs in order to store data in the database. Once this sizing is complete, the DBA can then
begin the work of creating the database. First, the DBA should back up existing databases
associated with the instance, if any, in order to prevent data loss or accidental deletion of a

disk file resource. The next thing that should happen is the DBA should create a parameter file
that is unique to the database being created. Several initialization parameters were identified
as needing to be set to create a database. The following list describes each parameter:

DB_NAME

The local name of the database on the machine hosting Oracle, and
one component of a database's unique name within the network. If
this is not changed, permanent damage may result in the event a

database is created.

DB_DOMAIN
Identifies the domain location of the database name within a
network. It is the second component of a database's unique name
within the network.

CONTROL_FILES

A name or list of names for the control files of the database. The
control files document the physical layout of the database for
Oracle. If the name specified for this parameter do not match
filenames that exist currently, then Oracle will create a new control
file for the database at startup. If the file does exist, Oracle will

overwrite the contents of that file with the physical layout of the
database being created.

DB_BLOCK_SIZE

The size in bytes of data blocks within the system. Data blocks are

unit components of datafiles into which Oracle places the row data

from indexes and tables. This parameter cannot be changed for the
life of the database.

DB_BLOCK_BUFFERS
The maximum number of data blocks that will be stored in the

database buffer cache of the Oracle SGA.

PROCESSES
The number of processes that can connect to Oracle at any given
time. This value includes background processes (of which there are

at least five) and user processes.

ROLLBACK_SEGMENTS
A list of named rollback segments that the Oracle instance will have
to acquire at database startup. If there are particular segments the

DBA wants Oracle to acquire, he/she can name them here.

LICENSE_MAX_SESSIONS
Used for license management. This number determines the number
of sessions that users can establish with the Oracle database at any

given time.

LICENSE_MAX_WARNING
Used for license management. Set to less than
LICENSE_MAX_SESSIONS, Oracle will issue warnings to users as

they connect if the number of users connecting has exceeded
LICENCE_MAX_WARNING.

LICENSE_MAX_USERS

Used for license management. As an alternative to licensing by
concurrent sessions, the DBA can limit the number of usernames
created on the database by setting a numeric value for this
parameter.

After the parameter file is created, the DBA can execute the create database command,

which creates all physical disk resources for the Oracle database. The physical resources are
datafiles, control files, and redo log files, the SYS and SYSTEM users, the SYSTEM tablespace,
one rollback segment in the SYSTEM tablespace, and the Oracle data dictionary for that
database. After creating the database, it is recommended that the DBA back up the new
database in order to avoid having to re-create the database from scratch in the event of a
system failure.

Creating the Oracle Data Dictionary

Of particular importance in the database creation process is the process by which the data
dictionary is created. The data dictionary must be created first in a database because all other
database structure changes will be recorded in the data dictionary. This creation process

happens automatically by Oracle. Several scripts are run in order to create the tables and
views that comprise the data dictionary. There are two "master" scripts that everything else
seems to hang off of. The first is catalog.sql. This script creates all the data dictionary tables
that document the various objects on the database. The second is called catproc.sql. This
script runs several other scripts that create everything required in the data dictionary to allow
procedural blocks of code in the Oracle database, namely packages, procedures, functions,
triggers, snapshots, and certain packages for PL/SQL such as pipes and alerts.

Accessing and Updating Data

Oracle allows users to access and change data via the SQL language. SQL is a unique
language in that it allows users to define the data they want in terms of what they are looking
for, not in terms of a procedure to obtain the data. Oracle manages the obtaining of data by

translating SQL into a series of procedures Oracle will execute to fetch the data the user
requested.

The steps Oracle uses in SQL statement processing are opening the statement cursor, which is

a memory address Oracle will use for storing the statement operation; parsing the statement
into a series of data operations; binding variables in place of hard coded values to allow for

parse tree sharing; executing the statement; and fetching the results (query only). After the
statement is executed, the parse information is left behind in the library cache of the shared
pool in order to reduce the amount of memory required to handle user processes and also to
boost performance of SQL statement processing.

The Function and Contents of the Buffer Cache

In order to further boost performance, Oracle maintains an area of the SGA called the buffer
cache, which is used to store data blocks containing rows from recently executed SQL
statements. Part of this buffer cache contains an area called the dirty buffer write queue,
which is a list of blocks containing row data that has been changed and needs to be written to

disk. When users issue statements that require Oracle to retrieve data from disk, obtaining
that data is handled by the server process.

Another database process, DBWR, eliminates I/O contention on the database by freeing user
processes from having to perform disk writes associated with the changes they make. Since

users only deal directly with blocks that are in the buffer cache, they experience good
performance while the server and DBWR processes handle all disk utilization behind the
scenes.

Role of the Server Process

The Server process does its job whenever user processes need more blocks brought into the
cache. In order to make room for the incoming data, the server process eliminates blocks from
the buffer cache according to which ones were used least recently. One exception to this rule
is made for blocks that were brought into the buffer cache to support full table scans. These
buffers are eliminated almost immediately after they are scanned.

Role of the DBWR Process

The DBWR process will write buffers back to the database when triggered to do so by another
process, called LGWR, during a special database event called a checkpoint. DBWR also writes
data to the database every three seconds in a timeout.

Online Redo Log

Oracle handles the tracking of changes in the database through the use of the online redo log.
There are several components to the online redo log. The first is an area in memory where
user processes place the redo log entries they have to make when they write a change to the

database. This area is called the redo log buffer. Another component of the online redo log is a
set of files on disk that store the redo log entries. This is the actual "online redo log" portion of
the architecture. There is a minimum of two online redo logs in the Oracle database. They

consist of one or more files, called "members," that contain the entire contents of the redo
log. For safety purposes, it is best to put each redo log member on a separate disk so as to
avoid the failure of one disk causing the failure of an entire Oracle instance. The final
component of the online redo log is the log writer process (LGWR), a background process
mechanism that writes redo entries from the memory buffer to the online redo log.

The Purpose of Checkpoints

A checkpoint is performed every time LGWR fills an online redo log with redo entries and has
to switch to writing entries to another redo log. A checkpoint is when LGWR sends a signal to

DBWR to write all changed data blocks in the dirty buffer write queue out to their respective
datafiles on disk. By default, checkpoints happen once every log switch, but can happen more
often, depending on the values set for LOG_CHECKPOINT_INTERVAL or

LOG_CHECKPOINT_TIMEOUT. These two parameters allow for transaction volume-based or
time-based checkpoint intervals.

Data Concurrency and Statement-level Read Consistency

In multiple-user environments, it must be remembered that there are special considerations
required to ensure that users don't overwrite others' changes on the database. In addition,
users must also be able to have read-consistent views of the data, both for individual
statements and for collections of statements treated as one operation. The key to transaction
concurrency without overwriting another user's changes is the concept of transaction

processing. Transactions are made possible in the Oracle database with the use of
mechanisms that allow one and only one user at a time to make a change to a database table.
These mechanisms are called locks. In addition, when the user makes a change to the
database, that change isn't recorded on disk right away. Instead, the change is noted in a

database object called a rollback segment. This mechanism allows the user to make a series of
changes to the database and save or commit them once as one unit of work. Another feature
this architecture allows for is the ability to discard the changes made in favor of the way the

data used to look. This act is called a rollback. The rollback segment allows for read-consistent
views of the data on the database at the transaction level.

Managing the Database Structure

There is a physical and a logical view of the database. The physical structure permits the
database to grow to a certain size, while the logical structure regulates its setup. Storage is
governed by parameters set at object creation. These parameters can be changed at various
points in the maintenance of the object. Storage allocation should work around the reality of
the physical database design in that the DBA should attempt to place objects over several
disks to better utilize the physical resources available to Oracle.

Preparing Necessary Tablespaces

At database creation, Oracle creates a special tablespace called SYSTEM to hold the data
dictionary and the initial rollback segment of the database. There are several different types of
segments on the database that correspond to the various types of database objects. Some

examples are tables, indexes, rollback segments, clusters, and temporary segments. For the
most part, these objects have different storage needs, and as such it is usually best for them
to be in separate tablespaces.

Managing Storage Allocation

When the data in a database object grows too large for the segment to store all the data,
Oracle must acquire another extent for the object. The size of the initial extent, the acquired
extent, the number of extents allowed, and possible percentage increases for each extent of

an object are all governed by the use of storage parameters. Another aspect of database
usage that is governed by storage parameters is how the data in each data block owned by
the object will be stored. In order to find out the storage parameters and the overall space
usage for a database object, the DBA can utilize several views in the data dictionary. List of
database storage allocation parameters:

initial

Segment storage clause that determines the size (either in kilobytes or

megabytes as determined by specifying K or M) of the initial extent comprising
the database object.

Next

Segment storage clause that determines the size (either in kilobytes or

megabytes as determined by specifying K or M) of the second extent comprising

the database object.

Minextents
Segment storage clause that determines the minimum number of extents a

database object may have.

Maxextents
Segment storage clause that determines the maximum number of extents a
database object may have. A special keyword unlimited can be used to allow
unlimited number of extents on the object.

pctincrease

Segment storage clause that specifies the permitted percentage of growth of
each subsequent extent allocated to the database object. For example, if a table
is created with initial 1M, next 1M, minextents 2 and pctincrease 20 storage

clauses, the third extent created for this object will be 1.2M in size, the fourth
will be 1.44M in size, etc. Oracle rounds up to the nearest block when use of
this option identifies an extent size that is not measurable in whole blocks. The

default value for this option is 50 percent. Note: This option is NOT available
for rollback segment creation.

optimal Segment storage clause that specifies the optimal number of extents that

should be available to the rollback segment. Note: This is ONLY available for
rollback segment creation.

freelists

Database object storage clause that specifies the number of lists in each freelist
group that Oracle will maintain of blocks considered "free" for the table. A free
block is one that either has not reached its pctfree threshold or fallen below its
pctused threshold.

freelist
groups

Database object storage clause that specifies the number of groups of freelists
for database objects that Oracle will maintain in order to know which blocks
have space available for row storage. Note: this is available for Parallel

Server Option usage.

Managing Rollback Segments

Management of rollback segments. These database objects facilitate transaction processing by

storing entries related to uncommitted transactions run by user processes on the Oracle
database. Each transaction is tracked within a rollback segment by means of a system change
number, also called an SCN. Rollback segments can be in several different modes, including
online (available), offline (unavailable), pending offline, and partly available. When the DBA
creates a rollback segment, the rollback segment is offline, and must be brought online before
processes can use it. Once the rollback segment is online, it cannot be brought offline until

every transaction using the rollback segment has completed. Rollback segments must be sized
appropriately in order to manage its space well. Every rollback segment should consist of
several equally sized extents. Use of the pctincrease storage clause is not permitted with
rollback segments. The ideal usage of space for a rollback segment is for the first extent of the
rollback segment to be closing its last active transaction as the last extent is running out of
room to store active transaction entries, in order to facilitate reuse of allocated extents before
obtaining new ones. The following diagram illustrates rollback segment reusability:

Creating and Sizing Rollback Segments

The size of a rollback segment can be optimized to stay around a certain number of extents

with use of the optimal clause. If the optimal clause is set and a long-running transaction
causes the rollback segment to allocate several additional extents, Oracle will force the
rollback segment to shrink after the long-running transaction commits. The size of a rollback
segment should relate to both the number and size of the average transactions running
against the database. Additionally, there should be a few large rollback segments for use with

long-running batch processes inherent in most database applications. Transactions can be

explicitly assigned to rollback segments that best suit their transaction entry needs with use of
the set transaction use rollback segment.

At database startup, at least one rollback segment must be acquired. This rollback segment is
the system rollback segment that is created in the SYSTEM tablespace as part of database
creation. If the database has more than one tablespace, then two rollback segments must be
allocated. The total number of rollback segments that must be allocated for the instance to

start is determined by dividing the value of the TRANSACTIONS initialization parameter by the
value specified for the TRANSACTIONS_PER_ROLLBACK_SEGMENT parameter. Both of these
parameters can be found in the init.ora file. If there are specific rollback segments that the
DBA wants to acquire as part of database creation, the names of those rollback segments can
be listed in the ROLLBACK_SEGMENTS parameter of the init.ora file.

Determining the Number of Rollback Segments

To determine the number of rollback segments that should be created for the database, use

the Rule of Four. Divide the average number of concurrent transactions by 4. If the result is
less than 4 + 4, or 8, then round it up to the nearest multiple of 4. Configuring more than 50
rollback segments is generally not advised except under heavy volume transaction processing.
The V$ROLLSTAT and V$WAITSTAT dynamic performance views are used to monitor rollback
segment performance.

Managing Tables and Indexes

Management and administration of tables and indexes. These two objects are the lifeblood of
the database, for without data to store there can be no database. Table and index creation

must be preceded by appropriate sizing estimates to determine how large a table or index will
get.

Sizing Tables

Sizing a table is a three-step process: 1) determining row counts for the table, 2) determining
how many rows will fit into a data block, and 3) determining how many blocks the table will

need. Step 1 is straightforward-the DBA should involve the developer and the customer where
possible and try to forecast table size over 1-2 years in order to ensure enough size is
allocated to prevent a maintenance problem later. Step 2 requires a fair amount of calculation
to determine two things-the amount of available space in each block and the amount of space
each row in a table will require. The combination of these two factors will determine the
estimate of the number of blocks the table will require, calculated as part of step 3.

Sizing Indexes

Sizing indexes uses the same procedure for index node entry count as the estimate of row
count used in step 1 for sizing the index's associated table. Step 2 for sizing indexes is the
same as for tables-the amount of space available per block is determined, followed by the size
of each index node, which includes all columns being indexed and a 6-byte ROWID associated

with each value in the index. The two are then combined to determine how many nodes will fit
into each block. In step 3, the number of blocks required to store the full index is determined
by determining how many blocks are required to store all index nodes; then, that number is
increased by 5 percent to account for the allocation of special blocks designed to hold the
structure of the index together.

Understanding Storage and Performance Trade-Offs

The principle behind indexes is simple-indexes improve performance on table searches for
data. However, with the improvement in performance comes an increase in storage costs

associated with housing the index. In order to minimize that storage need, the DBA should
create indexes that match the columns used in the where clauses of queries running against
the database. Other storage/performance trade-offs include use of the pctincrease option.

Each time an extent is allocated in situations where pctincrease is greater than zero, the size
of the allocated extent will be the percentage larger than the previous extent as defined by
pctincrease. This setup allows rapidly growing tables to reduce performance overhead
associated with allocating extents by allocating larger and larger extents each time growth is

necessary. One drawback is that if the growth of the table were to diminish, pctincrease may
cause the table to allocate far more space than it needs on that last extent.

Reviewing Space Usage

Space within a table is managed with two clauses defined for a table at table creation. Those

clauses are pctfree and pctused. The pctfree clause specifies that a percentage of the block
must remain free when rows are inserted into the block to accommodate for growth of existing
rows via update statements. The pctused clause is a threshold value under which the

capacity of data held in a block must fall in order for Oracle to consider the block free for
inserting new rows. Both pctfree and pctused are generally configured together for several
reasons. First, the values specified for both clauses when added together cannot exceed 100.
Second, the types of activities on the database will determine the values for pctfree and

pctused. Third, the values set for both clauses work together to determine how high or low
the costs for storage management will be.

High pctfree causes a great deal of space to remain free for updates to existing rows in the
database. It is useful in environments where the size of a row is increased substantially by
frequent updates. Although space is intentionally preallocated high, the overall benefit for
performance and storage is high as well, because chaining and row migration will be
minimized. Row migration is when a row of data is larger than the block can accommodate, so
Oracle must move the row to another block. The entry where the row once stood is replaced
with its new location. Chaining goes one step further to place pieces of row data in several

blocks when there is not enough free space in any block to accommodate the row. Setting
pctfree low means little space will be left over for row update growth. This configuration
works well for static systems like data warehouses where data is infrequently updated once
populated. Space utilization will be maximized, but setting pctfree in this way is not
recommended for high update volume systems because the updates will cause chaining and
row migration. High pctused means that Oracle should always attempt to keep blocks as filled
as possible with row data. This setup means that in environments where data is deleted from

tables often, the blocks having row deletion will spend short and frequent periods on the
table's freelist. A freelist is a list of blocks that are below their pctused threshold, and that are
available to have rows inserted into them. Moving blocks onto and off of the freelists for a
table increases performance costs and should be avoided. Low pctused is a good method to
prevent a block from being considered "free" before a great deal of data can be inserted into
it. Low pctused improves performance related to space management; however, setting
pctused too low can cause space to be wasted in blocks.

Managing Clusters

Typically, regular "nonclustered" tables and associated indexes will give most databases the
performance they need to access their database applications quickly. However, there are
certain situations where performance can be enhanced significantly with the use of cluster

segments. A cluster segment is designed to store two or more tables physically within the
same blocks. The operating principle is that if there are two or more tables that are joined
frequently in select statements, then storing the data for each table together will improve
performance on statements that retrieve data from them. Data from rows on multiple tables
correspond to one unique index of common column shared between the tables in the cluster.
This index is called a cluster index. A few conditions for use apply to clusters. Only tables that

contain static data and are rarely queried by themselves work well in clusters. Although tables

in clusters are still considered logically separate, from a physical management standpoint they
are really one object. As such, pctfree and pctused options for the individual tables in a

cluster defer to the values specified for pctfree and pctused for the cluster as a whole.
However, some control over space usage is given with the size option used in cluster creation.

Creating Index Clusters

In order to create clusters, the size required by the clustered data must be determined. The
steps required are the same for sizing tables, namely 1) the number of rows per table that will
be associated to each member of the cluster index, called a cluster key; 2) the number of
cluster keys that fit into one data block will be determined; and 3) the number of blocks
required to store the cluster will also be determined. One key point to remember in step 2 is

that the row size estimates for each table in the cluster must not include the columns in the
cluster key. That estimate is done separately. Once sizing is complete, clusters are created in
the following way: 1) create the cluster segment with the create cluster command; 2) add

tables to the cluster with the create table command with the cluster option; 3) create the
cluster index with the create index on cluster command, and lastly, 4) populate the cluster
tables with row data. Note that step 4 cannot happen before step 3 is complete.

Creating Hash Clusters

Clusters add performance value in certain circumstances where table joins are frequently
performed on static data. However, for even more performance gain, hash clustering can be
used. Hashing differs from normal clusters in that each block contains one or more hash keys
that are used to identify each block in the cluster. When select statements are issued against

hash clusters, the value specified by an equality operation in the where clause is translated
into a hash key by means of a special hash function, and data is then selected from the
specific block that contains the hash key. When properly configured, hashing can yield
required data for a query in as little as one disk read.

There are two major conditions for hashing-one is that hashing only improves performance
when the two or more tables in the cluster are rarely selected from individually, and joined by
equality operations (column_name = X, or a.column_name = b.column_name, etc.) in
the where clause exclusively. The second condition is that the DBA must be willing to make
an enormous storage trade-off for that performance gain-tables in hash clusters can require as

much as 50 percent more storage space than comparably defined nonclustered tables with
associated indexes.

Managing Data Integrity Constraints

The use of declarative constraints in order to preserve data integrity. In many database
systems, there is only one way to enforce data integrity in a database-define procedures for

checking data that will be executed at the time a data change is made. In Oracle, this
functionality is provided with the use of triggers. However, Oracle also provides a set of five
declarative integrity constraints that can be defined at the data definition level.

Types of Declarative Integrity Constraints

The five types of integrity constraints are 1) primary keys, designed to identify the uniqueness
of every row in a table; 2) foreign keys, designed to allow referential integrity and parent/child
relationships between tables; 3) unique constraints, designed to force each row's non-NULL
column element to be unique; 4) NOT NULL constraints, designed to prevent a column value
from being specified as NULL by a row; and 5) check constraints, designed to check the value
of a column or columns against a prescribed set of constant values. Two of these constraints-
primary keys and unique constraints-have associated indexes with them.

Constraints in Action

Constraints have two statuses, enabled and disabled. When created, the constraint will
automatically validate every column in the table associated with the constraint. If no row's
data violates the constraint, then the constraint will be in enabled status when creation
completes.

Managing Constraint Violations

If a row violates the constraint, then the status of the constraint will be disabled after the
constraint is created. If the constraint is disabled after startup, the DBA can identify and
examine the offending rows by first creating a special table called EXCEPTIONS by running the

utlexcpt.sql script found in the rdbms/admin directory under the Oracle software home
directory. Once EXCEPTIONS is created, the DBA can execute an alter table enable
constraints exceptions into statement, and the offending rows will be loaded into the
EXCEPTIONS table.

Viewing Information about Constraints

To find information about constraints, the DBA can look in DBA_CONSTRAINTS and
DBA_CONS_COLUMNS. Additional information about the indexes created by constraints can be
gathered from the DBA_INDEXES view.

Managing Users

Managing users is an important area of database administration. Without users, there can be
no database change, and thus no need for a database. Creation of new users comprises
specifying values for several parameters in the database. They are password, default and

temporary tablespaces, quotas on all tablespaces accessible to the user (except the temporary
tablespace), user profile, and default roles. Default and temporary tablespaces should be
defined in order to preserve the integrity of the SYSTEM tablespace. Quotas are useful in
limiting the space that a user can allocate for his or her database objects. Once users are

created, the alter user statement can be used to change any aspect of the user's
configuration. The only aspects of the user's configuration that can be changed by the user are
the default role and the password.

Monitoring Information About Existing Users

Several views exist to display information about the users of the database. DBA_USERS gives
information about the default and temporary tablespace specified for the user, while
DBA_PROFILES gives information about the specific resource usage allotted to that user.

DBA_TS_QUOTAS lists every tablespace quota set for a user, while DBA_ROLES describes all
roles granted to the user. DBA_TAB_PRIVS also lists information about each privilege granted
to a user or role on the database. Other views are used to monitor session information for
current database usage. An important view for this purpose is V$SESSION. This dynamic

performance view gives information required in order to kill a user session with the alter
system kill session. The relevant pieces of information required to kill a session are the
session ID and the serial# for the session.

Understanding Oracle Resource Usage

In order to restrict database usage, the DBA can create user profiles that detail resource
limits. A user cannot exceed these limits if the RESOURCE_LIMIT initialization parameter is set
on the database to TRUE. Several database resources are limited as part of a user profile.
They include available CPU per call and/or session, disk block I/O reads per session,

connection time, idle time, and more. One profile exists on the Oracle database at database
creation time, called DEFAULT. The resource usage values in the DEFAULT profile are all set to
unlimited. The DBA should create more profiles to correspond to the various types or classes

of users on the database. Once created, the profiles of the database can then be granted to
the users of the database.

Resource Costs and Composite Limits

An alternative to setting usage limits on individual resources is to set composite limits to all
database resources that can be assigned a resource cost. A resource cost is an integer that
represents the importance of that resource to the system as a whole. The integer assigned as
a resource cost is fairly arbitrary and does not usually represent a monetary cost. The higher
the integer used for resource cost, the more valuable the resource. The database resources

that can be assigned a resource cost are CPU per session, disk reads per session, connect
time, and memory allocated to the private SGA for user SQL statements. After assigning a
resource cost, the DBA can then assign a composite limit in the user profile. As the user uses

resources, Oracle keeps track of the number of times the user incurs the cost associated with
the resource and adjusts the running total. When the composite limit is reached, the user
session is ended.

Object Privileges Explained

Oracle limits the users' access to the database objects created in the Oracle database by
means of privileges. Database privileges are used to allow the users of the database to
perform any function within the database, from creating users to dropping tables to inserting
data into a view. There are two general classes of privilege: system privileges and object

privileges. System privileges generally pertain to the creation of database objects and users,
as well as the ability to connect to the database at all, while object privileges govern the
amount of access a user might have to insert, update, delete, or generate foreign keys on
data in a database object.

Creating and Controlling Roles

Database privilege management can be tricky if privileges are granted directly to users. In
order to alleviate some of the strain on the DBA trying to manage database access, the Oracle
architecture provides a special database object called a role. The role is an intermediate step
in granting user privileges. The role acts as a "virtual user," allowing the DBA to grant all
privileges required for a certain user class to perform its job function. When the role has been
granted all privileges required, the role can then be granted to as many users as required.
When a new privilege is required for this user group, the privilege is granted to the role, and

each user who has the role automatically obtains the privilege. Similarly, when a user is no
longer authorized to perform a certain job function, the DBA can revoke the role from the user
in one easy step. Roles can be set up to require password authentication before the user can
execute an operation that requires a privilege granted via the role.

Auditing the Database

The activities on a database can also be audited using the Oracle audit capability. Several
reasons exist for the DBA or security administrator to perform an audit, including suspicious
database activity or a need to maintain an archive of historical database activity. If the need is
identified to conduct a database audit, then that audit can happen on system-level or
statement-level activities. Regardless of the various objects that may be monitored, the start
and stopping of a database as well as any access to the database with administrator privileges

is always monitored. To begin an audit, the AUDIT_TRAIL parameter must be set to DB for
recording audit information in the database audit trail, OS for recording the audit information
in the operating system audit trail, or to NONE if no auditing is to take place. Any aspect of

the database that must have a privilege granted to do it can be audited. The information
gathered in a database audit is stored in the AUD$ table in the Oracle data dictionary. The
AUD$ table is owned by SYS.

Special views are also available in the data dictionary to provide views on audit data. Some of
these views are DBA_AUDIT_EXISTS, DBA_AUDIT_OBJECT, DBA_AUDIT_SESSION,
DBA_AUDIT_STATEMENT, and DBA_AUDIT_TRAIL. It is important to clean records out of the
audit trail periodically, as the size of the AUD$ table is finite, and if there is an audit of

sessions connecting to the database happening when the AUD$ table fills, then no users will
be able to connect to the database until some room is made in the audit trail.

Records can only be removed from the AUD$ table by a user who has delete any table
privilege, the SYS user, or a user SYS has given delete access to on the AUD$ table. The
records in the AUD$ table should be archived before they are deleted. Additionally, the audit
trail should be audited to detect inappropriate tampering with the data in the table.

Introduction to SQL*Loader

SQL*Loader is a tool that developers and DBAs can use to load data into Oracle8 tables from
flat files easily. SQL*Loader consists of three main components: a set of data records to be
entered, a set of controls explaining how to manipulate the data records, and a set of
parameters defining how to execute the load. Most often, these different sets of information
are stored in files-a datafile, a control file, and a parameter file.

The Control File

The control file provides the following information to Oracle for the purpose the data load:
datafile name and format, character sets used in the datafiles, datatypes of fields in those
files, how each field is delimited, and which tables and columns to load. You must provide the
control file to SQL*Loader so that the tool knows several things about the data it is about to

load. Data and control file information can be provided in the same file or in separate files.

Some items in the control file are mandatory, such as which tables and columns to load and
how each field is delimited.

The bad file and the discard file

SQL*Loader uses two other files during data loads in conjunction with record filtering. They

are the bad file and the discard file. Both filenames are specified either as parameters or as
part of the control file. The bad file stores records from the data load that SQL*Loader rejects
due to bad formatting, or that Oracle8 rejects for failing some integrity constraint on the table
being loaded. The discard file stores records from the data load that have been discarded by
SQL*Loader for failing to meet some requirement as stated in the when clause expression of
the control file. Data placed in both files are in the same format as they appear in the original
datafile to allow reuse of the control file for a later load.

Datafiles

Datafiles can have two formats. The data Oracle will use to populate its tables can be in fixed-
length fields or in variable-length fields delimited by a special character. Additionally,
SQL*Loader can handle data in binary format or character format. If the data is in binary
format, then the datafile must have fixed-length fields.

Log file

Recording the entire load event is the log file. The log filename is specified in the parameters
on the command line or in the parameter file. The log file gives six key pieces of information

about the run: software version and run date; global information such as log, bad, discard,

and datafile names; information about the table being loaded; datafile information, including
which records are rejected; data load information, including row counts for discards and bad
and good records; and summary statistics, including elapsed and CPU time.

Loading Methods

There are two load paths available to SQL*Loader: conventional and direct.

Conventional Path

The conventional path uses the SQL interface and all components of the Oracle RDBMS to

insert new records into the database. It reliably builds indexes as it inserts rows and writes
records to the redo log, guaranteeing recovery similar to that required in normal situations
involving Oracle8. The conventional path is the path of choice in many loading situations,
particularly when there is a small amount of data to load into a large table. This is because it
takes longer to drop and re-create an index as required in a direct load than it takes to insert
a small number of new rows into the index. In other situations, like loading data across a
network connection using SQL*Net, the direct load simply is not possible.

Direct Path

However, the direct path often has better performance executing data loads. In the course of
direct path loading with SQL*Loader, several things happen. First, the tool disables all
constraints and secondary indexes the table being loaded may have, as well as any insert

triggers on the table. Then, it converts flat file data into Oracle blocks and writes those full
data blocks to the database. Finally, it reenables those constraints and secondary indexes,
validating all data against the constraints and rebuilding the index. It reenables the triggers as
well, but no further action is performed.

In some cases, a direct path load may leave the loaded table's indexes in a direct path state.

This generally means that data was inserted into a column that violated an indexed constraint,
or that the load failed. In the event that this happens, the index must be dropped, the
situation identified and corrected, and the index re-created.

Data Saves

Both the conventional and the direct path have the ability to store data during the load. In a
conventional load, data can be earmarked for database storage by issuing a commit. In a
direct load, roughly the same function is accomplished by issuing a data save. The frequency
of a commit or data save is specified by the ROWS parameter. A data save differs from a

commit in that a data save does not update indexes, release database resources, or end the
transaction-it simply adjusts the highwatermark for the table to a point just beyond the most
recently written data block. The table's highwatermark is the maximum amount of storage
space the table has occupied in the database.

SQL*Loader Command-Line Parameters

Many parameters are available to SQL*Loader that refine the way the tool executes. The most
important parameters are USERID to specify the username the tool can use to insert data and
CONTROL to specify the control file SQL*Loader should use to interpret the data. Those
parameters can be placed in the parameter file, passed on the command line, or added to the
control file.

The control file of SQL*Loader has many features and complex syntax, but its basic function is
simple. It specifies that data is to be loaded and identifies the input datafile. It identifies the
table and columns that will be loaded with the named input data. It defines how to read the
input data, and can even contain the input data itself.

Finally, although SQL*Loader functionality can be duplicated using a number of other tools and
methods, SQL*Loader is often the tool of choice for data loading between Oracle and non-
Oracle databases because of its functionality, flexibility, and performance.

