The message immediately below only applies to people viewing this sample live from our Internet site

ARE YOU VIEWING THIS PAGE LIVE ON THE INTERNET?

If so you may want to cancel the current operation and download this file, then view it off-line.

If you have installed the Adobe Acrobat Reader this will install an Internet browser plug-in that allows you
to view Adobe Acrobat files on-line. To inhibit the Acrobat plug-in and download the file (as opposed to
viewing it), then click on the URL link again using the RIGHT mouse button, not the usual left hand button.
This will display a pop-up menu allowing you to download this file.

PREVIEW SAMPLE ONLY

NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997

PLEASE SHOW THIS SAMPLE TO
YOUR TRAINING DEPARTMENT

OUR COURSEWARE COULD SAVE THEM A LOT OF TIME AND EXPENSE!

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

Courseware preview, terms and conditions
- Please read this first

This freely available version of the training courseware is for preview/evaluation purposes only
and must NOT be used for training purposes. Viewing of this courseware indicates your
acceptance of these restrictions and any violation will be prosecuted to the full extent of local

law. All material contained on this site is copyrighted by Cheltenham Computer Training. This
material must not be altered or copied in any way.

Tel: +44 (0)1242 227200

Fax: +44 (0)1242 253200

Email sales@ccttrain.demon.co.uk
http://www.cctglobal.com/

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

What sort of printer are you using?

This sample version contains a watermark which should print out in light grey behind the text and
graphics displayed.

For best results print this sample using a postscript printer. Some laser printers will print the
watermark as solid black which will make the sample hard to read. Consult your technical
department and you may find that you can adjust your printer driver so that it prints the
watermark correctly (i.e. as light grey). If your printer is unable to print the watermark correctly,
then be assured that the non-sample version of the course does not contain the watermark!

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

ENJOY ...

After previewing this courseware, please let us know what you think!
(email to feedback@ccttrain.demon.co.uk). We value your feedback!

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

For the latest pricing and discount information, please ring Cheltenham Computer
Training on +44 (0)1242 227200 or visit our Web site prices page at:
http://www.cctglobal.com/prices.html

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

C Programming

Cheltenham Computer Training

Crescent House

24 Lansdown Crescent Lane
Cheltenham
Gloucestershire

GL50 2LLD

United Kingdom

Tel:+44(0)1242 227200

Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk
http://www.cctglobal.com/

O Cheltenham Computer. Training 1994/1997
This'print version O Aug-98

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

PLEASE NOTE:

All reasonable precautions have been taken in the preparation of this document, including both technical and non-technical
proofing. Cheltenham Computer Training and any staff delivering this course on their behalf assume no responsibility for any
errors or omissions. No warranties are made, expressed or implied with regard to these notes. Cheltenham Computer
Training shall not be responsible for any direct, incidental or consequential damages arising from the use of any material
contained in this document. E&OE. All trade marks acknowledged.

If you find any errors in these training modules, please alert your tutor. Whilst every effort is made to eradicate typing or
technical mistakes, we apologize for any errors you may detect. All courses are updated on a regular basis, so your feedback
is both valued by us and may well be of benefit to future delegates using this document.

No part of this document may be copied without written permission from Cheltenham Computer Training
O Cheltenham Computer Training 1994/1997 (This print version O Aug-98)

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

TO COMPLY WITH YOUR LICENSING AGREEMENT, PLEASE COMPLETE THE DETAILS BELOW

Name of organization using this site license

Site License Number
If no site license number appears, please ask your tutor to supply it and enter it above.

Site License Location/Address

A site license number should appear above. If it does not, or to check licensing details, please contact Cheltenham Computer Training.

This training manual has been reproduced in accordance with the site license agreement between Cheltenham Computer Training and the
organization to whom the site license is issued. This training manual is provided to you as a delegate/student on a course for reference
purposes only. No part of this training manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, photocopying, mechanical, recording or otherwise, without the prior permission of the copyright owner.

O Cheltenham Computer Training 1997 Crescent House, 24 Lansdown Crescent Lane, Cheltenham, Gloucestershire, GL50 2LD, UK.
Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

CONTENTS

INTRODUGCTION ...ttt ettt ettt b s b s b e bt e ekt e s bt e ekt e e bt e e bt e a bt e eb e e nbeenbeenbeenne e 1
WELCOME TO C ..ottt h et h e s bt e s e b e e b e e s b e e e s ab e e s b e e e b e e e b e e e sbn e e san e e sar e e e nes 2
Target Audience 2
EXPECLEA KNOWIBAGE. ... ettt ettt bt e st e e bt e e be e e ebe e e ebbeeenbeaabeaan 2
AdVaNtAgEOUS KNOWIBAGEeeiiieiiie ittt ettt et e et et e e e st bt e embe e e nbe e e nbeeanbee e e 2
COURSE OBUIECTIVESutetitetesttt e sttt e sireesressstes e sise e st e sb s sbe s sbae e st e sar e s s b e e e sb e e e sa b e e sar e s e b e e s sba e e sar e e sar e e s ne e e nnee s 3
PRACTICAL EXERCISES .4
FEATURES OF it i 5655 0 G600 e e S RRRRRRR R 1w+ 0T a0 e e esnne e T e s e neeesnneesnnee e 5
High Level ASSEMBIEE.oiuo ittt e Db b b e 5
(Processor) Speed ComMES FIFSt!i it s bttt 5
SYSTEMS PrOGFAMIMING. ...ttt e ettt sttt e bttt e e ehbe e an bt e e bt e e sbe e e ahbeeam bt e anbeaaabeeesraeeambeaanbeaanbneennes 5
POFTADIIITY ...ttt ettt ettt e b bt e e a bt e e bt e e be e e eb b e e ehbe e enbeaareean 5
Write Only REPULALION ... i i e et sb e Bt bttt ettt sttt ettt nb e 5
THEHISTORY OF C.....ocoitie it ...6
Brian Kernighan, Dennis RITCIIE.........u.eiueiiiiiiit et st awasai s e asuasmmsse e eseesveseeaneennesnasenas 6

YT a10 U0 [12=\ o] NPT SRTTPTRPRPPRRRRT 7

A C PROGRAM 1. ittt st ettt s s e e et e ettt assseasetastaa s seesseea s s b s eeasseassaannsssesseessbbaan s sessees bbb aeessseesbbasaeasses 9
Lo [T = 9

THEFORMAT OF ..o 10
LT Telo] o] o 1 USSR U TP P PPPPPPPI 10
[Tl o] 011 | TR 10
(O T S £ 1171 SRR OP RO 10
RANAOM BERAVIOLiiiiiiiie et e e e e e s e et e e e e e e s e ettt b ae e e e e e s eeetbbraeeaaeesannes 10

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

[o1 SRS SO PERURRPPSPP 11
(Y= a1 FETUTTT OO URR PP PPPPPRI 11
0] ol 1 1 o PP PTOUPPUPR 11
0] (=11 (0] 1 PP OU PO PP 11
VARIABLES ..ot 12
DECIAriNG VArTADIES.coiiiieii ettt ettt et e et e e bt e e ba e e enee e enneas 12
VALIA NAIMES ...ttt et e e e e e e et e e e e e e s e e bbb e e e e e e s s eatbbbaeeeeeessaasbbraeeaeeesaanasrreeas 12
(O ToT1 |1 (] TP P R UP R OPRP TP 12
PRI NTF AND SCANF ..tttttttttessseessesesssessnnnns 13
0] ol 11 1 o P TP PUOU PP 13
(SYor=1 a1 FETUTTT OO PSR PPPPRPPPRI 13
&L e et e e e e e e ———eeee e e e aeir———etaeeeaaahbr——ttaee et aa b br——ttaae e e e e bbraataaeasaaabrrraaaaeans 13
INTEGER TYPESIN C..ooeeeeeeeeee e 14
T ST o DO SRRSO PP PRRURRPPSPP 14
(D1 {=] =] oL B (=T =] PP PT PRSP 14
(U] 053 o | o 1T FO PP POUPPUPR 14
] o 1 T OO UTR PP PPPPPPPI 14
INTEGER EXAMPLEo 15
INT MEN, ENT M AX ettt e e sttt e e et e e e e s attb e e e s tte e e e aataeeesastaeaeantbneeeantaeeesantaeaesnsens 15
CHARACTER EXAMPLE. ... ettt nn s s nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 16
(o] 1 F=1 BTSSP U UURR PP PPPPPPPIN 16
CHAR _MEN, CHAR MAX ittt ettt ettt e et e ettt e e st e e e st e e e s e ata e e e s atta e e e antae e e e aataeeesastaeaestbneesantaneesannaeens 16
AFTRMELIC WITR CRAK ..o e et e e e e e e s e e b beeeas 16
DOC VS T veeeeeeieeitiieee e e e e e e e ettt e e et e ettt e e e e e e et bbb e e e e e e e e et bbb reeeaeeeaatbbbaeaaeeeaaatbbaataaee et aabbrraraaeeeaaabbrrraaaeens 16
INTEGERSWITH DIFFERENT BASESo 17
Decimal, Octal and HeXadBCIMAccuvviiiiiii et e e s e ettt re e e e e e s aeanes 17
o I s PO PP PO O OO TSRO PPPPPPPPRN 17
UiTo T Uy A WS | WY B9 SO BN PR DU AR W) WY BN AR N e 17
U Qi WY WS B W A B e SN DUURRNSN WY AN B N N RSN (e 17
0K 1t tttrreeaaeetee it ttreeteeaeeaattt——etaaaataatttrrttaeeataatrratataeetaaattraettaeataaattraattaaeetaatrratttaaeeaaattraaaaeeesiaatrrrreraees 17
REAL TYPESIN € ..eeeeiiiiiiiiiiieiteeeee ettt et eeeeeeeeeeeeeeeeeee e eeaeeesessessesseesesssssesssssssesssssesssssssnsssssssssssssssnssssnnnnnnnnnns 18
Float . N 18
FHOAT o e e e T T e 18
(0 (o101 o} =T BN S e BUTUUUUEL SRR S U o S PR UR OO PPPPPPRIN 18
BONG AOUDEE ..ttt ettt et et e ettt e s bb e e sbbe e sabe e snbeaabeeans 18
REAL EXAMPLEciiiiiietiieieimeeeeesussans s s s assssssnns s sasmasnssssssssssssmmmmmnnnssssssesEanssssssmmmmmmmnsssssssssssssssssssssssssnssnnnnnnns 19
V7)) | JPRRIRRRRre U DY SUUURSY VDD DU YOS SUUURURY - AU W N 19
7] (=T UUUURROON * AUUUU SUURURRUUU 0 SUURUUNN BOUY U DUUUUURT S WOUY U SO SRRSO 19
Ll e [T o T OO U R OUPPTRUPPPPROTIN 19
07 2l et e et e e et e e b ——— e e e e et aa b ——— et aae et aatbrarrtaeesaanbrrrraaaaens 19
V24 (TR oven . sovetll sovurs: SUUUN L WRRUN UL U BON BOY NO B cove 19
%.40g..ccccociveiee A el DB RN AN e 19
(0] NS 7Y 5 S o 0 S e 20
TYPEA CONSTANTS ...ttt ettt ettt ettt ettt ekt e e sbb e e skt e e ea bt e e ket e e be e e eh bt e enbe e e beeeebbeeesbeeanbeaanbeaans 20
WARNING! .o 21
INAMED CONSTANT S .. etttttttttteteeeeeeeeeeeeeeeeeseeeeeeeeeesessesssnsnnnns 22
CONSTE. . 22
LVAIUES QNGO RVAIUBS ...ttt ettt e e e e s e ettt e e e e e e s e etbbbaeeaaeeseeaabbraaeaeeesannes 22
PREPROCESSOR CONSTANTS ...ettttttttttttttteeseeeseeseseeessesssnsnns 23
TAKE CAREWITH PRI NTF AND SCANF!o 24
INCOFTECt FOrMAL SPECITIETS ... ettt sttt ettt e e e tea e 24

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

INTRODUCTION SOLUTIONS.ottt e e ettt e e e e e s e e tbbba e e e e e e s e earareeas 29
OPERATORS IN ...ttt e e e e e ettt e e e e e s e e tb b b e e e e e e e s e eabbbaeeaeeeseaabbraeeaeeens 33
OPERATORSIN C ..t s nannnnnanann 34
ARITHMETIC OPERATORScoiiiiiiieeeee ettt e 35
T o e — e e e e et e e —— et e e e e e s ae b ——— et aae et aaabrbartaaeesaaabrrrraaaeans 35
0. e ettt tttree et e e et e et eaeeeeeeeeeattr——ttaeeetaattra—tteeeeaaattraattaeetaaaatrbaeteaeetaattrbatetaeetaattraeetaaeetaatrraereaaesaaabrrrreaaeens 35
USING ARITHMETIC OPERATORSceutttttttteteeeseeeesessessesesssessssrmrssssrmmne 36
THE CAST OPERATOR iiieeee e e e ettt et e aaaaaaaaaaaaaaaaaaas 37
INCREMENT AND DECREMENT ...t a e e e 38
PREFIX AND POSTFIX ..ettttiiitiiiiiiiiieeeeeeeeeeeeeeeeeseeeeseseeesesssessssesssssasasssnsnnnns 39
P I T, o e e e e et e e b ———taae et e et b——raaaeesaaabbrrraaaeesaaaes 39
PO IX et — e e e s e e b ———aaae e s aae b ba—rtaaeesaaabbrraaaaeesaanes 39
o 1<) £ TP U PO PP 39
TRUTHIN G 40
B 40T P PPPPPPPPPPPPPRt 40
[| LTI PP ET TP OOUPPPPRPPRRON 40
TESEING THULN ...ttt ettt e a et ek et e e kb e e eh bt e em b e e e ke e e be e e ebbeeembeaanbeean 40
COMPARISON OPERATORS.uuuuuuuuuunnunnnsnnnnnnnnssssnssnnnsnnnssnnnsnnnsnnnnsnnnnnnnnnnn 41
L OGICAL OPERATORS.....ceuttttttttteeeeeeeeeeeeesssessessssessnnnns 42
AN, OF, NOT ...t et e e e e e e et a e e e e e e e s e ettt baeeeeeesseesbbbaeeaaeesseastbraeeaeeessannsrrees 42
LOGICAL OPERATOR (GUARANTEES.......cettttttttttteeeeeeeeeeseeeeesseeesssmsnns 43
C GUANANTEES. ... 43
AN TIULN TADIE ..ot e e e e e e et e e e e e e s e et bbb e e e e e e e s e etbbaeeeeaeeseeabbrreeeaeens 43
OF THULN TADIE 11eeiieeee ettt e e e e e e et e e e e e e s eetb bbb e e e eaeeseebbbaeeeeeeesaeabbreaeeaeens 43
WVARNING! ... oottt ettt e e e e e e e e e e e e e ee e e e e e e e tae e e e e e et e e asaaaaeaaaateaaaaaaaaaaaaaaaaaaaaaans 44
e L= 0 LT S S P S ST SO S O P SO N APOPRPPPRRRRN 44
BTV I SE OPERA TOR S ittutettttrrtteberuetessaessessesssssessssssssssssssssssssssssbassssssssbassssssssstesasssssssssssssssssnsssssssssssssssnnnnns 45
VS B e, 45
IRV T 1 PP TR OURRUPROPRPPRN 45
AT W W W B P N 45
Truth Tables FOr BItWiSe OPEIatOrS.ccuieeieiiberieaiteneeseeaieb e see s 00 ot e T sttt et et enenne e 45
BITWISE EXAMPLE. ...citeeeetibeeeessbinssadbereesssssesssssssssssssassesssssssbnnnssbessssssssssbnnnnsbessssannnnsnnnsssssssssssssssssssssssssnnnnns 46
Arithmetic ReSUILS OF SHITLING........eiiiieiii et 46
Use unsigned When Shifting RIGNT..............oooiiiiiii e 46
ASSIGNMENT ..ot e 47
ASSIGNMENT USES REGISTETS. ... et dttieeetee ettt b sheeatee kb esseesse e esee e o et bt aeeeabe e ebeeateesbeeabnesbnesbnesnnesrnens 47
WARNING! ... 48
Test for EQUAlity VS. ASSIGNMENToiiiiiiiie ettt ettt ettt et e et e e sbe e e ssbeeanbeaabeaan 48
OTHER ASSIGNMENT OPERATORS #000tan e 8 H e B e e e e a0 0 TR e 49
B T (- (o S O U S U B N O S B SO USRS PP PPPPPPRI 49
(ST =(0 S @ = = 1y () O S S 50
CONDITIONAL EXPRESSION OPERATOR. ... uuuuuuuuuuunnnsnnnsnnnnnnnnnnnnnnnnnnnn 51
Conditional expression VS. if/tEN/EISEc.ei i 51
PRECEDENCE OF OPERATORS ...cevtttttttettstsssesesssseeesessessesssnnns 52
ASSOCIATIVITY OF OPERATORS.......cceiiiieeeeeee et e 53
Left t0 RIGNT ASSOCIATIVITYcueieiiieiee ettt ettt ettt et et e e e ta e e snbeeeneeas 53
RigGNt t0 LEft ASSOCIATIVITY ...ttt ettt ettt et e et e e nta e snaeeaneeas 53
PRECEDENCE/ASSOCIATIVITY TABLE .1vttiiiiiiiiiittteeeeeeesieittreeeeesesssisstseeesessssassssssessassssassrsseessssssssssrsseesesennn 54
OPERATORS IN C PRACTICAL EXERCISES. ...ttt 57

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

OPERATORS IN C SOLUTIONS . ..ottt 59

CONTROL FLOW ...ttt ettt e ettt e e e e e s e ettt e e e e e e s e e abbb e e e e e e e s eaabbraeeaeeens 63
CONTROL FLOW ..t nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 64
DECISIONS | F THEN ...eetttteeeeeeeeeeseseeeseeesssessnnnns 65
WARNING! ..o 66
AvOoid SPUrious SEMICOIONS ATLEE ET .. .c.eii ittt 66
| F THEN EL SE cettttttttteeeteeeeeseseessesssnnnnns 67
INESTING | FS..eetittitttieeeeeeeeeeeeeeeeeeseeeseseeesessssesssssssssssessassssssssssssssssssssssssnnnnnns 68
Where DS €1 SE BEIONQ? ..ottt ettt ettt e e sr e aneeas 68
SV TOH 1ttt s aaananannannnannnnnnnnnnnnnnnnnnnnsnnn 69
SWETCN VS, BTNENTEESE ...t e et e e 69
IMIORE ABOUT SW TCH.eettttttetteeeeseseeesesessnsnsnns 70
switch Less Flexible Than I T/then/@ IS ... 70
A SW TCHEXAMPLE. ... 71
TWEIVE DaAYS OF CRFISIMAS.eiittie ettt ettt e e bt e be et e e sbe e e sabeesnbeaabeaen 71
VWHI LE LOOP ... e 72
(ANOTHER) SEMICOLON WARNING! ...ttt ettt ettt ettt ettt ettt sttt et e e sbe e e ssbe e sabe e sbe e e sbeeeeneeas 73
AVOId SEMICOIONS AFLEr WHE L@ .o e e e e e 73
FIUSRING TNPUL ...ttt ettt ettt b bt e b bt e s m b e e e bt e e bt e e sba e e erbeeaneeas 73
VHELE, NOT UNTIL! 74
There Are Only “While” ConditionS IN C.......c.uiiiuiiiiiii et 74
DOWHI L +ttttttteeeeeeseeeeeessesessseessesesssesaessssessesseessseeeessseseseesseesesseeseesessnsnnnnnnnns 75
[0 2] 0] =P PPPPPPPPRPPPRS 76
TOr ANd WRE 1@ COMPATEA ...ttt sttt e et e et e e e sebe e snbeeabeean 76
FORISINOT UNTIL EITHER! ...ttt ettt ettt e et et eeeeeseesssssssessssssssessssassssssssssssssssssssnnnnnnnnnns 7
C Has While Conditions, Not Until CONAITIONSccciuviiiiiiiiiciiiiiieee ettt 77
STEPPING WITH FOR ..uihuuuue ittt it e e ee st et e dan e e e e e adennn s s antn e d e e s a e 78
117> 1 0 0 T 0 IO N 0 S B e U DN SRR UL S O Sl S OO - SRRSO 78
EXTENDING THEFOR LOOP.......oiieeiiteeieeeeeeeeses e saaaaas s sa saaaaaa5s e eessssss SSEEEESraerannasssssbnesemaSEEEEHeeeesnnbennsnnnnnnnnnnnnnnns 79
L T L1 (=T e o] oL PR UUPTUPRUPRPPIN 79
BREAK .. 1ttttteeeeeeeeessssssmnssessssin s e s e sasseans e+« asae R RRRES ¢+ 555 88 HERRRREE ¢ 5552 SEEERE £ 555555555 HHHHERAS £ 555 HEHEEEEEES 5555555555 5ebernrrrrrerrrrnnnns 80
Dreak iS REAIY GOTO! ... i bbb e ek ettt 80
Dreak, SWETCH @N0 LLOOPS.tttk ettt skb et dibe e sbe bbb bttt n e nne e 80
(010 11 81
CONTINUE IS REAIIY GOLO....ccii ettt e e et eees 81
continNUE, SWETCH @nd LOOPS .ii.iiuviviereiiiere s e eieeiseaeseaesfoeees s tineaaseeseaateeeseeesseesteessaesseenseesseenes 81
S Y 2 A2 S s S S 82
CONTROL FLOW PRACTICAL EXERCISES........cctttiiiii ettt 83
CONTROL FLOW SOLUTIONS .. i ettt ere i ccire e tae e e st shevvaass e it aaeis e eee e s aeeitaaeeeeeessaenasrnneseeeens 87
FUNGCTIONS it i e et tae e ittt bae e e 2t iareeeeaaas s e e dREEER S e e e e eatbaeeaeaeessensrrrreseeeesaannes 95
FFUN CTIONS .. eeteeeeteeeeeeee ettt ettt eeeeeeeeeeeeeeeee e eeesee s s e s seseeessssesesessasesessssessssssessssssssessssassssssssnsssnssnsnssnsnnnnnnnns 96
THERULES ... oo 97
WRITING A FUNCTION = EXAMPLEcciiiiiiiiice e 98
=1 (U] o T Y/ o T T T TP PO PP PP OPPPPTPPPPITN 98
FUNCEION NAIME .ottt e e e e ettt e e e e e e s e eabbbaeeeeeeseeetbbbeeeaeesseeastbraaeaaeesaanes 98
P A AT S ... 98
RETUIN VAIUB. ...ttt e e e e ettt e e e e e s e et b aaeeaeeeseeatbbbaeeaaeesasaatbbaaeaaeesannes 98

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

CALLING A FUNCTION = EXAMPLE .cttttuiiiiiiiiettei e ee s e ettt s s e e s s sesb b seessseea bbbt s esssseaabba s eesssessbbaansseessesnsses 99

L (01 0] 1Y oL T T TP PU PP OPP PP TPPPPITN 99
(07 | I OO U U PP PPPPPRPI 99
IGNOKING ThE RELUIN ...ttt sttt et e bt e sta e e snbe e enbeeabeaan 99
CALLING A FUNCTION = DISASTER! ... nnan 100
Y TS T To Il o o] (11 o1 PP U PSP PTR 100
L L@ N KO 1 I = =TSP PPPRPPPPPPPPPPPRt 101
When @ Prototype IS MISSING.ei ettt ettt et e et e e sbb e e snbe e e be e e bee e e 101
PROTOTYPING ISINOT OPTIONALcttttttiitteeteeeeeseeeeeeeeeeseeeeeseereseeseesseeresessssssssssssssssssssssssssssssssssrssrssssssmmmne 102
Calling Standard LibDrary FUNCLIONSoiuiiiiiiiiie ettt e e 102
WRITING PROTOTYPEScciiiiiiiieeeeeee e 103
Convert The Function Header INt0 The ProtOtYPe........ccuuiiiiiiiie i 103
Added DOCUMENTALION ...ttt e e e e e e e e e et b e e e e e e e s eetbbareeeeesssetbbaaeeaaeesaases 103
TAKE CAREWITH SEMICOLONScciiiiiiieeee aaaaaaaaas 104
Avoid Semicolons After The FUNCHION HEAUBTueiviiiiiiiiiiiiiiee ettt 104
X AMPLE PROTOTY PES.....ceeittiitetieieteteeeeeeeeseeeeesseessessessesesssnnns 105
X AMPLE CALLS ..eeetiiiiieeeieieeeeeeeeeeeeeeeeeeesesseseaessasssssseasssasssessssssssassesesssnsnnsnnnnnns 106
RULES OF VISIBILITY eettttttttttteeeeeeeeeeeeeesessessesessnnns 107
C iS @ BIOCK StrUCTUIEd LANQUAGE.veeeieeeeiitieatee ettt ettt ettt sttt et et e e sbe e e snbaesnbeeabeaan 107
CALL BY VALUE ...ttt e nanannnnannnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 108
CALL BY VALUE = EXAMPLE ...ttt nnnan 109
C AND THE STACK ..ttt nnannnannnnnnnnnnnnnsnnnsnn 110
STACK EXAMPLE ...ttt nannann 111
L]] 27X = 112
LOfaTo (eI 111 | PRV PRRUPROPROTIN 112
SBACK vttt e et e et —— e e e e et e e b b ————eae e e e e b——ataae e s e e brrrataaeeaaaarrrres 112
DALA SEOIMENT ...ttt ettt e ettt e e ek ket e e o ekttt e e ekttt e e aa b bt e e e abbe e e e abbe e e e anbbe e e e annneaas 112
[T 1o ST T PO OO U PP T PPPPPRPPP 112
AUTO.........gF =M. . R.. A F=n 5. . . oy . K. 113
Stack Variables are “AULOMALICT ... oouuiee e ieeees e e simmmm e evve b e ereeeesebaebeestbessneesnaseeserresesabheneeserreeeesarens 113
Stack Variables are Initially RANGOM.ouiieeiiiiiinis etk ekt ssa st e see e 113
P I O MANCE ... ettt e e e ettt e e e e e e et — et e e e e e e et b r—aaaaee e e et brrraaaaeaaaaae 113
LS 17 1K 2 114
Static Variables are PEIMANENT.......c..ooiiiiiiiiee et ot ee e e itreeae s e e s e e it beeeeeeseeeatbareeeeeesaentbbrreeeeeens 114
static Variables are INItIAIIZEA.c.ccvviiiii bttt e e s rae e e s ebaee s 114
static Variables Have LOCaI'SCOPEuvoiueieiii e e e 114
REG] STER\..ettttttteeeesssseeessesseeseseessesessnnnns 115
register Variables are Initially. Random. o i i 115
SIOWING COUE DOWN ...t i s e S000ETT L ettt ettt e oot e b e S EEEEE b4 11t e et e et eenteaeenneeaneeas 115
GLOBAL VARIABLES. ... iuuuustnne i iennnaannniannnnnnnnsianssaadonnnnnnnnnnsnnnnnnnnnsabinnsnsionnnnnnnnnnnsshnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 116
Global Variables are INItIAlIZEA...........cooiiiiiiiii e 116
FUNCTIONS PRACTICAL EXERCISES. ...« i i i o a0 0 ittt eetvrree e 119
FUNCTIONS SOLUTIONS ...t e bttt e ettt aaathe e e e s ahnst s eatae e e e s eennbbaaeaaeeesaenabbrraeseeens 121
POINTERS ...ttt e e e ettt e e e e e e ettt a e e e e e e s e et bbb aeaeeeeseetbbraeaaaeeseeabbrraeaaeens 127
POINTERS....eeeeeeeieette ettt ettt ettt ettt eeeeeeeeeeeeeea e e ae s e e s seessaeessessasesssasssssesssssssessssssssssssnsssasssssssssssssssnnsnnnnnnnns 128
POINTERS = WHY 2. eeeeeeetetttteee ettt ettt ettt et ee et eeeeeeeeseeeeaaeseeeeeseessassesesssssssssssesssssssssssssasssssssssnsssssnsnnnnnnnnns 129
DECLARING POINTERS.....cetttttititittieteeteeteeeeeeeeeeeeeeeeesseeseeeesseeseseessessnnns 130
EXAMPLE POINTER DECLARATIONS.ceitttttttttetteteteeeseeseeeeeseeseseessesssssesssnns 131
POINtErS HAVe DIffErENT TYPES ..o utie ittt ettt ettt et bbb e bt e s be e e nbe e e nbee e e 131
POSITIONING The “777 Lttt ettt ettt e st b e e et b e e eab e e e be e e nbe e e nbeee e 131

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

THE “&” OPERATOR ..etttttuiiiieiiiettttititeestteststasseesstesssaatesstessthateasseesssaasstasseesssaaseesseessbsanseesssesssasnnsns 132

Pointers Are Really JUSt NUMDEIS.oiiiie et e 132
PEHINTING POINEETS ...ttt sttt et e bt e et b e e st b e e eabe e e be e e nbe e e nbeee e 132
RUL ... etetttitiiiteee ettt ettt ettt ettt et eeeeeeeeeeeeeeeeeseeeeseesseeseesssaessessssesseasseseesssessesesssssssssssssasssssssnsssssssssnsnnnnnnnnns 133
ASSTGNING AGUIMESSES ...ttt ettt ettt etttk bttt e st e e ket e e b bt e eh bt e e a bt e e bt e e ebe e e abbeeembeeanbeeenbeeenees 133
THE 7 OPERATOR .. cci i i e i e e e ettt ettt e aaaaaaaaaaaaaaaaas 134
WRITING DOWN POINTERS ..ottt 135
INITIALIZATION WARNING! ..o 136
AlWayS INITIAIIZE POINETS ... ittt et sbb et e e e e bee e e 136
INITIALIZE POINTERS! ... 137
Understanding INItAlIZAtioN ...t 137
N L | RO PER 138
NULL QN ZEFO......c ittt ettt ettt e e e e e et et e e e e e e e eeabbbareeeeesssaabbbreeaaeessenstbaseeaeeesaannes 138
A WORLD OF DIFFERENCE!coiiiiiiiic 139
What is Pointed t0 VS the POINTEr HSEIfeiii i 139
FILL IN THE GGAPS ...cceeeeeeteeteteeeeeeeeeeeeeee et eeeeeeeeeeeeseeeeeesseesesesseeesesesssassesessssesssessssssssssssssnssssssssnsnssssssnnnnnnnnnnns 140
TYPEMISMATCH ... 141
CALL BY VALUE = REMINDERuuuuuuuuuuuuuuunnanannnnnnannnsnnnnnnnnnnnnnnnnnnnnn 142
CALL BY REFERENCEuuuuuuuuiuit s nnnnannnnnnnnnnnnnnnnnnnssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 143
POINTERS TO POINTERSccettiiiiiiiiietttteteeteeseteeeeeeeeeeeseeseeaesaeeeeseessasssnnnns 144
POINTERS PRACTICAL EXERCISESoooiii ittt sttt a e eatbrane e 147
POINTERS SOLUTIONSttt ettt e ettt e e e s s e et e e e e e e e s eetbba e e e e e e e s e aabbrraeaaeeas 151
ARRAYS IN Coo et e e ettt e e e e s e e bbb r et e e e e s e et bbb reaaeeessesabbraaaaeeesannes 155
ARRAYSIN C . 156
DECLARING ARRAY S ...ceiittitittiettettteteeeeeeeeeeeeeeeeseeeseesseeseeesssnnns 157
EXAMPLES .0 it e e i e e e e e i, 158
LT LA TaTe B T T O B S OO BTN S SURTUURTL DO SO SO 0 SOTRTRURTP S SRPRPRTR 158
ACCESSINGELEMENTS ..o iieii et ettt et e e e e e e e e e e e e e 159
NUMDEIING SEAMS @t ZEFO.....eo ittt bbbt e e be e e nbe e e sbee e e 159
ARRAY NAMES. ... 160
A POINIEE 10 The SN ... b et e e bt e e e e ettt b bt e e e et e e etbbareeeeesssetbbaeeeeeeesaaees 160
CannOt ASSIGN T0 AN ATTAYveivveirieieiabeeaieeeteeaieaibeesse btk eesseeadaesreessetsseese o fhee b reessresseessnesseessnestnesrnesrnens 160
PASSING ARRAY S TO FUNCTIONS il eitiieiiiieeeeeeeeeseessterersessss e tennsasssssssssssssssnnsssssssssssaansssssssssssssssssssssssnnns 161
Bounds Checking Within FUNCHIONSooiiiiiiieiie e 161
EXAMPLE ..cciiiiiieeeeeeeee e e 5 e e 0000012 JSSS000000 02 S50 0000 mr v e e e e e w2 JSSSSTTET D e e e d T 50T Mmn e e 2 2 HTTT 0T M u e vt evaaearannnnnnnnnnnnnnnnnnnnns 162
A POINTEE 1S PASSEU . 11.eeiie i o imnes e oo e ssmsmnns s e saeseeesssabessesesaessssssss baeessaesssbessasssssstssssssssesssannssssssseeesannnes 162
BoUNAS ChECKING ... it e bbbttt 162
USING POINTERSccetiiiiiititettteteeeeteeeeeeeeeeeeeeeeeeseeeesessesseasssnnnns 163
AAAITION WIEh POINTEES. ...ttt e et e e e e e e s e et b e e e e e e e s eetbbaeeeeeeesaanes 163
POINTERS GO BACKWARDS TOO .evviviiiereeedeiiheeeeeiaeesssthesesasesssaesssasbesssssssssbesssssssbussesssssssssssssssssssssssssssssnns 164
SUDTFACTION FrOM POINTEES. ... i ettt ettt r e et ob e e e st e e e tbeabbeanaees s SET TR et e eeeeseetbbreeeeeeeseanrernens 164
POINTERSMAY BE SUBTRAGCTEDeevviuiesheesseeesiseesasesstessssssnnsssnssssasssssssnssssss aaiaseesssssssssssssssssssssssssssssssssnns 165
USING POINTERS = EXAMPLE.....ccitiiiitiiiiiiittieteeeeeeeeeeseeeseeeeeseesesesssssssssesssnnnns 166
FAND 167
In “*p++" Which Operator iS DONE FIFSt?.......coiuiiiiiiiie e 167
Gl o) F PP OU PSPPI 167
B o TP U P UUPPRUPROPROTIN 167
WHICH NOTATION?. ..o 168
USE WAL IS EASIESE! ..oeiiiiiiiiiciiieiee ettt et e e e s s e ettt e e e e e s e ee bbb reaeeeessenabbaeeeaeeesaanes 168
STRINGS ..t aaa e aaaaaaaaaaanansannanannnnnsnsnnnnnnnnnsnn 169

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

CharaCter AFTAYS VS. SEIINQS ... eeeitiieitiie ittt ettt ettt et e et et et e s be e e ebt e e anbe e e bt e e abeeesbbeessbaaanbeaanbeeans 170

NUll Added AULOMALTICAITYc..eiie ettt 170
EXCIUING NUTL ..ottt ettt e bt et b e e et b e e emb e e e be e e nbe e e nbee e e 170
PRINTING STRINGSceettttiiiitiiittiteeteteeteeeeeeeeeeeeeeeeeeeeee—eeeeeeeereseessessnnns 171
Printf “%S™ FOrMat SPECITIETottt sbe e tee e 171
NULL REALLY DOESMARK THE END!ooiiiiiiiiiieiiieieeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssssssssssssssssssssssssssnsssssnnnnns 172
ASSIGNING TOSTRINGS......coiiiiiiieeeee e 173
POINTING TO STRINGSceetiitiiiiiitietetteeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeseessnnns 174
Strings May be Stored in the Data SEgMENT ..ottt 174
MULTIDIMENSIONAL ARRAY Seetttttetteeeeeeeeeeeeeeeeeeeesseesesesssesseemserremermr. 177
REVIEW ...ttt ettt ettt et ee e et eeeeeeeeeseeseseeessesesesseasseseesssessssssesssssssssssasassssssnssssssssnsnnnnnnnnns 178
ARRAYS PRACTICAL EXERCISES........oii oottt e ettt e e e eitbrae e e e e 181
ARRAYS SOLUTIONS ...ttt e e e s e et e e e e e e s e ettt b b e e e e e e e s s asabbbaeeeeeesaanes 185
STRUCTURES IN C ..ottt ettt e e et e e e e e e s e ettt a e e e e e s s et b baaaaeeeseenabbraeeaaeens 197
STRUCTURES IN €. naannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 198
L000) L0 = = 1 199
SETTING UP THE TEMPLATE ..uuuuuuutu e nnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnn 200
SEIUCTUIES VS, AT TAYS. ... etee ittt e ettt ettt ettt ettt e e ekttt e e ok bt e a4 e s ket e e 4kttt e e e kbt £ e e aabb e e e e b be e e e anbbe e e s anbneaeannens 200
CREATING INSTANGCESuuuuutiti e aaaaannnnnannnsnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 201
INSTANCE? .o 201
INITIALIZING INSTANCES ..o 202
STRUCTURES WITHIN STRUCTURES.......uuuuuuuuuuuuunuuunnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnnnnnnnnnnnnsnnnnnnnnnnnnnnnn 203
Reminder - AVOId LEAAING ZEFOS.ueiiiiiiiiie ittt sttt et e s sbe et e et e e nbee e e 203
ACCESSING IMEMBERScoeiiiiieeee e 204
Accessing Members WHICh @re ATAYSuio ittt 204
Accessing-Members Which are Structures. fi........ oo i e e e S 204
UNUSUAL PROPERTIES...ceeetteitessbeuesestaunnantosessssssssssssssaaaaaatesssssssasssssssssstssssssshessasssssssssssssssssbbssmessssnnsnnnnnns 205
Common-Features Between Arrays and STIUCTUIES......... . .ve iiareeadhesrnisieesithaeeesassnsssressbesreessneseessnens 205
Differences Between Arrays and SIFUCIUIESoiuiiiiieiiii ittt see e 205
INSTANCES MAY BE ASSIGNED........ccciiieieeeeeeeeeee et e aaaaaaaaaaaas 206
CanNNOt ASSIGN ATTAYSeeiferieeieidheeaeiabeesieesseesseaabeesedoreestee st steessetsreestdeee b beeateessnessnesteesbnestnesreesrnens 206
Can Assign Structures CONTAINING ATTAYSeiviiteeietireares et sresietseese B btreesseesseeseesseesseeseeseessnens 206
PASSING INSTANCES TO FUNCTIONScoviiiiiieeeeeeeeeessiereeeeess i 0heeesassssssssssssssnnnssss s s e haneeereessssssssssssssnsnnnns 207
Pass by Value or Pass DY REFEIENCETo e 207
POINTERS TO STRUCTURES ...c ... estttiness fesaasaaase s S4555550neeesssss s S555555555 2224455 0a0n w22 555555 E R ur w222 s ssssssnnnnsnnnsnnnnnnnnnnns 208
RVAY N Gl =) T Y O S oy T Y ST S DS SO TP SRR 209
A NEW OPBIALON ... i et ifheeeee s dbhetae et e e s st e e e adbt e aaieate s etteea e s abne e e e xbneaeaasteeaabn b be e e s eabneaesnsbneaesnnneean 209
USING P S NANE ...eeeettteeeeeeeeeeeeeeeseseseseseessessssesssnnnns 210
PASSBY REFERENCE = VWWARNING.......cceuttttttttteetteeeseeesseeseeeesseesesessssssessesssnns 211
CONST 0 the RESCUEB! ... uteiiee it ettt s it e e tee e e saobrbeeaaeeefo e ttbee s beee e s e et b b aeeeeeeseetbbraeeaeeens 211
RETURNING STRUCTURE INSTANGES ccuuuueteeerasesstesssbensesssnsssssssssbesssssssssss 000ihereesmmmssmesemsessrssssssmmsssene 212
LINKED LISTS.ceietiiiiiiiiiiieeeiiteeeeeseteeesessbesessssesesssessasesstesssssssesssassssasssssssessssss S000hennnennrnrassssssssssssssssssssnsnnnns 213
A RECUISIVE TEMPIALET ...ttt ettt bttt e ettt et e e e sab e e embe e e beeenbee e e 213
Y Y] = =P PPPPPPPPPPPPPPPRt 214
(O gL T I N SRR TP RUPR PRI 214
PRINTING THE LIS .ceetiiiiiiiiiiiiiiitteeteee ettt eeeeeeeeeeeeee e eeeseeaeeseesesesssasaesssssssssasssssssssssssssnsasssssssssssssssnsnnsnnnnnns 215
I Y2 2 2 217
STRUCTURES PRACTICAL EXERCISEScci ittt tvrnne e 219

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

READING C DECLARATIONS ..ottt e e e e e s et bar e e e e e e s e eabbrraeaae s 233
READING C DECLARATIONS......cettttttettteteeeeeseeeeeseeeesesseesesessssssesessmssssssssssssnn 234
INTRODUCTION ... e 235
S Y GO RRRRPPR 236
TYPEDEF ... it i it et e et ettt ettt e ettt et e e e et e et e e et e aaaaaeaans 245
I Y 2 2 252
READING C DECLARATIONS PRACTICAL EXERCISES ..ot 253
READING C DECLARATIONS SOLUTIONSttt eatbraee e 255
HANDLING FILES IN C..oooitiiiie ettt e e ettt e e e e e e s e ettt b a e e e e e s s e sabbbaeeeaeesananes 261
HANDLING FILESIN €.ttt ettt ettt eeeeee et eseeeeeseesesesssessesesssasessssssssssassssssssassssssssssssssssnnnnnnnnnns 262
INTRODUGCTION ... e 263
The STANAAIT LIDFAIY........eiiieie ettt ettt ettt e te e e snbeeaneeas 263
STREAMS ..ttt aaaaaaaaaaaaaaaaaansannnssnnnsannnsnnnnnnnnsnn 264
STAIN, SEAOUT AN STUCK T . .uiiiiiiiie et e e e s et a e e e e e e s eebbbraeeeaeens 264
WHAT ISA STREAM?. ..o 265
Fast Programs Deal With SIOW HarAWAIecoouiiiiiiiiiie et 265
CACNES NG SEFBAIMS. .. .uiiriiiie e ittt e e e et e e e e e s e ettt b e e e e e e e s e e tbbbreeaeeeseaabbbraeaeeessasbbraeeaeeens 265
WHY STDOUT AND STDERR?.....ciiiiiiieieee ettt ettt e 266
STDI NISLINE BUFFERED.......uuuuuiuii s nnnnnnnnnnnnnnnnnnnnnnnnn 268
SIGNAIING ENG OF FIlE ...ttt et snae e 268
Rl o g l0] Al o= 1 USROS P PP UUEURRRPPOI 268
L= =N T T = 269
TNE SEFAML LY ..ttt st et s e e et SRR £ £ £+ £ SRR £ 24 £ 454 H 4554445 4544 £e 2 e s e e me e 269
DEALING WITH ERRORS......otitteiteiiteetaeeeeeebaesieeseesssssseeseeesssesssssbasssssssssabesssssbesssassssssssssssssssbesbessesssssssnnnnns 270
L= <] o AT o o e O O SO TP o B SO O TR PP SUPTPPPRPPRPPY 270
FILE A CCESS PROBLEM ...ceeittttitttteteeteteeeeeseeseseeessesesessessnnns 271
DISPLAYING A FILE....eiiiiiiiiiiiiieieeieeeeeeeeeeeeeeteeeeeeeeeeeeeseeseaaesseesesssssassssssssssssssssssssssssssssssasssssssssssssssnsnnnnnnnnns 272
Reading the Pathname but Avoiding Overflow . 272
The Program’s REUIMICOURitveiiieiiiicieci et sb e T s 00T s 272
EXAMPLE - COPYING FILES ... tueeeeitereeeeeieereeeeeeeeeerssssesssssssbnnsssdessssssssssbnnsnsbssssssnnnnnnnnsssssssssssssssssssssssssnnns 273
Reading and WItING FIlESoo ettt 273
ClOSING TIIES. ettt et et e et e e s bb e e snbe e beeare e 273
Transferring the Jaa........o.. et et B bbbttt 273
Blissful Ignorance of Hidden BUTFEISi i ikttt 274
ClEANING UP . 0 T T 274
Program’s REIUIN COOEcoiueiiiie ittt ettt e et e et bee e abe e bt e e nbe e e ntee e e 274
CONVENIENCE PROBLEM uuuzsuuuu. 25000 5mn e £ e B e S BB a0 000 e nan 275
TYPING PANNAMES ...t et bbbt etk b ettt e s st et e et e e sbe e e snteeeneeas 275
N (o Ot yaTaa PV (o I I T Lo [(=T =TI S S L S S S S PR 275
ACCESSING THE COMMAND LINEcciiiiiiiiiiiece e 276
L[T O PP PO PPU TP PPPPTPPP 276
L0 1Y T T TP U PP PP P PPPPTPPP 276
USEFUL ROUTINES. ...cetettttttttttteteeeeeeeeseeeeseeesssessssesssnnns 278
S AN T e e e e e ——— et e e e s e et rrrrtaaeesaaarrraees 278
LTS (S ST PP POURPTRPPR 278
L 0 g L PP ROUPPRPPR 279
L 10 1 ST PP PROUPPRPPR 279

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

O[S] (o] O] o [o] PP OUPPRPPR 280

BINARY FILES ...eeeeeieiiiiiiieiiitee ettt ettt ettt ettt et eeteeeeeeeeeeeeeesesessssssssssssasaesssssssssssssssssssssssssasssssssssssssssssnssnnnnnnnns 281
0T o1 T ¢ PO TR OUPPRPPR 282
The CONEIOL Z PrODIEM ... e s e et e e e e s e ettt be e e e e e e s e eabarees 282
The NEWIINE PrODIBM. ...ttt e e e e e s e et e e e e e s e et bareeaaeeseearrrees 283
The MOVEMENE PrODIEM . ..uiieiiiie e e e e et e e e e s e et bbb e e e e e e s e aarrrees 284
MOVING AFOUNG FIES ...ttt ettt e ettt e et e bt e e nbe e e nre e e e 284
TSEEPOS VS. TSEEK .ttt et bt e bt e e ebe e e sbe e e sbbe et s 284

SUMMARY ..ttt aaaanaaaasaaannsnannnsnnnnsnnnnsnnsnnsnnsnnsnnn 286

HANDLING FILES IN C PRACTICAL EXERCISES.........oviiiieiiiiceeee ettt 287

HANDLING FILES IN C SOLUTIONS ..ottt e e tbrre e e e e e eanes 289

MISCELLANEOUS THINGS ..ottt e e e e e s e ettt e e e e e s e eabbbaeeeaeeeananes 301

IMISCELLANEOUS THINGS....eeettetteeeeeeeteeeeeeesseseeeseesssessessesssnnns 302

UNTON S, e eeeteteeteeeeeeeeeeeeeeee e ettt eeeeeeeeeeeeeeseesesseseeeseseeeesseeseseessessesssseeeseseessssssssssssssssssssssnsssssssssssssssssssnnnnnnnnns 303
Size Of STrUCT VS. SIZ€ OF UNTON .oiiiiiiiii ettt a e e eab s 303

REMEMBERING.....ccettttttttteeeeeeeeeeeeeeeseseeeessessnnnns 304
A MemDEr 10 RECOIT The Ty 8. . ettt sttt et e e nees 304

EENUMERATED T Y PES.....ettttttttttetteeeeeeeeeeeeeeeeseeeseseesesessessnnns 306

USING DIFFERENT CONSTANTS ..cettttttttttteeeseeeeeeseeseseeseesessesssne 307
PEINTING ©NUMS. ...ttt ettt ekttt e s bt e e a bt e e a bt e ekt e e et b e e eb b e e embe e e bt e e nbeeenbeeenees 307

THE PREPROCESSORciiiiiiiiiiiie ettt ettt ettt e e e e e e e e e e et e aaaaaaaaaaaaaaaaaaaaaaas 308

INCLUDING FILES ... 309

PATHNAMES.cceeeeeeeteeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeeeeaee e s seseesseesesaasssesesesesassesssssssssaessssssssssssssssassssssnssssssssnnsnnnnnnnns 310
FINAING #ENCHUAE FIIBS ...ttt sttt et tee e e 310

PREPROCESSOR CONSTANTS ..eetttttttttetteteeeesseseeeseeessesseesessnns 311
#1f..... €. . A . . R. . AN . . .5 NN BN 311
Hend T . A b T e 311
#HdeTinNGumad. A s o Bt L 311
EUNA T oottt e e e st et a et e e e e e e e et b ra— e e ea e et aatbrarrtaae et aaattraaraaaeesaanes 311

AVOID TEMPTATION! co oot omissssssn e Soaaassaaat e e e s aiaaa0me e e e e e e e e o SEEEE e 22 2 SEEEEEE R 22 aaaaaaaaaaaaaaaaaaaaaaaaens 312

PREPROCESSOR IMACROScet ettttreeestteeeesiesseseesssesssssssessssbasesssssssabesssssssbnsnndessssstnssssnsssssssssssssssssssssssssssnnns 313

A DEBUGGING AID ..ot i e e 315

WORKING WITH LARGE PROJECTS ..., 316

DATA SHARING EXAMPLEetttittittitieieeteeteeeeeeeeeeeeeeeeeeseeeeseeeeeseessssaessnnnns 317
Functions are Global and Sharable e e e 317

DATA HIDING EXAMPLEeveteeeees it e e 0 e eetteeeetaeeeeee e s S550500e e baeeeseessanbeas s 5500 S e uaraaanssnsnnssnsnnssnnnssnsnnnns 318
STATTC BefOre GIODAIS ... ciiuuie. . cevrrssmmnn oo smmasieneereesessseeesesssss s Simasien eesebaesessssbesreseesessesesssreseesassenens 318
EFTOIS @t LINK TIME oiviiiiiei ittt e e ettt e e e e e e e ettt e e e e e e e s s ettt breeeeeessenabbbareeeeesaannes 318

DISASTER! ...oeeiiiiiiiieiieeeeeeeeaaesaeteasasaassesesesesanseesssssass s maesssessmes s amt s s sak s e s s s sms s s s s s Smmmmntsssssssesssssnssssnssssssnsnnnnnnnnns 319
INCONSIStENCIES BEIWEEN IMOUUIESvviie it ieeiirs sttt be e eb b e ettt e sttt e e st e e s e bae e e s erbae e e res 319

USE HEADER FILES......cetiiitiitieieeiiteeeesteseesbe s eeabesenasesstesssshasesssaesssasssssbesssssanssssssshbssssssssssssssssssssssssssssssnnnns 320

GETTING IT RIGHT ..t e nnsnnnannnnnnnnnsnnnnnnnnnssssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnan 321
Place EXIErNS INthe HEAUEKuvviiii ittt e e e s e et r e e e e e s s e erbraeeeeeesaanes 321

BE AS LAZY ASPOSSIBLEeettiettiieieteteeeeeeeeeeeeeeeeeeseesseeseeeessessssssssassnnns 322

IS Y2 2 2 323

MISCELLANEOUS THINGS PRACTICAL EXERCISES ..ot 325

MISCELLANEOUS THINGS SOLUTIONSottt sttt ebarae e e e 327

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

CAND THE HEAP. ..ttt ettt e ekttt e e e bt e e e ea b e e e e s bbe e e e e abb e e e s aabee e e s anbe e e e aaneeeaeaares 330
WVHAT ISTHE HEAP? ..ttt ettt ettt e e s b e e e e s st e e e e e ahb e e e e s bbe e e e aabbe e e e anbeeeesanbeeeesnnneeeas 331
The Parts of an EXECULING PrOGIaIMoiiiiiiiiie ittt ettt sttt et e e ste e e snaeeaneeas 331
] 7= Lot PP PR OUPPRPPR 332
Heap and Stack “iN OPPOSITION™oiiiiiiiiieiii ettt e e bbee bt e st e e nbe e e neae e e 332
HOW MUCH IMEMORY 2.ttt ettt ettt ettt ettt e et e e ekt e e e st bt e e e aabe e e e s bbe e e e aabbe e e e anbeeaeannreeans 333
SIMPIE OPEIALING SYSTEIMS. ...ttt etttk ettt et e e bt e be e e sbbe e ssbeeanbe e e beeenbeeesnbeeaneeas 333
AdVaNCEd OPErating SYSTEIMSiiiieieitiie ittt ettt et te ettt e aabe e e be e e sba e e sbbeeanbeeabeeanbeeenees 333
FULUIE OPEIating SYSTEIMIS. ... ieiiiiiie ittt ettt ettt ettt ettt tb e st et e e be e e sbe e e abb e e embeeanbeeenbeeesreeenees 333
DY NAMIC ARRAY S .. etete ettt ettt ekttt e ekttt e e ettt e e s a b et e e o b bt e e e aabe e e e o bbb e e e aabbe e e e aabe e e e abbe e e e anbbeeeeanbeeaeannreeans 334
USING DY NAMIC ARRAY S.....ttiieiiutiteeiatteeaeattee e e ettt e e aasbeeeaaabeeeaaaabeeaeaabbe e e e aabeeeeeasbeeeeasbeeaeanbbeeesanbeeeeanreaans 335
ONe POINtEr PEI DYNAMIC ATTAYeieiiiieiiiieitee ettt ettt et s bt et e e be e e bt e e beeesbaeessbeeanbeaanteaans 335
Calculating the Storage REQUIFEMENTooiiiiiiiie ettt et s esbe e tee e 335
USING DYNAMIC ARRAY'S (CONTINUED) ...uuteeuteaateeesteeesueeesutessmsesaseessseeesssessasessnsessasessssssssssessnsessnsesanses 336
INSUFFICIENT STOTAGE.o e ietee ettt ettt et e b e et et et e e nta e e nnbeesneeas 336
Changing the ATTAY SIZEoo ettt e bt e bt e be e e sbeeesnbeeanbeeanteaan 336
WHEN FEAT FOC SUCCEEASeeeiiiiiiii ettt ettt sae et e e e e nbeee e 336
Maintain as Few POINters as POSSIDIEc..ii i 337
Requests Potentially IgNOIEdooiiie ettt 337
REIEASING The STOFAQEottt ettt bbb e e mbe e be e e nbe e e sree e e 337
CALLOC/MALLOC EXAMPLE ...tci ittt ettt ettt ettt ettt ettt e bt e bt e e saee e s ab e e s abe e e be e e ebee e sabeesmbeaenbeeeabeeeaneeasnbean 338
e o =g Y ¥ | = =PTSRS PUPTTTPP 339
REALLOC CAN DO IT ALL ttttttutttteaautteaeaauteeaeatseaasauseeasaasseaaaaasseaaaaabeeasasbeeeeaabeee e e ambeeeeanbeeesanbbeeesanbeeesanreaans 340
real 1oc can Replace MAl FOCooiii et 340
Feal 10C Can REPIACE T Eot et 340
ALLOCATING ARRAY SOF ARRAY S ... uttteeittetaeitateasauteeasaasteeasaasseeasaabeeaeaasbeeaeaabbeeaeaasseeesanbeeassanreeaesanneeens 341
Pointers Access Fine With- DYNAMIC ALTAYS.......... . cuemmemmeesseeseoasmmmns seeemmeesseesieesisesseessmmmseessessneesseenseenes 341
Pointers to.Pointers are not Good With Arrays 0f ArraysL ...ttt e 342
USE POINLEIS 10/ AFTAYS. .. 1. iiihe b et eeeestee st ettt skb st e st et e s abe e e sdbeeab e e st bk e bR e bt et esbeea e e nbeenbeenne e 342
DYNAMIC DATA STRUCTURES.cttitttestttesuteasuteaaaseeaasesaaseeasasesasessasesassesassseesnsessasessasessssssesnsesssessasesanses 343
LINKING THE LIST Lttiiiittteeittet e sttt ettt ettt ettt e s st e e et e e e e aab e e e e ekt e e e e s ab e e e e e aabe e e e anbe e e e anbbeeesanbeeaesnnreaans 344
SUMMARY e bt it s ek e e 345
C AND THE HEAP PRACTICAL EXERCISES 00 ccei et the it 347
C AND THE HEAP SOLUTIONS ...ttt bbbttt nne e 349
APPENDICES ..ottt it 050000001kttt et « e et h e ettt e abe e et e snnenteennnens 353
PRECEDENCE AND ASSOCIATIVITY OF C OPERATORS:ciutiiiueeeiterasiessieaesueaasteesatetasteeasseeessseesnsesssessses 354
SUMMARY OF € DATA TYPES. ..eitiiittiieiatete ettt ettt e ettt e e sttt e e e s bbe e e s aabee e e s abbe e e e aabbe e e s aabeeeeaanbeeaesnnreeenanres 355
MAXIMA AND MINIMA FORC TYPES i eeee b e e b e B FEh e B e 00000ttt e e 356
PRINTF FORMAT SPECIFIERS. ...t tussaesansersfauethenaubaeeesiuuthessaeee aeeabeeaahessshasibeseesaastseeesasseeassnsseeesansenessnsseeens 357
TABLE OF ESCAPE SEQUENCESutuuuuiieieietruunistesrasssntanssstteesssssnsiteesssthsssnssbesesesssssnsseesseessssneeesrees 358
F NS o | Y= =TT UU PRI 359
BIBLIOGRAPHY ..ottt ettt ettt 361
THE € PUZZIE BOOK.......eeiiitit ettt ettt ettt ettt e b et e st et e e be e e be e e enbeeaneeas 361
The C Programming Language 2nd EaITION.iiiuiiiiiiaiie sttt 361
The C StANAArd LIDFArYcc.eiieie ettt ettt et e e ste e snaeeaneeas 361
C Traps @nd PItfallS.........ooouii ettt b et e be e ree e 361

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction 1

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Introduction

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

2

Introduction

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ C Programming \

Welcome to CI
O (o]
(o}
(o}
OO
(o)

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1 /

Welcome to C

Target
Audience

Expected
Knowledge

Advantageous
Knowledge

This course is intended for people with previous programming experience with
another programming language. It does not matter what the programming
language is (or was). It could be a high level language like Pascal, FORTRAN,
BASIC, COBOL, etc. Alternatively it could be an assembler, 6502 assembler, Z80
assembler etc.

You are expected to understand the basics of programming:
- What a variable is
The difference between a variable’and a constant
The idea of a decision (“if it is raining, then | need an umbrella, else | need
sunblock”)
The concept of a loop

It would be @n advantage to understand:
Arrays, datasstructures which contain-a-number of slots-of the same type. For
example.an array of 100 exam marks, 1 each for 100 students.
Records, data structures which contain a number of slots of different types.
For example a patient in database maintained by a local surgery.
It is not a problem if you do not understand these lasttwo concepts since they are
covered in the.course!

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

3

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Course Objectives \

Be able to read and write C programs
Understand all C language constructs

Be able to use pointers

Have a good overview of the Standard Library
Be aware of some of C’s traps and pitfalls

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Course Objectives

Obviously in order to be a competent C programmer you must be able to write C
programs. There are many examples throughout the notes and there are
practical exercises for you to complete.

The course discusses all of the C language constructs. Since C is such a small
language there aren’t that many of them. Therewill be no dark-or hidden corners
of the language left after you have completed the course.

Being able to use pointers is something that is absolutely essential for a C
programmer. You may not know what a pointer is now, but-you will by the end of
the course.

Having an understanding of the Standard Library is also important to a C
programmer.” The Standard Library is a toolkit of routines which if weren’t
provided, you'd.have to.invent. In order to use what is provided you need to know
its there - why spend a day inventing a screwdriver if there is.one already in your
toolkit.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

4 Introduction
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Practical Exercises \

= Practical exercises are a very important part of
the course

= An opportunity to experience some of the traps
first hand!

= Solutions are provided, discuss these amongst
yourselves and/or with the tutor

= If you get stuck, ask
= If you can’t understand one of the solutions, ask
= If you have an alternative solution, say

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3 /

Practical Exercises

Writing C is There are a large number of practical exercises associated with this course. This

Important! is because, as will become apparent, there are things that can go wrong when
you write code. The exercises provide you with an opportunity to “go wrong”. By
making mistakes first hand (and with an instructor never too far away) you can
avoid these mistakes-in the future.

Solutions to the practical exercises are provided for you to refer to. It is not
considered “cheating” for you to use these solutions. They are provided for a
number of reasons:

You may just be stuck and need a “kick start”.” The first few lines of a solution
may give you the start you need.

The solution may be radically different to your own, exposing you to
alternative coding styles and strategies.

You may think your own solution'is better than the one provided. Occasionally
the solutions use one line of code where three would be clearer. This doesn’t
make the one line “better”, it just shows you how it can be done.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

5

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Features of C \

C can be thought of as a “high level assembler”
Designed for maximum processor speed

Safety a definite second!

THE system programming language
(Reasonably) portable

Has a “write only” reputation

~o

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4 /

Features of C

High Level
Assembler

(Processor)
Speed Comes
First!

Systems
Programming

Portability

Write Only
Reputation

Programmers coming to C from high level languages like Pascal, BASIC etc. are
usually surprised by how “low level” C is. It does very little for you, if you want it
done, it expects you to write the code yourself. C is really little more than an
assembler with a few high level features. You will see this as we progress
through the course:

The reason C exists is to be fast! The execution speed of your program is
everything to C. Note that this does not mean the development speed is high. In
fact, almost the opposite is true. In order to run your program as quickly as
possible C throws away all the features that make your program “safe”. C is often
described as a “racing car without seat belts”. Built for ultimate speed, people are
badly hurt if there is a crash.

C is the systems.programming‘language to use: Everything-uses it, UNIX,
Windows 3.1;:Windows-95, NT. Very often it is the first language to be
supported. -When Microsoft firstinvented Windows years back, they produced a
C interface with a promise of a COBOL interface to follow. They did so much work
on the C interface that we're still waiting for the COBOL version.

One thing you are probably aware of is that assembler is not portable. Although
a Pascal program will run more or less the same anywhere, an assembler
program will'not. 'If C is nothing more than an assembler, that must imply its
portability is just about zero. This depends entirely on how the C is written. It can
be written to work specifically on one processor and one machine. Alternatively,
providing a few rules are observed, a C program can be as portable as anything
written in any other language.

C has a fearsome reputation as a “write only” language. In other words it is

possible to write code that is impossible to read. Unfortunately some people take
this as a challenge.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

6 Introduction
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ History of C \

= Developed by Brian Kernighan and Dennis
Ritchie of AT&T Bell Labs in 1972

= |n 1983 the American National Standards Institute
began the standardisation process

= |n 1989 the International Standards Organisation
continued the standardisation process

» In 1990 a standard was finalised, known simply
as “Standard C”

= Everything before this is known as “K&R C”

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5 /

The History of C

Brian C was invented primarily by Brian Kernighan and Dennis Ritchie working at AT&T

Kernighan, Bell Labs in the United States. So the story goes, they used to play an “asteroids”

Dennis Ritchie game on the company mainframe. Unfortunately the performance of the machine
left a lot to be desired. With the power of a'386 and around 100 users, they found
they did not have sufficient control over the “spaceship™.. They were usually
destroyed quickly by passing.asteroids.

Taking this rather personally, they decided to re-implement the game on a DEC
PDP-7 which was sitting idle in the office. Unfortunately this PDP-7 had no
operating system. Thus they set about writing one:

The operating system became a larger project than the asteroids game. Some
time later they decided to port it to a DEC PDP-11. This was a mammoth task,
since everything.was hand-crafted in assembler:

The decision was made to re-code the operating system in a high level language,
so it would be more portable between different types of machines. All that would
be necessary would be to implement a compiler on each new machine, then
compile the operating system:

The language that was-chosen was to be a variant of another language in use at
the time, called B."B'is a word oriented language ideally suited to the PDP-7, but
its facilities were not powerful enough to take advantage of the PDP-11 instruction
set. Thus a new language, C, was invented.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

7

C for Programmers

0 1994/1997 - Cheltenham Computer Training

The History of C

Standardization

ANSI

ISO

C turned out to be very popular and by the early 1980s hundreds of
implementations were being used by a rapidly growing community of
programmers. It was time to standardize the language.

In America, the responsibility for standardizing languages is that of the American
National Standards Institute, or ANSI. The name of the ANSI authorized
committee that developed the standard for C was X3J11. The language is now
defined by ANSI Standard X3.159-1989.

In the International arena, the International Standards Organization, or ISO, is
responsible for standardizing computer languages. 1SO formed the technical
committee JTC1/SC22/WG14 to review the work of X3J11. Currently the 1ISO
standard for C, 1ISO 9889:1990, is essentially identical to X3.159. The Standards
differ only in format and in the numbering of the sections. The wording differs in
a few places, but there are no substantive changes to the language definition.

The ISO C Standard is thus the final authority on what constitutes the C
programming language. It is referred to from this point on as just “The Standard”.
What went before, i.e. C as defined by Brian Kernighan and Dennis Ritchie is
known as “K&R C”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

8 Introduction

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Standard C vs K&R C \

= Parameter type checking added

= Proper floating point support added
= Standard Library covered too

= Many “grey areas” addressed

= New features added

= Standard C is now the choice
= All modern C compilers are Standard C
= The course discusses Standard C

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6 /

Standard C vs. K&R C

The C language has benefited enormously from the standardization processes.
As a result it is much more usable than what went before. In K&R C there was no
mechanism for checking parameters passed to functions. Neither the number,
nor the types of the parameters were checked. As a programmer, if you'were
ever so reckless as'to call any function anywhere you were totally responsible for
reading the manual and ensuring.the.call was.correct. In fact a.separate utility,
called lint, was written to do this.

Floating point calculations were always somewhat of a joke in K&R C. All
calculations were carried out using a data type called"double:=This is despite
there being.provision for smaller floating point data type called float. Being
smaller, floats were supposed to offer faster processing, however, converting
them to double and back often took longer!

Although there.had been an emerging Standard Library (a.collection of routines
provided with C) there was nothing standard about what it contained. The same
routine would have different names. Sometimes the same routine worked in
different ways.

Since Standard C is many times more usable than its predecessor, Standard C
and not K&R C, is discussed on this course.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

9

C for Programmers

0 1994/1997 - Cheltenham Computer Training

~

e

tells compiler about standard input and gutput functions (i.e. printf + others)

#include <stdio.h> /* comment */
main function
int main(void)
{
printf(""Hello\n");
“begin” printf(""Welcome to the Course!\n");
return O;
}
flag success Hello
to operating “and” Welcome to the Course!
system

A C Program \

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7 /

A C Program

#include

Comments

main

Braces

printf

\n

return

The #include directive instructs the C Preprocessor (a non interactive editor
which will be discussed later) to find the text file “stdio.h”. The name itself
means “standard input and output” and the “.h”.means it is a header file rather
than a C source file (which have the “.c” suffix). Itis a text file and may be viewed
with any text editor.

Comments are placed within-/* and-*/ character sequences and may span any
number of lines.

The main function is most important. This defines the point at which your
program starts to execute. If you do not write a main function your program will
not run (it will have no starting point). In fact, it won't even compile.

C uses the brace character “{” to mean.“begin” and.“}” to mean “end”. They are
much easier to type and, after a while, a lot easier to read.

The printf function is the standard way of producing output. The function is
defined within the Standard Library, thus it will always be there and always work
in the same way.

The seguence of two_characters\” followed by “n” is' how C handles new lines.
When printed it causes the cursor to move to the start of the next line.

return causes the value, here 0, to be passed back to the operating system.
How the operating system handles this information is‘up to.it. MS-DOS, for
instance, stores.it'in the ERRORLEVEL variable. The UNIX Bourne and Korn
shells store it in a temporary variable, $?, which-may be used within shell scripts.
“Tradition” says that 0 means success. A value of 1, 2, 3 etc. indicates failure.
All operating systems support values up to 255. Some support values up to
65535, although if portability is important to you, only values of 0 through 255
should be used.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

10 Introduction

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ The Format of C \

= Statements are terminated with semicolons
» |ndentation is ignored by the compiler

= C is case sensitive - all keywords and Standard
Library functions are lowercase

= Strings are placed in double quotes
= Newlines are handled via \n

= Programs are capable of flagging success or
error, those forgetting to do so have one or other
chosen randomly!

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8 /

The Format of C

Semicolons Semicolons are very important in C. They form a statement terminator - they tell
the compiler where one statement ends and the next one begins. If you fail to
place one after each statement, you will get compilation errors.

Free Format C.is a free format language. This'is the up-side of having to use semicolons
everywhere. There is no problem.breaking a.statement over two.lines - all you
need do is not place a semicolon in the middle of it (where you wouldn’t have
anyway). The spaces and tabs that were so carefully placed in the example
program are ignored by the compiler, Indentation is entirely optional, but should
be used to make the program more readable.

Case Sensitivity C is a case sensitive language. Although int compiles, “Int”, “INT” or any other
variation will not. All of the 40 or so C keywords are lowercase. All of the several
hundred functions in the Standard Library are lowercase.

Random Having stated that main is to return an integer to the operating system, forgetting

Behavior to do so (either by saying return only or by omitting the return entirely) would
cause a random integer to be returned to the operating system. This random
valuercould be'zero (success) in'which caseyourprogram.may randomly
succeed. More likely is a non zero value which would randomly indicate failure.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

11

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

create two integer ~ =
variables, “a” and “b” #include <stdio.h>
int main(void)
{
int a, b;
read two integer }
numbers into “a” printf("Enter two numbers: '');
and “b” scanf (%I %i", &a, &b);
printfF("%i - %i = %iI\n", a, b, a - b);
write “a”, “b” and “a-b” return O;
in the format specified |}
Enter two numbers: 21 17 _

Another Example \

21 - 17 = 4

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9 /

Another Example

int

scanf

printf

Expressions

The int keyword, seen before when defining the return type for main, is used to
create integer variables. Here two are created, the first “a”, the second called “b”.

The scanT function is the “opposite” of printf. Whereas printf produces
output on'the screen; scant reads from the keyboard. The sequence “%1i”
instructs scanf to read an-integer-from the keyboard. Because“%i %i” is used
two integers will be read. The first value typed placed into the variable “a”, the
second into the variable “b”.

The space between the two “%i”s in “%i1 %i” is important: it instructs scanf that
the two numbers typed at the keyboard.may be separated by.spaces. If “%i ,%i”
had been used instead the user would have been forced to type a comma
between the two numbers.

This example'shows-that printf and scanf share the same format specifiers.
When presented with “%i” they both handle integers. scanf, because it is a
reading function, reads integers from the keyboard. printf, because itis a
writing function, writes integers to the screen.

Note that C is.quite happy to calculate “a-b” and print it out as an integer value. It

would have been possible, but unnecessary, to create another variable “c”, assign
it the value of “a-b” and print out the value of “c”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

12

Introduction

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Variables \

= Variables must be declared before use
immediately after “{”

= Valid characters are letters, digits and “_”
= First character cannot be a digit

= 31 characters recognised for local variables
(more can be used, but are ignored)

= Some implementations recognise only 6
characters in global variables (and function
names)!

= Upper and lower case letters are distinct

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

Variables

Declaring
Variables

Valid Names

Capital Letters

In C, all variables must be declared before use. This is not like FORTRAN, which
if it comes across a variable it has never encountered before, declares it and
gives it a type based on its name. In C, you the programmer must declare all
variables and give each one a type (and preferably an initializing value).

Only letters, digits and the.underscore character'may be validly.used in variable
names. The first character of a variable may be a letter or an underscore,
although The Standard says to avoid the use of underscores as the first letter.
Thus the variable names “temp_in_celsius”; “index32™ and “sine_value” are all
valid; while “32index”, “temp-in-celsius” and “sine$value” are-not. Using variable
name like “_sine” would be frowned upon, although not syntactically invalid.

Variable names may be quite long, with the compiler sorting through the first 31
characters. s\Names may be longer than this; but'there mustbe a difference within
the first 31 characters.

A few implementations (fortunately) require distinctions in global variables (which
we haven’t seen how to declare yet) and function names to occur within the first 6
characters:

Capital letters may be used in variable names if desired. They are usually used
as an alternative to the underscore character, thus “temp~in_celcius” could be
written as “templnCelsius”. This naming style has become quite popular in recent
years and the underscore has fallen into disuse.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

13

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

printf and scanf \

printf writes integer values to screen when %i
is used

scanf reads integer values from the keyboard
when %Il is used

“&” VERY important with scanf (required to
change the parameter, this will be investigated
later) - absence will make program very ill

“&” not necessary with printf because current
value of parameter is used

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11 /

printf and scanf

printf

scanf

The printf function writes output to the screen. When it meets the format
specifier %1, an integer is output.

The scanT function reads input from the keyboard. When it meets the format
specifier %i /the program waits for the userito type an integer.

The “&” is very important with scanf. It allows it to change the variable in

question. Thus in:
scanf(C'%IY, &j)

the “&” allows.the variable “j” to be changed. Without.this rather mysterious
character, C prevents scanT from altering “” and it would retain the random
value it had previously (unless you'd remembered to initialize it).

Since printfdoes not'need to change the-value of any-variable it prints, it does
not need any.“&” signs... Thus.if“]” contains 15, after'executing the statement:

printf(C%i*", j);

we would confidently expect 15 in the variable because printf would have been
incapable of alteringit.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

14 Introduction

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Integer Types in C \

= C supports different kinds of integers

= maxima and minima defined in “limits_h”

type format bytes minimum maximum
char %c 1 CHAR_MIN CHAR_MAX
signed char %cC 1 SCHAR_MIN SCHAR_MAX
unsigned char %c 1 0 UCHAR_MAX
short [int] %hi 2 SHRT_MIN SHRT_MAX
unsigned short %hu 2 0 USHRT_MAX
int %i 2or4 INT_MIN INT_MAX
unsigned int %u 2or4 0 UINT_MAX
long [int] %li 4 LONG_MIN LONG_MAX
unsigned long %lu 4 0 ULONG_MAX

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12 /

Integer Types in C

limits.h This is the second standard header file we have met. This contains the definition
of a number of constants giving the maximum and minimum sizes of the various
kinds of integers. It is a text file and may be viewed with any text editor.

Different C supports integers-of different sizes.” The words short and long reflect the
Integers amount of memory allocated.- A short integer-theoretically occupies less
memory than a long integer.

If-you have arequirement to store-a “small’ number-you could-declare a short
and sit back in the knowledge you were perhaps using less memory than for an
int. Conversely a “large” value would require a long. It uses more memory,

but your program could cope with very large values indeed.

The problem is that the terms “small number” and “large value” are rather
meaningless. Suffice to say that SHRT_MAX is very often around 32,767 and
LONG_MAX very often-around 2,147,483,647. Obviously.these aren’t the only
possible values, otherwise we wouldn’t need the constants.

The most important thing to notice is that the size of int is either 2 or 4 bytes.
Thus we cannot say, for a particular implementation, whether the largest value an
integer may hold will be 32 thousand or 2 thousand million." For this reason, truly
portable programs never use int, only shortor long.

unsigned The unsigned keyword causes all the available bits to be used to store the
number - rather than setting aside the top bit for the sign. This means an
unsigned’s greatest value may be twice as large as that of an int. Once
unsigned is used, negative numbers cannot be stored, only zero and positive
ones.

%hi The “h” by the way is supposed to stand for “half” since a short is sometimes
half the size of an int (on machines with a 2 byte short and a 4 byte int).

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduct

ion

15

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

Integer Example \

{

#include <stdio.h>
#include <limits.h>

int main(void)

unsigned long big = ULONG_MAX;

printfF("minimum int = %i, ", INT_MIN);
printf("maximum int = %i\n", INT_MAX);
printf(""maximum unsigned = %u\n", UINT_MAX);
printf("maximum long int = %li\n", LONG_MAX);
printf(""maximum unsigned long = %lu\n', big);

return 0; —— - - -
minimum Int = -32768, maximum int = 32767

maximum unsigned = 65535

o

maximum long int = 2147483647
maximum unsigned long = 4294967295

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13 /

Integer Example

INT_MIN
INT_MAX

The output of the program shows the code was run on a machine where an int
was 16 bits, 2 bytes in size. Thus the largest value is 32767. It can also be seen
the maximum value of an unsigned_ int is exactly twice that, at 65535.

Similarly the maximum value of an unsigned long int is exactly twice that of
the maximum value of a signed-long int.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

16 Introduction
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Character Example \

Note: print integer
value of character

#include <stdio.h>
#include <limits.h>
int main(void)
{
char lower_a = "a";
char lower_m = "m";
printfF("'minimum char = %i, ", CHAR_MIN);
printf(""maximum char = %i\n", CHAR_MAX);
printf(""after "%c" comes "%c"\n", lower_a, lower_a + 1);
printf("'uppercase is "%c"\n", lower_m - "a" + "A");
return O; — -
} minimum char = 0, maximum char = 255
after "a" comes "b*
uppercase is "M*

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

Character Example

char C has the char data type for dealing with characters. Characters values are
formed by placing the required value in single quotes. Thus:

char lower_a = %a”;

places the ASCIl value of lowercase “a”, 97, into'thelvariable “lower_a”. When
this value of 97 is printed using %c, it is converted back into lowercase “a”. If this
were run on an EBCDIC machine the value stored would be different, but would
be converted so that “a” would appear on the output.

CHAR_MIN, These two constants give the maximum and minimum.values of characters.

CHAR_MAX Since char is guaranteed to be 1 byte you may feel these values are always
predictable at 0 and 255. However, C does not define whether char is signed or
unsigned. Thus:the minimum value of a char could be 128, the maximum value
+127.

Arithmetic With The program shows the compiler is happy to do arithmetic with characters, for
char instance:
lowerga i+ 1

which yields 97 + 1, i.e-'98. This prints out as the value of lowercase “b” (one
character immediately beyond lowercase “a”). The calculation:

lower m - "a® + "A"

which gives rise to “M” would produce different (probably meaningless) results on
an EBCDIC machine.

%c vs %i Although you will notice here that char may be printed using %i, do not think this
works with other types. You could not print an int or a short using %l 1i.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

17

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Integers With Different Bases \

It is possible to work in octal (base 8) and

hexadecimal (base 16)
zero puts compiler zero “x” puts
into octal mode! compiler into

#include <stdio.h> hexadecimal

int main(void)

{

mode

int dec = 20, oct = 020, hex = 0x20;

printf("'dec=%d, oct=%d, hex=%d\n'", dec, oct, hex);
printf("'dec=%d, oct=%0, hex=%x\n", dec, oct, hex);

return O;

dec=20, oct=16, hex=32
dec=20, oct=20, hex=20

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15 /

Integers With Different Bases

Decimal, Octal
and
Hexadecimal

%d

%0
%X

%X

C does not require you to work in decimal (base 10) all the time. If it is more
convenient you may use octal or hexadecimal numbers. You may even mix them
together in the same calculation.

Specifying octal constants is done by placing a leading zero before a number. So
although 8'is a perfectly valid.decimal.eight, 08.is an invalid sequence. The
leading zero places the compiler in octal mode but 8 is not a valid octal digit.
This causes confusion (but only momentary) especially when programming with
dates.

Specifying zero followed by “x” places the compiler into hexadecimal mode. Now
the letters “a”, “b”, “c”, “d”, “e” and “f” may be used to represent the numbers 10
though 15. The case is unimportant, so Ox15AE, Ox15aE and Ox15ae represent
the'same number as‘does 0X15AE.

Causes an.integer to be printed in decimal notation, this is effectively equivalent to
%i

Causes-an integer to be printed in octal notation.
Causes an integer to/be printed in hexadecimal notation, “abcdef” are used.

Causes an integer to be printed in hexadecimal notation, “ABCDEF” are used.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

18

Introduction

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Real TypesIn C \

= C supports different kinds of reals
= maxima and minima are defined in “float.h”

type format bytes minimum maximum
float %f %e %g 4 FLT_MIN FLT_MAX
double %If %le %lg 8 DBL_MIN DBL_MAX

long double %Lf %Le %Lg 10 LDBL_MIN LDBL_MAX

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16 /

Real TypesIn C

float.h

float

double

long double

This is the third standard header file seen and contains only constants relating to
C's floating point types. As can be seen here, maximum and minimum values are
defined, but there are other useful things too. There are constants representing
the accuracy of each of the three types.

This is the smallest and least-accurate of C's.floating point data-types.
Nonetheless it is still good for around 6 decimal places of accuracy. Calculations
using Tloat are faster, but less accurate. It is relatively easy to overflow or
underflowa float since there is comparatively little storage available. A typical

minimum value is 10, a typical maximum value 10*%,

This is C's mid-sized floating point data type. Calculations using double are
slower than those using float, but more accurate. A double is good for around
12 decimal places. Because there is more storage available (twice as much as
for a float) the maximum and minimum values are larger:~Typically 10"*° or
even.10°%,

This is C’s largest floating point data type. Calculations using long double are
the slowest of all floating point types but are the most accurate. A long double
can be good for.around.18 decimal places. Without employing mathematical
“tricks”'a long doubl e stores the largest physical value € can handle. Some
implementations allow numbers up to 10%°%.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

19

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

Real Example \

o

#include <stdio.h>

#include <float._h>

int main(void)

{

double ¥ = 3.1416, g = 1.2e-5, h = 5000000000.0;
printf(C'f=%1R\tg=%1f\th=%1A\n", F, g, h);
printf('f=%le\tg=%le\th=%le\n", ¥, g, h);
printf(C"f=%1g\tg=%lg\th=%Ig\n", f, g, h);
printf("f=%7.21°\tg=%-21e\th=%.41g\n", ¥, g, h);
return O;

} =3.141600 g=0.000012 h=5000000000.000000
=3.141600e+00 g=1.200000e-05 h=5.000000e+09
=3.1416 g=1.2e-05 h=5e+09
= 3.14 g=1.20e-05 h=5e+09

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17 /

Real Example

%lf

%lle

%lg

%7 . 21T

%.21e

%.41g

This format specifier causes printf to display 6 decimal places, regardless of
the magnitude of the number.

This format specifier still causes printf to display 6 decimal places, however,
the-number is displayed in “exponential” notation.' For instance 1.200000e-05
indicates that 1.2 must be muitiplied-by 107

As can be seen here, the “g” format specifier is probably the most useful. Only
“interesting” data is printed - excess unnecessary zeroes are dropped. Also the
number is printed in the shortest format possible. Thus ratherthan 0.000012 we
get the slightly.-more concise 1.2e-05.

The 7 indicates the total width of the number, the 2 indicates the desired number
of decimal places. Since “3.14™is only 4 characters'wide and 7 was specified, 3
leading spaces:are printed. Although it cannot be seen here; rounding is being
done. Thewalue 3.148 would have appeared as 3.15.

This indicates 2 decimal places and exponential format.

Indicates 4 decimal places (none are printed because they are all zero) and
shortest possible format.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

20 Introduction
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Constants \

= Constants have typesin C

= Numbers containing “.” or “e” are double: 3.5,
le-7,-1.29e15

= For float constants append “F”: 3.5F, le-7F

= For long double constants append “L”: -
1.29e15L, le-7L

= Numbers without “.”, “e” or “F” are int, e.g.
10000, -35 (some compilers switch to long Int if
the constant would overflow int)

= For long int constants append “L”, e.g.

9000000L
k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18 /
Constants
Typed When a variable is declared it is given a type. This type defines its size and how
Constants it may be used. Similarly when a constant is specified the compiler gives it a

type. With variables the type is obvious from their declaration. Constants,
however, are 'not declared. Determining their type is not as straightforward.

The rules the compiler uses.are outlined above.-The constant.“12", for instance,
would be integer since it does not contain a “.”, “e” or an “F” to make it a floating
point type. The constant “12.” on the other hand would have type double.
“12.L” would have type ITong double whereas “12.F” would have type float.

Although “12.L"/has type long double, “12L" has type long int.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction 21

C for Programmers 0 1994/1997 - Cheltenham Computer Training
/ Warning! \
#include <stdio.h> double precision constant

i created because of “.”
int main(void)
{
double ¥ = 5000000000.0;
double g = 5000000000; o
constant is integer or long
printfFC f=%If\n", F); integer but 2,147,483,647 is
printfC'g=%1f\n", g); the maximum!
return O;
}

F=5000000000 . 000000
g=705032704.000000 OVERFLOW

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19 /

Warning!

The program above shows one of the problems of not understanding the nature of
constants in C. Although the “.0” at the end of the 5000000000 would appear to
make little difference, its absence makes 5000000000 an integral type (as in the
case of the value which is assigned to “g”)./ Its presence (as in the case/of the
value which/is'assigned to “f") makes it a double.

The problem is that the largest value representable by most integers is around 2
thousand million, but this value is around 2% times as large! The integer value
overflows and the overflowed value is‘assigned to g.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

22

Introduction

0 1994/1997 - Cheltenham Computer Training

C for Programmers

e

o

= Named constants may be created using const

creates an
integer int main(void)
constant
const long double pi = 3.141592653590L ;
\ const int days_in_week = 7;

error! — |

Named Constants \

#include <stdio.h>

[~ const sunday = O;
|_p days_in_week = 5;

return O;

}

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20 /

Named Constants

const

Lvalues and
Rvalues

If the idea of full stops, “e”s, “F’s and “L"s making a difference to the type of your
constants is all a bit too arbitrary for you, C supports a const keyword which can
be used to create constants with types.

Using const the type is explicitly stated, except with const sunday where the
integer type is'the default. - This'is-consistent.with existing rules;for instance
short really means short int, long really means long int.

Once a constant has been created, ittbecomes an rvalue, i.e. it can only appear
on the right of “=". Ordinary variables are Ivalues, i.e. they can appear on the left
of “=".. The statement:

days_in_week = 5;

produces the rather unfriendly compiler message “invalid Ivalue”. In other words
the value on the left hand side of the “=".is.not an lvalue it.is-an rvalue.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

23

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Named constants may also be created using the

Preprocessor Constants \

Preprocessor
— Needs to be in “search and replace” mode
— Historically these constants consist of capital letters

search for “PI1”, replace with 3.1415....

#include <stdio.h> Note: no “="
and no “;

#define PI 3.141592653590L

#define DAYS_IN WEEK 7

#define SUNDAY 0

int day = SUNDAY;
long flag = USE_API;

“PI” is NOT substituted here

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21 /

Preprocessor Constants

The preprocessor is a rather strange feature of C. It is a non interactive editor,
which has been placed on the “front” of the compiler. Thus the compiler never
sees the code you type, only the output of the preprocessor. This handles the
#include directives by physically inserting the named file into what the compiler
will. eventually see:

As the preprocessor is an editor, it can perform search and replace. To putitin
this mode the #define command is used. The syntax is simply:

#define search_text replace_text

Only whole words are replaced (the preprocessor knows enough C syntax to

figure word boundaries). Quoted strings (i.e. everything within quotation marks)
are left alone.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

24

Introduction

0 1994/1997 - Cheltenham Computer Training

C for Programmers

/ Take Care With printf And scanfm

“%c” fills one byte
of “a” which is two
bytes in size {

“0%f” expects 4 byte
float in IEEE format,
“b” is 2 bytes and
NOT in IEEE format

#include <stdio.h>

int main(void)

short a =

printf(""Type a number: ');
scanf("'%c™, &a);
printf(""a = %hi, b = %f\n", a, b);

return O;

Type a number: 1
a = 305 b = Floating support not loaded

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

Slide No. 22 /

Take Care With printf and scanf!

Incorrect
Format
Specifiers

One of the most common mistakes for newcomers to C is to use the wrong
format specifiers to printf and scanf. Unfortunately the compiler does not
usually check to see if these are correct (as far as the compiler is concerned, the

formatting string isjust a string - as long as there are double quotes at the start
and end, the compiler is happy).

It is vitally important to match the correct format specifier with the type of the
item. The/program above attempts to manipulate a 2 byte short by using %c
(which manipulates 1 byte chars).

The output, a=305 can just about be explained. The initial value of “a” is 256, in

bit terms this is:

0000 0001 00000000

When prompted, the user typesd. As printfis in.character mode, it uses the
ASCII value of 1 i.e. 49. The bit pattern for this is:

00110001

This bit pattern is written into the first byte of a, but because the program was run
on a byte swapped machine the value appears to be written into the bottom 8 bits,

resulting in:

0000 0001 0011 0001

which is the bit pattern corresponding to 305.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction 25

C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Summary \

= K&R C vs Standard C

= main, printf

= Variables

= |nteger types

= Real types

= Constants

= Named constants

= Preprocessor constants

= Take care with printf and scanf

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 23 /

Review Questions

1. What are the integer types?
2. What are the floating point types?
3. What format specifier would you use to read or write an.unsigned long int?

4. If you made the assignment

char ¢ = "a";

then printed “c” as an integer value, what value would-you see“(providing the
program was running on an ASCIl machine).

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction - Exercises 27

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Introduction Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

28 Introduction - Exercises

0 1994/1997 - Cheltenham Computer Training C for Programmers

Directory: INTRO

1. Write a program in a file called “MAX_C” which prints the maximum and minimum values of an integer.
Use this to determine whether your compiler uses 16 or 32 bit integers.

2. Write a program in a file called “AREA.C” which reads a real number (you can choose between float,
double or long double) representing the radius of a circle. The program will then print out the area of
the circle using the formula: area = p r*

p to 13 decimal places is 3.1415926535890. The number of decimal places you use will depend upon
the use of float, double or long double in your program.

3. Cut and paste your area code into “CIRCUMF.C” and modify it to print the circumference using the
formula: circum = 2pr

4. When both of these programs are working try giving either one invalid input. What answers do you
see, “sensible” zeroes or random values?
What would you deduce scanf does when given invalid input?

5. Write a program “CASE” which reads an upper case character from the keyboard and prints it out in
lower case.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction - Solutions 29

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Introduction Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

30 Introduction - Solutions

0 1994/1997 - Cheltenham Computer Training C for Programmers

1. Write a program in a file called “MAX . C” which prints the maximum and minimum values of an integer.
Use this to determine whether your compiler uses 16 or 32 bit integers.

This task is made very easy by the constants defined in the header file “limits.h” discussed in the
chapter notes. If the output of the program is in the region of +32 thousand then the compiler uses 16
bit integers. If the output is in the region of £2 thousand million the compiler uses 32 bit integers.

#include <stdio.h>
#include <limits.h>

int main(void)

{
printfC'minimum int = %i, ", INT_MIN);
printf(maximum int = %i\n", INT_MAX);
return O;

¥

2. Write a program in a file called “AREA .C” which reads a real number representing the radius of a circle.
The program will then print out the area of the circle using the formula: area = p r*

In the following code note:
Long doubles are used for maximum accuracy
Everything is initialized. This slows the program down slightly but does solve the problem of the user
typing invalid input (scanf bombs out, but the variable radius is left unchanged at 0.0)
There is no C operator which will easily square the radius, leaving us to multiply the radius by itself
The %.nLf in the printf allows the number of decimal places output to be specified

#include_ <stdio.h>

int main(void)

{
long double radius = 0.0L;:
long double area = 0.0L;
const long double pi = 3.1415926353890L;
printf(*'please give the radius ");
scanf("'%LT", &radius);
area = pi * radiuss* radius;
printf(""Area of circle with radius %.3Lf is %.12LF\n", radius, area);
return O;
¥

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction - Solutions 31

C for Programmers O 1994/1997 - Cheltenham Computer Training

3. Cut and paste your area code into “CIRCUMF.C” and modify it to print the circumference using the
formula: circum = 2pr

The changes to the code above are trivial.
#include <stdio.h>

int main(void)

{
long double radius = 0.0L;
long double circumf = 0.0L;
const long double pi = 3.1415926353890L;
printf(*'please give the radius ");
scanf("'%LT", &radius);
circumf = 2.0L * pi * radius;
printf(*Circumference of circle with radius %.3LT is %.12Lf\n",
radius, circumf);
return O;
¥

4. When both of these programs are working try giving either one invalid input. What answers do you
see, “sensible” zeroes or random values?
What would-you deduce ;scanf does-when given.invalid input?

When scanf failsto read input in the specified format it'abandons processing leaving the variable
unchanged. Thus the output you see is entirely dependent upon how you have initialized the variable
“radius”. If it is not initialized its value is random, thus “area” and “circumf” will also be random.

5. Write a program “CASE” which reads an upper case character from the keyboard and prints it out in
lower case.

Rather than coding in the difference between 97 and 65 and subtracting this from the uppercase
character, get the compiler to do the hard work. “Note that the only thing which causes printf to output a
character is %c, if %i had been:used the-output would have been the ASCIl.value of the character.

#include <stdio.h>

int main(void)

{
char ch;
printf("'Please input a lowercase character ');
scanf("'%c™, &ch);
printf(**the uppercase equivalent is “%c"\n", ch - "a® + "A%);
return O;
}

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C 33

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Operators in C

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

34 Operators in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Operators in C \

= Arithmetic operators

= Cast operator

= |ncrement and Decrement

= Bitwise operators

= Comparison operators

= Assignment operators

= sizeof operator

= Conditional expression operator

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

Operators in C

Slide No. 1 /

The aim of this chapter is to cover the full range of diverse operators available in
C. Operators dealing with pointers, arrays and structures will be left to later
chapters.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C 35
C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Arithmetic Operators \

= C supports the arithmetic operators:

+ addition

- subtraction

* multiplication

/ division

% modulo (remainder)

= “0%” may not be used with reals

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Arithmetic Operators

+ =%/ C provides the expected mathematical operators. There are no nasty surprises.
As might be expected, “+” and “-” may be used in a unary sense as follows:

X
or X

+y;
-ys

The first is rather a waste of time and is exactly equivalent to “x = y” The second
multiplies the value of “y” by -1 before assigning it to “x”.

% C provides a modulo, or “remainder after dividing by”operator:* Thus 25/4 is 6,
25%4 is 1. .This calculation only really.makes sense with integer numbers where
there can be a remainder. When dividing floating point numbers there isn't a
remainder, just a fraction. Hence this operator cannot be applied to reals.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

36

Operators in C

0 1994/1997 - Cheltenham Computer Training

C for Programmers

-

o

division is done, 1 is int main(void)
assigned to “k” {
int i=5, j=4, k
“f" and “g” are double, double ¥ =5.0, g = 4.0, h
double division is done, 1.25 . R
is assigned to “h” E = 1': ; J
= [¢]
h=1/7]
integer division is still done,]
despite “h” being double. return O;
Value assigned is 1.00000 3}

Using Arithmetic Operators \

The compiler uses the types of the operands to
determine how the calculation should be done

“i” and “j” are ints, integer

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3 /

Using Arithmetic Operators

One operator “+” must add integers together and add reals together. It might
almost have been easier to provide two, then the programmer could carefully
choose whenever addition was performed. But why stop with two versions?
There are, after all, different kinds of integer and different kinds of real. .Suddenly
we can see the needfor many different “+”\variations. Then there are the
numerous combinations of int and.double;, short and fFloat etc. etc.

C gets around the problem of having many variations, by getting the “+” operator
to choose itself what sort of addition to perform. If “+” sees an integer on its left
andits right, integer addition is performed. With a real on the-left and right, real
addition is performed instead.

This is also true for the other operators, “-”, “*” and “/”. The compiler examines
the types on'either side of each operator and does whateveris appropriate. Note
that this is literally true::the compiler is.only concerned with the types of the
operands.«No account whatever is taken of the type being assigned to. Thus in
the example above:

h=1/7]j;

It is the types of “i” and " (int) cause integer division to be performed. The fact
that the result is being assigned to “h”, a double, has no influence at all.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

37

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= The cast operator temporarily changes the type

of a variable
if either operand is a double, int main(void)
the other is automatically { R R R
promoted int i=5 j3=4
double f;
f = (double)i 7/ j;
f = i / (double)j;
f = (double)i / (double)j;
f = (double)(@ 7 j);
integer division is done here, return 0-
the result, 1, is changed to a } ?
double, 1.00000

The Cast Operator \

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4 /

The Cast Operator

Clearly we face problems with assignments like:
f=-1i/];

if the compiler is just-going to proceed with integer division we would be forced to
declare some real variables, assign.the integer.values and divide the reals.

However, the compiler allows us to “change our mind” about the type of a variable
or expression. This is done with the cast operator. The cast operator temporarily
changes the type of the variable/expression it is applied to.=Thus in:

f=1/7i;

Integer division'would ‘normally-be performed (since.both“i*:and “j” are integer).
However the:cast:

= (double)i 775;

causes the type.of “i” to.be temporarily changed to double. In effect 5 becomes
5.0. Now the compiler is faced with dividing a double by an integer. It
automatically promotes-the integer “j” to a double (making it 4.0) and performs
division'using double precision maths, yielding the answer 1.25.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

38

Operators in C

0 1994/1997 - Cheltenham Computer Training

C for Programmers

/ Increment and Decrement \

“i” becomes 6

“j” becomes 3

“i” becomes 7

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

++ increment

-- decrement

= C has two special operators for adding and
subtracting one from a variable

= These may be either prefix (before the variable) or
postfix (after the variable):

i++;
it I
++1i;

Slide No. 5 /

Increment and Decrement

C has two special, dedicated, operators which add one to and subtract one from a
variable. How is it a minimal language like C would bother with these operators?
They map directly into assembler. All machines support some form of “inc”
instruction which increments a location in memory by one. Similarly all/machines
support some form-of*“dec” instruction which decrements a location in memory by
one. All that C is doing is mapping.these instructions directly.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

39

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

= The prefix and postfix versions are different

Prefix and Postfix \

#include <stdio.h> equivalent to:
1. JH;
int main(void) 2. i=j;
{
int i, j =5;
i = ++j;
printf("i=%d, j=%d\n", i, j); equivalent to:
i=5; LooiEn
i = j++; 2.
printf(i=%d, j=%d\n", i, j);
return O;
} i

11
[T
11l
[e

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6 /

Prefix and Postfix

Prefix ++, --

Postfix ++, --

Registers

The two versions of the ++ and -- operators, the prefix and postfix versions, are
different. Both will add one or subtract one regardless of how they are used, the
difference is in the assigned value.

When the prefix operators are used, the increment or decrement happens first,
the changed value is then.assigned.-Thus with:

1 = ++j;

The current value of ‘j", i.e. 5 is changed and becomes 6. The'6 is copied across
the “="linto.the variable “i".

With the postfix operators, the increment or decrement happens second. The
unchanged value is assigned, then the value changed. Thus with:

i = j++;
The current value of “", i.e. 5 is copied across the “=" into “i". Then the value of
“I” isrincremented,becoming 6.

What is actually happening here is that C is either using, or not using, a
temporary register to save the value. In the prefix case, “1 = ++j”, the increment
is done and the value transferred. In the postfix case, “i = j++", C loads the
current value (here “5”) into a handy register. The increment takes place (yielding
6), then C takes the value stored in the register, 5, and copies that into “i”. Thus
the increment does take place before the assignment.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

40 Operators in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Truth in C \

= To understand C’s comparison operators (less
than, greater than, etc.) and the logical operators
(and, or, not) it is important to understand how C
regards truth

= There is no boolean data type in C, integers are
used instead

= The value of O (or 0.0) is false

= Any other value, 1, -1, 0.3, -20.8, is true

if(32)
printf(""this will always be printed\n");

if(0)
printf(""this will never be printed\n');

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7 /

Truthin C
C has a very straightforward approach to what is true and what is false.

True Any non zero value is true. Thus, 1 and -5 are both true, because both are non
zero. Similarly 0.01 is true because it, too,/is non zero.

False Any zero value is false. Thus.0, +0,.-0, 0.0 and.0.00 are all false.

Testing Truth Thus you can imagine that testing for truth is a very straightforward operation in

C. Load the value to be tested into aregister and see if any of its bits are set. If
even a single bit is set, the value is immediately identified as‘true. If no bit is set
anywhere, the value is identified as false.

The example above does cheat a little by introducing the if statement before we
have seen itformally. However; you cansee how simple the construct is:

if(condition)
statement-to-be-executed-if-condition-was-true ;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

41

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Comparison Operators \

the comparison fails

= C supports the comparison operators:

< less than

<= less than or equal to

> greater than

>= greater than or equal to
== is equal to

I= is not equal to

= These all give 1 (non zero value, i.e. true) when
the comparison succeeds and O (i.e. false) when

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8 /

Comparison Operators

C supports a full set of comparison operators. Each one gives one of two values
to indicate success or failure. For instance in the following:

int

J
k

= 10, 4., k;

> 5;
<= 1000;

The value 1, i.e.true, would be assigned to.“j”. The value 0, i.e. false, would be

assigned to “k”.

Theoretically any arbitrary non zero integer value could be used to indicate
success. 27 for instance is non zero and would therefore “do”. However C
guarantees that:1 and-only 2-will be used-to-indicate. truth:

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

42 Operators in C
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Logical Operators \

= C supports the logical operators:

&& and
Il or
! not

= These also give 1 (non zero value, i.e. true) when
the condition succeeds and O (i.e. false) when the
condition fails

int i, j = 10, k = 28;

i = (G >5) & (k <100)) || (k> 24);

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9 /

Logical Operators

And, Or, Not C supports the expected logical operators “and”, “or” and “not”. Unfortunately
although the use of the words themselves might have been more preferable,
symbols “&&”, “| |” and “I” are used instead.

C makes the same-guarantees about these operators as. it does for the
comparison operators, i.e.-.the result-will only-ever be 1 or 0.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

43

C for Programmers

/ Logical Operator Guarantees \

= C makes two important guarantees about the
evaluation of conditions

= Evaluation is left to right
= Evaluation is “short circuit”

“i <10” is evaluated first, if false the whole statement is
false (because false AND anything is false) thus “a[i] > 0”
would not be evaluated

if(i < 10 && a[i] > 0)
printf("%i\n", a[i]);

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

0 1994/1997 - Cheltenham Computer Training

Logical Operator Guarantees

C Guarantees

and Truth Table && | false | true or Truth Table/ || | false true
false false false false false true
true false true true true true

C makes further guarantees about the logical operators. Not only will they

produce 1 or 0, they are will be evaluated in a well defined order. The left-most
condition is always evaluated first, even if the condition is more complicated, like:

if(a &H"&& c && d |] ©)

Here “a” will be evaluated first. If true, “b” will be evaluated. It true, “c” will be
evaluated and so on.

The next guarantee C makes is that as soon as it is-decided-whether a condition
is true or false, no further evaluation is. done. Thus if “b” turned out to be false,

“c” and “d” would not be evaluated. The next thing evaluated would be “e”.

This is probably.a good timetorremind youabouttruth tables:

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C
C for Programmers

44
0 1994/1997 - Cheltenham Computer Training

/ Warning! \

= Remember to use parentheses with conditions,
otherwise your program may not mean what you
think

in this attempt to say “i not equal to five”, “li”
is evaluated first. As “i” is 10, i.e. non zero,
i.e. true, “1i” must be false, i.e. zero. Zero is

compared with five

if(li == 5)
printf(""i is not equal to five\n");

printf("'i is equal to five\n");

i is equal to fivel

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11 /

Warning!

Parentheses An extra set of parentheses (round brackets) will always help to make code easier
to read and easier to understand. Remember that code is written once and
maintained thereafter. It will take only a couple of seconds to add in extra
parentheses, /it may save several minutes (or perhaps even hours) of debugging

time.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

45

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

Bitwise Operators

<

= C has the following bit operators which may only
be applied to integer types:

& bitwise and

| bitwise inclusive or
n bitwise exclusive or
~ one’s compliment
>> right shift

<< left shift

Slide No. 12 /

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

Bitwise Operators

As Brian Kernighan and Dennis Ritchie needed to manipulate hardware registers
in their PDP-11, they needed the proper tools (i.e. bit manipulation operators) to
do it.

& vs && You will notice that-the bitwise and, &, is related to the logical and, &&. As Brian
and Dennis were doing more-bitwise-manipulation than logical-condition testing,
they reserved the single character for bitwise operation.

| vs |1 Again the bitwise (inclusive) or, |, is related to the logical or, ||.

N

Truth Tables

A bitwise exclusive or is also provided.

For Bitwise

Operators
or |0 1 and [0 1 xor |0 1
0 0 1 0 0 0 0 0 1
1 1 1 1 0 1 1 1 0

The ones compliment operator “~” flips all the bits in‘a value, so all 1s are turned
to 0s, while all Os are turned to 1s.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

46 Operators in C

O 1994/1997 - Cheltenham Computer Training C for Programmers

/ Bitwise Example \

Ox6eb9 0110 1110 1011 1001
0x5d27 0101 1101 0010 0111
Ox4c21 0100 1100 0010 0001

#include <stdio.h>

int main(void)

{

short a = 0x6eb9;
short b 0x5d27;
unsigned short c = 7097;

Ox6eb9 0110 1110 1011 1001
0x5d27 0101 1101 0010 0111
Oox7fbf 0111 1111 1011 1111

printf(""Ox%x, ", a & b);
printf("Ox%x, ", a | b): Ox6eb9 0110 1110 1011 1001
printf("Ox%x\n", a ~ b); 0x5d27 0101 1101 0010 0111

0x339%¢ 0011 0011 1001 1110

7097 0001 1011 1011 1001
28388 0110 1110 1110 0100
0x4c21, Ox7fbf, 0x339e 7097 0001 1011 1011 1001
3548 0000 1101 1101 1100
\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

28388, 3548
Bitwise Example

printf("%u, ", c << 2);
printf(""%u\n", c >> 1);

return O;

This example shows bitwise manipulation. short integers are used, because
these can be relied upon to be 16 bits in length. If int had been used, we may
have been manipulating 16 or 32 bits depending on machine and compiler.

Arithmetic Working in hexadecimal makes the first 3 examples somewhat easier to
Results of understand. The reason why-the-7097 is in decimalis to show-that “c<<2”
Shifting multiplies the number by 4 (shifting one place left multiplies by 2, shifting two

places multiplies by 4), giving 28388. Shifting right by one divides the number by
2. Notice that the right-most bit is lost in this process. The bit cannot be
recovered, once gone it is gone forever (there is no‘accesstothe carry flag from
C). The missing bit represents the fraction‘(a half) truncated when integer
division is performed.

Use unsigned One important aspect of right shifting to understandiis that if'a signed type is right

When Shifting shifted, the most significant bit is inserted...If an unsigned.type is right shifted, Os

Right are inserted. If you do the maths you'll find this.is correct. If you're not expecting
it, however, it can be a bit of a surprise.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

47

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

= Assignment is more flexible than might first

= An assigned value is always made available for

Assignment \

appear

subsequent use

“n = 22" happens first, this
makes 22 available for
assignment to “m”. Assigning

pr

int i, j, k, 1, m, n;

izj=k=1=m=n = 22;

22 to “m” makes 22 available
for assignment to “I” etc.

intFC%i\n", j = 93);

o

“j” is assigned 93, the 93 is then
made available to printf for
printing

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

Assignment

Assignment
Uses Registers

Here is another example of C using registers. Whenever a value is assigned in C,
the assigned value is left lying around in a handy register. This value in the
register may then be referred to subsequently, or merely overwritten by the next
statement.

Thus in the assignment above, 22.is.placed both‘inta “n” and into.a machine
register. The value in the register is then assigned into “m”, and again into “I" etc.

With: printf("%iXn",% = 93);

93 is assigned to ‘|, the value of 93 is.placed in a register. The value saved in
the register is then printed via the “%1”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

o

Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

48

Operators in C

0 1994/1997 - Cheltenham Computer Training

-

= One of the most frequent mistakes is to confuse
test for equality, “=="", with assignment, “="

C for Programmers

Warning!

int

}

#include <stdio.h>

main(void)
int 1=0
if@i = 0)

printf("i is equal to zero\n");
else

printf(*'somehow i is not zero\n");
return O;

N

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

| - -
|somehow i is not zerol

Slide No. 15 /

Warning!

Test for
Equality vs.
Assignment

A frequent mistake made by newcomers to C is to use assignment when test for
equality was intended. The example above shows this. Unfortunately it uses the
if then else construct to illustrate the point, something we haven’t formally covered
yet. However the construct is very straightforward, as can be seen.

Here ‘i is initialized with the.value.of zero. The testisn’t really.a.test because it is
an assignment. The compiler overwrites the value stored in “i” with zero, this zero
is then saved in a handy machine register. It is this value, saved in the register,
that is tested. Since zero is always false, the else part of the construct is
executed. The program would have worked differently.if the-test had been written
‘== 0

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

49

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

|a+=27;| |f/=9.2;| |i*=j+2;|

Other Assignment Operators \

There is a family of assignment operators:

+= —= *= /= 0=
&= I: N=
<<= >>=

In each of these:
expressionl op= expression2
IS equivalent to:

(expressionl) = (expressionl) op (expression2)

|a=a+27;| |f=f/9.2;| |i=i*(j+2);|

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16 /

Other Assignment Operators

+=, -=, *:, /:,
%= etc.

There is a whole family of assignment operators in C, not just “=". They all look
rather unfamiliar and therefore rather frightening at first, but they really are very
straightforward. Take, for instance, the statement “a -= b”. All this means is “a
=a - b”. The only other thing to remember is that C evaluates the right'hand
expression first, thus*a *= b + 7" definitely means “a =a * (b + 7)” and NOT “a
—a*b+ 7.

If they appear rather strange for a minimalist language like C, they used to make
a difference in the K&R days before compiler optimizers were written.

If you'imagine.the assembler statements produced.by.“a =.a + 7", these could be
as involved as “take value in ‘a’ and load into register”, “take value in register and
add 77, “take value in register and load into ‘a”. Whereas the statement “a += 7"
could just involve “take value in*a’ and add 7.

Although there was a difference.in the K&R days (otherwise these operators
would never have been invented) a modern optimizing compiler should produce
exactly the same code. Really these operators are maintained for backwards
compatibility.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

50 Operators in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ sizeof Operator \

» C has a mechanism for determining how many
bytes a variable occupies

#include <stdio.h>

int main(void)

{
long big;
printf(""\"'big\" is %u bytes\n", sizeof(big));
printf("a short is %u bytes\n", sizeof(short));
printf(""a double is %u bytes\n", sizeof double);
return O;

¥ "big" is 4 bytes

a short is 2 bytes
a double is 8 bytes

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17 /

sizeof Operator

The C Standard does not fix the size of its data types between implementations.
Thus it is possible to find one implementation using 16 bit ints and another
using 32 bit ints. It is also, theoretically, possible to find an implementation
using 64 bit ong integers. Nothing in the language, or Standard, prevents this.

Since C makes it'so difficult-to know:the size of-things in advance; it compensates
by providing a built in operator sizeof which returns (usually as an unsigned
int) the number of bytes occupied by a data type or a variable.

You will notice from the example above that the parentheses are optional:
sizeof(double)

and
sizeof doubfle

are equivalent:

Because sizeof is a keyword the parentheses are optional. sizeof is NOT a
Standard Library function.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

51

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Conditional Expression Operator \

o

The conditional expression operator provides an
in-line if/then/else

If the first expression is true, the second is

evaluated
If the first expression is false, the third is
evaluated
int i, j = 100, k = -1; int i, j =100, k = -1;
i=g>k)?]J:k; i=g<k)?]j:k;
ifg > k) ifg < k)
i=]; i=];
else else
i =k; i = k;

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18 /

Conditional

Expression Operator

C provides a rather terse, ternary operator (i.e. one which takes 3 operands) as
an alternative to the if then else construct. Itis rather like:

condition ? value-when-true : value-when-false

The condition is evaluated.(same.rules as before; zero false, everything else true).

If the condition were found to be true the value immediately after the “?” is used.
If the condition were false the value immediately after the “:” is used.

The types of the two expressions must be the same:~It wouldn’t make much
sense to have one expression evaluating to a double while the other evaluates to
an unsigned char (though most compilers would do their best to cope).

Conditional'expression vs. if/then/else

This is another.of those C operators that you must take at face value and decide
whether to ever use it. If you feel if then else is clearer and more maintainable,
use it. One place where this operator is useful is with pluralisation, for example:

if(dir, == 1)
printf(""1l directory\n'");
else
printf("'%i "directories\n", ‘dir);
may be expressed as:

printf("%i director%s\n", (dir == 1) ? "y" - "ies");

It is a matter of personal choice as to whether you find this second form more
acceptable. Strings, printed with “%s”, will be covered later in the course.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

52 Operators in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Precedence of Operators \

= C treats operators with different importance,
known as precedence

= There are 15 levels

= In general, the unary operators have higher
precedence than binary operators

» Parentheses can always be used to improve
clarity

#include <stdio.h>

int main(void)
{
int j =3*4+481/ 7;

printf("j = %i\n", j);

return O;

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19 /

Precedence of Operators

C assigns different “degrees of importance” or “precedence” to its 40 (or so)
operators. For instance the statement

3*4+ 48/ 7

could mean: ((B *4) + 48) W/ 7
or maybe: (3*4) + (487 7)
or maybe even: 3* (4 +48) /17

In fact it means the second, “(3 * 4) + (48 / 7)" because C attaches more
importance to “*” and “/” than it does to “+". Thus the multiplication and the
divide are done before the addition.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

53

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

<

Associativity of Operators

For two operators of equal precedence (i.e. same
importance) a second rule, “associativity”, is
used

Associativity is either “left to right” (left operator
first) or “right to left” (right operator first)

#include <stdio.h>

int main(void)

{

int

printf(""i = %d\n", i);

i=6*4/77;

return O;

}

Slide No. 20 /

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

Associativity of Operators

Left to Right
Associativity

Right to Left
Associativity

Precedence does not tell us all we need to know. Although “*” is more important

than “+”, what happens when two operators of equal precedence are used, like “*”

and “/” or “+” and “-"? In this case C resorts to a second rule, assaociativity.
Associativity is either“left to right” or “right to left”.

This means the left most operator is done first, then the right.

The right most operator is done first, then the left.

Thus, although “*” and “/” are of equal precedence in “6 * 4 / 77, their
associativity is left to right. Thus. “*” is done first. Hence “6 * 4” first giving 24,
next “24/ 7"=3.

If you are wondering about an example of right to left associativity, consider:
bp+=nc;

a =

Here both “=" and “+=""have the same precedence but their associativity is right
to left. The right hand operator “+="is done first. The value of “c” modifies “b”,
the modified value is then assigned to “a”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

54 Operators in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Precedence/Associativity Table \

Operator Associativity
O [->. left to right
| ~ ++ -- - + (cast) * & sizeof right to left
* | % left to right
+ - left to right
<< >> left to right
< <= >= > left to right
= l= left to right
& left to right
| left to right
n left to right
&& left to right
| left to right
?: right to left
= += -= *= [= Y% etc right to left
, left to right

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21 /

Precedence/Associativity Table

The table above shows the precedence and associativity of C's operators. This
chapter has covered around 37 operators, the small percentage of remaining
ones are concerned with pointers, arrays, structures and calling functions.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C 55
C for Programmers O 1994/1997 - Cheltenham Computer Training

/ Review \

#include <stdio.h>

int main(void)

{
int 1=0, j, k=7, m=5,n
j:m+:2;
printf(""j = %d\n", j)
j:k++>7
printf(""j = %d\n", j)
i ==0¢& k;

j:
printf(""j = %d\n", j);
n

printf("'n = %d\n", n);

return O;

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 22

Review

Consider what the output of the program would be if run? Check with your
colleagues and the instructor to see if you agree.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C - Exercises 57

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Operators in C Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

58 Operators in C - Exercises

0 1994/1997 - Cheltenham Computer Training C for Programmers

Directory: OPERS

1. Write a program in “SUM.C” which reads two integers and prints out the sum, the difference and the
product. Divide them too, printing your answer to two decimal places. Also print the remainder after
the two numbers are divided.

Introduce a test to ensure that when dividing the numbers, the second number is not zero.

What happens when you add two numbers and the sum is too large to fit into the data type you are
using? Are there friendly error messages?

2. Cut and paste your “SUM.C" code into “BITOP.C". This should also read two integers, but print the
result of bitwise anding, bitwise oring and bitwise exclusive oring. Then either use these two integers or
prompt for two more and print the first left-shifted by the second and the first right-shifted by the
second. You can choose whether to output any of these results as decimal, hexadecimal or octal.

What happens when a number is left shifted by zero? If a number is left shifted by -1, does that mean it
is right shifted by 1?

3. Write a program in a file called “VOL . C” which uses the area code from “AREA_C". In addition to the
radius, it prompts for a height with which it calculates the volume of a cylinder. The formula is volume
= area * height.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C - Solutions 59

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Operators in C Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

60 Operators in C - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers

1. Write a program in “SUM. C” which reads two integers and prints out the sum, the difference and the
product. Divide them too, printing your answer to two decimal places. Also print the remainder after
the two numbers are divided.

Introduce a test to ensure that when dividing the numbers, the second number is not zero.

A problem occurs when dividing the two integers since an answer to two decimal places is required, but
dividing two integers yields an integer. The solution is to cast one or other (or both) of the integers to a
double, so that double precision division is performed. The minor problem of how to print "%" is
overcome by placing “%%” within the string.

#include <stdio.h>

int main(void)

{
int first, second;
printf('enter two integers ™);
scanf(%i1 %i*, &First, &second);
printf(%i + %i = %i\n", Ffirst, second, first + second);
printf(%i - %i = %i\n", Ffirst, second, first - second);
printf(%i * %i = %i\n", First, second, first * second);
if(second '= 0) {
printf(%i /7 %i = %.21f\n", first, second,
(double)first / second);
printf(C%i %% %1 = %i\n", first, second,
first % second);
¥
return 05
¥

What happens when you add.two numbers and.the sum.is too large. to fit into.the data type you are
using? Are there friendly error messages?

C is particularly bad at detecting overflow or underflow. “When two'large numbers are entered the
addition and multiplication yield garbage.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C - Solutions

61

C for Programmers

O 1994/1997 - Cheltenham Computer Training

2. Cut and paste your “SUM.C" code into “BITOP.C". This should also read two integers, but print the
result of bitwise anding, bitwise oring and bitwise exclusive oring. Then either use these two integers or
prompt for two more and print the first left-shifted by the second and the first right-shifted by the
second. You can choose whether to output the results as decimal, hexadecimal or octal.

#include <stdio.h>

int main(void)

{

int first, second;

printf('enter two integers ™);

scanf(%i1 %i*, &First, &second);

printf(%x & %x
printf(%x | %x
printf(%x ™ %x

printf(*'enter two

%x\n', First, second, first & second);
%x\n'", First, second, first | second);
%x\n', First, second, first ™ second);

more integers ');

scanf(%i1 %i*, &First, &second);

printf(C'%i << %i
printfC'%i >> %i

return O;

}

%i\n", first, second, first << second);
%i\n", first, second, first >> second);

What happens when a number is left shifted by zero? If a number is left shifted by -1, does that mean it

is right shifted by 12

When a number/isshifted by zero, it should remain unchanged. The effects of shifting by negative

amounts are undefined.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

62 Operators in C - Solutions
O 1994/1997 - Cheltenham Computer Training C for Programmers

3. Write a program in a file called “VOL . C” which uses the area code from “AREA_C". In addition to the
radius, it prompts for a height with which it calculates the volume of a cylinder. The formula is volume
= area * height.

Here notice how an especially long string may be broken over two lines, providing double quotes are
placed around each part of the string.

#include <stdio.h>

int main(void)

{

long double radius 0.0L;
long double height 0.0L;
long double volume 0.0L;

const long double pi = 3.1415926353890L;

printf(*'please give the radius and height ");
scanf("%LT %LT", &radius, &height);

volume = pi * radius * radius * height;
printf("*Volume of cylinder with radius %.3Lf ™
and height %.3LF is %.12LF\n",
radius, height, volume);

return O;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow 63

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Control Flow

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

64 Control Flow

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Control Flow \

= Decisions - ifthen else

= More decisions - switch

= Loops -while, dowhile, for
= Keyword break

= Keyword continue

if I'm bigger than him and I'm hungry...
then it's mealtime
else, if he's bigger than me...

hope he doesn't look hungry
else, if we're the same size

wait to grow bigger

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1 /

Control Flow

This chapter covers all the decision making and looping constructs in C.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow 65

C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Decisions - 1T then \

= Parentheses surround the test
= One statement becomes the “then part”
= |f more are required, braces must be used

scanf("%i", &i);

if(i > 0)
printf("a positive number was entered\n');

if(i <0) {
printf("a negative number was entered\n');
i=-i;

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Decisions 1T then

This formally introduces C’s i T then construct which was seen a few times in the
previous chapter. The most important thing to remember is to surround the
condition with parentheses. These are mandatory rather than optional. Notice
there is no keyword then. It is implied by the sense of the statement.

If only one statement is to be-executed, just write the statement,-if many

statements are to be executed, use the begin and end braces “{” and “}" to group
the statements into a block.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

66 Control Flow

0 1994/1997 - Cheltenham Computer Training C for Programmers
/ Warning! \

= A semicolon after the condition forms a “do
nothing” statement

printf("input an integer: ");
scanf("%i", &j);

ifg > 0);

printf("'a positive number was entered\n');

input an integer: -6

a positive number was entered

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3 /

Warning!

Avoid Spurious Having become used to the idea of placing semicolon characters after each and
Semicolons every statement in C, we start to see that the word “statement” is not as

After i f straightforward as might appear.

A semicolon has been placed after the condition in the code above. The compiler
considers this placed for a.reason.and makes.the semicolon the.then part of the
construct. A “do nothing” or a “no op” statement is created (each machine has an
instruction causing it to wait for a machine cycle). Literally if " is greater than
zero, nothing will be done. After the machine cycle, the next statement is always
arrived at, regardless of the no op execution.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

67

C for Programmers

O 1994/1997 - Cheltenham Computer Training

-

1T then else

= An optional else may be added

= One statement by default, if more are required,
braces must be used

if(i > 0)
printf("i is
else
printf("i is

positive\n');

negative\n');

if(i > 0)
printf("i is
else {
printf("i is
i=-i;

positive\n');

negative\n');

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

<

Slide No. 4 J

1T then else

Optionally an e lse statement, which is executed if the condition is false, may be
added. Again, begin and end braces should be used to block together a more than
one statement.

You may wish to always use braces as-in:

This is perhaps a-suitable point to mention the-braces have'no clear; fixed position in
C. Being a free format language you may feel happier with:

or:

if(i = 0) {

printf(""i is positive\n");

} else {

printr("'i" s negative\n);

ifGi, > 10)

printf("i is/ positive\n!);

else

printf(*"'i_is negative\n');

if(i = 0)

printf(""i is positive\n");

}

else

printf(""i is negative\n™);

}

All are acceptable to the compiler, i.e. the positioning of the braces makes no
difference at all.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

68

Control Flow

O 1994/1997 - Cheltenham Computer Training

/ Nesting 1fs \

= else associates with the nearest it

int i = 100;

if(i > 0)
if(i > 1000)

<: printf(C'i is big\n');

else

printf("i is reasonable\n"): i is reasonable

printf("'i is big\n");

} else

printf(""i is negative\n');

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

C for Programmers

Nesting i1fs

Where Does
else Belong?

belongs.. For instance, consider:

if it is'a'weekday
ifiit is raining catch-the bus to-work
else walk to work

C, along with other high level languages, has a potential ambiguity with nested i T
then el se statements. This arises in trying to determine where an el se clause

Does this mean ‘if it is a weekday and it is not raining” walk to work, or does it
mean “if it is not a weekday” then walk to work. If thelatter, we could end up

walking to work‘at weekends, whether.or not it is raining.

C resolves this ambiguity by saying that all elses belong to the nearest if.
Applying these rules to the above would mean “if it is.a weekday and it is
raining” walkto.work.~Fortunately we will.not end up walking to work at
weekends.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

not

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

69

C for Programmers

O 1994/1997 - Cheltenham Computer Training

/

= C supports a switch for multi-way decision

switch \

making

switch(c) {

case "a": case "A":
printf(area = %.2fA\n", r * r * pi);
break;

case "c": case "C":
printf(“'circumference = %.2f\n", 2 * r * pi);
break;

case "q":
printf(""quit option chosen\n');
break;

defaul t:
printf("'unknown option chosen\n");
break;

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

switch

switch vs.
if/then/else

C supports a multi-way decision making construct called switch. The code
above is an alternative to the nested if then else construct:

if(c/== %at || ¢ == "A")
printf(area===%_2f\n", 'r *r * pi);
else 1f(c == _"c® |l .c ==.°C*»)
printf('circumference = %.2f\n", 2 * r * pi);
else if(c == "q°)
printf('quit-option chosen\n)s;
else
printf('unknown option chosen\n™);

The conditions may be placed in any order:

switch(c) {
default:
priantf(“unknown loptionsechosen\n™);
break;
case "q°":
printf('quit option chosen\n'™);
break;
case /fc":l.case "C:
printf(*'circumference = %.2f\n", 2 * r * pi);
break;
case "a": case "A":
printf(Carea = %.2f\n", r * r * pi);
break;

}

Placing defaul t first does not alter the behavior in any way.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

70 Control Flow

O 1994/1997 - Cheltenham Computer Training C for Programmers

/ More About switch \

= Only integral constants may be tested

» If no condition matches, the default is executed
= |f no default, nothing is done (not an error)

= The break is important

switch(i) {

case 3: printf("i = 3\n")
case 2: printf("i = 2\n")
case 1: printf("i = 1\n")

}

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7 J

More About switch

switch Less The switch is actually a little less flexible than an i then el se construct.
Flexible Than switch may only test integer types and not any of the reals, whereas
if/then/else

if(F == 0.0)

printf(""f iIs zero\n");
is quite valid,

switch(P) {
case 0.0:
printf(""f Is zero\n™);
break;

}

will not compile. Also, the switch can test only against constants, not against
the values of other variables. Whereas

if@i == j)
printf(equal\n');
is valid:

switchCi) {
case j:
printf('equal\n™);
break;

is not.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

71

C for Programmers

O 1994/1997 - Cheltenham Computer Training

-

A switch Example \

switch(i) {
case 1:
case 2:
case 3:
default:

switch(i) {
case 12:
case 11:
case 10:
case
case
case
case
case
case
case
case
case

PNWRAUOTON®OO

printf('On the ™);

printf(" day of Christmas my true love sent to me ");

printf("1st™); break;
printf("2nd™); break;
printf("3rd™); break;

printf("%ith”, i); break;

printf("twelve lords a leaping, ™);
printf('eleven ladies dancing, ");
printf("ten pipers piping, ");
printf(’'nine drummers drumming, ');
printf(eight maids a milking, ");
printf(’seven swans a swimming, ");
printf("six geese a laying, ");
printf("five gold rings, ");
printf('four calling birds, ");
printf("three French hens, ™);
printf("two turtle doves and ™);
printf('a partridge in a pear tree\n");

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

A switch Example

Twelve Days of This example shows the effects of the presence or absence of the break keyword

Christmas on two switch statements. With the first, only one statement in the switch will
be executed. For example, say ‘i".is.set to 2, the first switch calls. printf to
print “2nd”. The break is encountered causing the swi tch to finish.and control

be-transferred to the line:

printf(*'day of Christmas my true love sent to me™);

Then the second switch is entered, with “i" still set to 2. The printf

corresponding to the “two turtle doves” is executed, but since there is no break,

the print¥.corresponding to the “partridge in the pear tree™is.executed. The

absence of breaks in the second switch statement means that if “i” were, say,

10 then 10 printf statements would be executed.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

72

Control Flow

0 1994/1997 - Cheltenham Computer Training

C for Programmers

-

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

while Loop

The simplest C loop is the while

Parentheses must surround the condition

One statement forms the body of the loop
Braces must be added if more statements are to

be executed

int j = 5;

while(> 0)
printf("j =

%i\n", j--);

while(> 0) {
printf("j
J--:

}

= %i\n", j);

[T T = = =

PNWhAO

<

Slide No. 9 /

while Loop

C has three loops, whi le is the simplest of them all. It is given a condition (in
parentheses, just like with the i f statement) which it evaluates. If the condition
evaluates to true (non zero, as seen before) the body.of the loop is executed. The
condition is evaluated again, if still true, the' body of the loop is executed again.
This continues until'the condition finally evaluates to/false. Then execution jumps

to the first statement that follows-on-after the'loop.

Once again if more than one statement is required in the body of the loop, begin
and end braces must be used.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

73

C for Programmers

/ (Another) Semicolon Warning! \

3
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

= A semicolon placed after the condition forms a
body that does nothing

int j = 5; program disappears
S ﬁ into an infinite loop
while(> 0);
printf("j = %i\n", j--);

* Sometimes an empty loop body is required

int c, j; placing semicolon

while(scanf('%i", &) = 1) on the line below
while((c = getchar()) != "\n") ~ makes the

- intention obvious

0 1994/1997 - Cheltenham Computer Training

(Another)

Avoid
Semicolons
After while

Flushing Input

Semicolon Warning!

We have already seen that problems can arise if a semicolon is placed after an
i T statement. A similar problem exists with loops, although it is more serious.
With if the no op statement is potentially executed only once. With a loop it
may be executed an infinite number of times. In the example above, instead of
the loop body being:

PEEALEC Jw= %INRYY Jj=-);

causing “j" to be decremented each time around the loop, the body becomes “do
nothing”. Thus*j” remains at 5. The program loops infinitely doing nothing. No
output is seen because the program is so busily “deing.nothing” the printf
statementis_never reached.

Occasionally doing nothing is exactly what we want. The practical exercises have
already illustrated that there is a.problem with scanf:buffering.characters. These
characters may.be thrown away with the whi I'e loop shown.above. This employs
some of the features we investigated in the last chapter. When the value is
assigned to “c”, that value (saved in a register) may be tested against “\n”.

To be-honest this.scanf loop above leaves somethingto-be desired. While
scanf is failing there is no indication that the user should type anything else (the
terminal seems to hang), scant just waits for the next thing to be typed.
Perhaps a better construction would be:

printf('enter an integer: ");
while(scanf('%i*, &j) = 1) {
while((ch = getchar()) = "\n%)

printf('enter an integer: ");

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

74
C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ while, Not Until! \

= Remember to get the condition the right way
around!

babl int j = 5;
inLtJeSr?(:.lsp ‘r‘ct)m?il jyis printf(start\n");
- while(== 0)
equal to_ze.ro , printf("j = %i\n", j--):
however this is NOT printf("end\n™);
the way to write it
start

end

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11 /

while, Not Until!

There Are Only ~ One important thing to realize is that all of C’s conditions are while conditions.
“While” The loops are executed while the condition is true.

Conditions in.C

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

75

C for Programmers

O 1994/1997 - Cheltenham Computer Training

/ dowhile \

= do while guarantees execution at least once

int j = 5;

(7]
-
o)
=
-

printf(""start\n");
do

printf(""j = %iI\n", j--);
while(> 0);
printf("'stop\n");

[L O I I |
PNWhAO

)\ttt et

int j = -10;
printf("start\n");
do {
printf(""j = %i\n", j);
J--;
} while(> 0);
printf(*'stop\n');

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

dowhile

The do while loop in C is an “upside down” version of the whi Il e loop.
Whereas whi le has the condition followed by the body, do whi le has the body
followed by the condition. This means the body must be executed before the
condition is reached. Thus the body is guaranteed to be executed at least once.
If the condition is false the loop bodyis never executed again.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

76 Control Flow
O 1994/1997 - Cheltenham Computer Training C for Programmers

/ for Loop \

= for encapsulates the essential elements of a
loop into one statement

for(initial-part; while-condition; update-part)

[T T = =
o nmnn
PN WhO

j:
j:
j:
j:
j:

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

for Loop

The Tor loop is syntactically the most complicated of C’s 3 loops. Essentially
though, it is similar to the whi le loop, it even has a while type condition. The C
for loop is one of the most concise. expressions of a loop.available.in any
language. It/brings together the starting conditions, the loop condition and all
update statements that must be completed before the loop can be executed
again.

for Andwhille The construct:

Compared
for(initial-part; whille-condition;,update-part)

body ;
is equivalent to:

initial -part;
while(while-condition) {
body;
update-part;
}

Essentially all you need-is to remember the two semicolon characters that must
separate the three parts of the construct.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow 77
C for Programmers 0 1994/1997 - Cheltenham Computer Training

a for Is Not Until Either! N\

= Remember to get the for condition the right way
around (it is really a while condition)

int j; x

user probably printf('start\n});
intends “until j is for(J = 5; j == 0; j--)
equal to zero”, printf(’j = %i\n", j);
however this is NOT printf(“end\n");
the way to write it start
either! end

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

for Is Not Until Either!

C Has While This slide is here to remind you once again there are no “until” conditions in C.
Conditions, Not Even though there are 3 kinds of loop, they all depend on while conditions - the
Until Conditions loops continue while the conditions are true NOT until they become false.

The loop in the program above never really gets started.. " is initialized with 5,
then *j”lis tested against zero.: Since-“j” is not.zero, C jumps over-the loop and
lands on the printf("end\n"") statement.

One point:worth making is that the Tor is a cousin of the whi Ie not a cousin of
the do whi le. Here we see, just like the whi Ie loop, the For loop body can
execute zero.times. With the do while loop the body-is guaranteed to execute
once.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

78 Control Flow
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Stepping With for \

= Unlike some languages, the for loop is not
restricted to stepping up or down by 1

#include <math.h>
int main(void)
{
double angle;
for(angle = 0.0; angle < 3.14159; angle += 0.2)
printf("sine of %.11f is %.2If\n",
angle, sin(angle));
return O;
}

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15 /

Stepping With for

Some languages, like Pascal and Ada, only allow for loops to step up or down by
one. If you want to step by 2 you end up having to use a while construct. There
is_no similar restriction in C. It is possible to step up_or down in whole or
fractional steps.

Here the use of += is illustrated to.increment.the‘variable “angle”-by 0.2 each time
around the loop.

math.h This is the fourth Standard header file'we have met. It contains declarations of
various mathematical functions, particularly the sine*(sin) function which is used
in the loop.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

79

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= The initial and update parts may contain multiple

* The initial, condition and update parts may

Extending the for Loop \

comma separated statements

int i, j, k;

for(i =0, J =5, k=-1; 1 < 10; i++, j++, k--)

contain no statements at all!

for(; i < 10; i++, j++, k--)
| |

for(;i < 10;) use of awhile loop
would be clearer here!

creates an infinite loop
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Extending the for Loop

Infinite Loops

The Tor loop would seem ideal only so long as one initial statement and one loop
update statement are required. If two or more should need executing it would
seem as though an alternative construct would.be needed. However this is not
the case, using the special comma operator, several statements may be executed
in.the initial and/or-update parts of the loop.

The comma operator guarantees sequential execution of statements, thus “i = 0”
is guaranteed to be executed before “j = 5” which is guaranteed to be executed
before “k =-1".

If you have .no need for an initial or an.update condition, leave the corresponding
part of the loop empty, but remember the semicolon. In the example above:

for(; <7105
would probably be better replaced with:
while(i < 10)

The strange looking construct:
for(::)

creates an infinite loop and is read as “for ever”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

80 Control Flow

O 1994/1997 - Cheltenham Computer Training C for Programmers

//r break \\\

» The break keyword forces immediate exit from
the nearest enclosing loop

= Use in moderation!

if scanf returns 1, jump
out of the loop

for(;) {
printf(""type an int: ");
if(scanf("%i", &) == 1)
break;
while((c = getchar()) !=

}

printfC'j = %i\n", j); type an int: an int

type an int: no
Slide No. 17 J

type an int: 16
j =16
\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk
break

It must seem strange that C has a construct to deliberately create an infinite loop.
Such a loop would seem something to avoid at all costs! Nonetheless it is
possible to put infinite loops to work in C by jumping out of them. Any loop, no
matter what the condition, can be jumped out of using the C keyword break.

We saw the loop below earlier:

printf('enter an integer: ");
while(scanfF(™% ", &j) 1="1) {
while((ch = getchar()) L=."\n")

printf("enter an ‘integer: ™);

}

This loop has the printf repeated. If the printf were a more complicated
statement, prone to frequent change and the loop many hundreds of lines long, it
may be a problem keeping the two lines in step. The for(; ;) loop addresses
this problem by having only one printf.

break is Really It doesn’t necessarily address the problem very well because it now uses the
Goto! equivalent of a goto statement!

The goto is the scourge of modern programming, because of its close relationship
some companies ban the use of break. If itis to be used at all, it should be used
in moderation, overuse is liable to create spaghetti.

break, switch This is exactly the same break keyword as used in the switch statement. If a
and Loops break is placed within a switch within a loop, the break forces an exit from the
switch and NOT the loop. There is no way to change this.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

81

C for Programmers

O 1994/1997 - Cheltenham Computer Training

-

o

continue \

The continue keyword forces the next iteration
of the nearest enclosing loop

Use in moderation!

if j is exactly divisible
by 3, skip

for(= 1; j <= 10; j++) {
ifg % 3 == 0)

continue;
printf("j = %i\n", j);

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18 J

L T T O I R VA 1}
P oO~NOTADNRE

[T T T T T T =

continue

continue is
Really Goto

continue,
switch and

Loops

Whereas break forces an immediate exit from the nearest enclosing loop the
continue keyword causes the next iteration of the loop. In the case of while
and do whi le loops, it jumps straight to the condition and re-evaluates it. In the
case of the for loop, it jumps onto the update part of the loop, executes that,
then re-evaluates thecondition.

Statements applying to the use of break similarly apply to continue. Itis just
another form of goto and should be used with care. Excessive use of continue
can lead to spaghetti instead of code: In fact the loop above could just as easily
be written as:

for(= 1; j <= 10; j++)
it % 3 = 0)
printFC ' =%i\n";9j);

Whereas break has an effect on the switch statement, continue has no such

effect. Thus a continue placed within a switch within a loop would effect the
loop.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

82
C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Summary \

= 1T (then) else - watch the semicolons
= switch can test integer values
= while, dowhile, for - watch the semicolons
again
* break
* continue
E15Ie ua:nt to be a tamato
.
o
(e]
o
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19 /

Summary

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow - Exercises 83

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Control Flow Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

84 Control Flow - Exercises

0 1994/1997 - Cheltenham Computer Training C for Programmers

Directory: FLOW

1. Write a program in “QUANT . C” which “quantifies” numbers. Read an integer “x” and test it, producing
the following output:

x greater than or equal to 1000 print “hugely positive”
x from 999 to 100 (including 100) print “very positive”

x between 100 and 0O print “positive”

x exactly 0 print “zero”

x between 0 and -100 print “negative”

x from -100 to -999 (including -100) print “very negative”

x less than or equal to -1000 print “hugely negative”

Thus -10 would print “negative”, -100 “very negative” and 458 “very positive”.

2. Cut and paste your AREA, RADIUS and VOL programs into a file called “CIRC . C” which accepts four
options. The option ‘A’ calculates the area of a circle (prompting for the radius), the option ‘C’
calculates the circumference of a circle (prompting for the radius), the option ‘V’ calculates the volume
of a cylinder (prompting for the radius and height), while the option ‘Q’ quits the program.

The program should loop until the quit option is chosen.

3. Improve the error checking of your “CIRC” program such that the program will loop until the user enters
a valid real number.

4. Write a program in “POW.C"” which reads two numbers, the first a real, the second an integer. The
program then outputs the first number raised to the power of the second.
Before you check, there is no C operator to raise one number to the power of another. You will have to
use a loop:

5. Write a program in-“DRAWX {C” which draws an “x” of user specified height. If the user typed 7, the
following series'of ‘*’ characters would be drawn (without the column“and line numbers):

123 4567

x| x|

* *

N O O0LDs WNEe
*

and if the user typed 6 would draw ‘*’ characters as follows:

O 01T WD .
*
*

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow - Exercises 85
C for Programmers 0 1994/1997 - Cheltenham Computer Training

6. Write a program in “BASES.C” which offers the user a choice of converting integers between octal,
decimal and hexadecimal. Prompt the user for either ‘0’, ‘d’ or ‘h’ and read the number in the chosen
format. Then prompt the user for the output format (again ‘o’, ‘d’ or ‘h’) and print the number out
accordingly.

A nice enhancement would be to offer the user only the different output formats, i.e. if ‘0’ is chosen and
an octal number read, the user is offered only ‘d’ and ‘h’ as output format.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow - Solutions 87

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Control Flow Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

88 Control Flow - Solutions

0 1994/1997 - Cheltenham Computer Training C for Programmers

1. Write a program in “QUANT . C” which “quantifies” numbers. Read an integer “x” and test it, producing
the following output:

x greater than or equal to 1000 print “hugely positive”
x from 999 to 100 (including 100) print “very positive”

x between 100 and 0O print “positive”

x exactly 0 print “zero”

x between 0 and -100 print “negative”

x from -100 to -999 (including -100) print “very negative”

x less than or equal to -1000 print “hugely negative”

Thus -10 would print “negative”, -100 “very negative” and 458 “very positive”.

In the following solution the words “very” and “hugely” are printed separately from “positive” and
“negative”.

#include <stdio.h>

int main(void)

{
int i;
printf("'Enter an integer ");
scanf('%i1", &i);
if(i >= 1000 || 1 <= -1000)
printf(*hugely ™);
else 1f(i >= 100 || 1 <= -100)
printf('very ");
if@¢i™, 0)
prantf('positive\n’);
else 1If(iIM== 0)
printf(*zero\n™);
else if(i < 0)
printf('negative\n:’),;
return O;
}

2. Cut and paste your AREA, RADIUS and VOL programs into a file called “CIRC.C” which accepts four
options. The program should loop until the guit option is chosen.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow - Solutions

89

C for Programmers

3

O 1994/1997 - Cheltenham Computer Training

Improve the error checking of your “CIRC” program such that the program will loop until the user enters
a valid real number.

Notice the getchar loop to discard unread input. When the character is entered via getchar, or the real
number read via scanf, the return key is saved (it is buffered as we shall see in a later chapter).

Although this doesn’t cause a problem the first time through the loop, it does cause a problem the

second and subsequent times.

The value returned by scanf is important. When told to read one thing (as with “%Lf") scanf returns one
on success, if the input is not in the correct format zero is returned. If this is the case, the getchar loop
is entered to discard this unwanted input.

#include <stdio.h>

int main(void)

{

ch;

still_going = 1;
long double radius = 0.0L;
long double answer = 0.0L;
long double height = 0.0L;

const long double pi = 3.1415926353890L;

while(still_going) {

printf("Area A\n"*
"Circumference C\n"
"Volume V\n"'
Quik Q\n\n"

"Please choose ");
ch = getchar();

if(cch == "A® || .ch == "C"]| ch == "v") {
do g
printf("’'please give the radius '3
while(getchar() '=_°\n")

}
whi le(scanF("%LF™", “&radius)"1="1)5

}
if(ch == "Vv*) {
do {
printf(*'please give the height ");
while(getchar() Y¥=y"\n")
}
while(scanf("%LF"™, '&height) "I= 1);
}

if(ch = "A" && ch 1= "C" && ch 1= V%)
while(getchar() = *\n*")

if(ch == "A") {
answer = pi * radius * radius;
printf(**‘Area of circle with radius %.3LT is %.12Lf\n",
radius, answer);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

90 Control Flow - Solutions
O 1994/1997 - Cheltenham Computer Training C for Programmers
} else if(ch == *C") {
answer = 2.0 * pi * radius;
printf(**'Circumference of circle with radius *
"%.3LF is %.12LF\n",
radius, answer);
} else if(ch == *Vv*) {
answer = pi * radius * radius * height;
printf(**Volume of cylinder with radius *
"%.3LT and height %.3LT is %.12Lf\n",
radius, height, answer);
} else if(ch == Q%)
still_going = 0;
else
printf(**'Unknown option "%c® ignored\n\n*, ch);
}
return O;
}

4. Write a program in “POW.C"” which reads two numbers, the first a real, the second an integer. The
program then outputs the first number raised to the power of the second.

Careful consideration must be given to the initialization of “answer” and the loop condition “count < p” in
the program below. Initializing “answer” with zero and or a loop condition of “count <= p” would have
yielded very different (i.e. wrong) results.

#include <stdio.h>

int magn(void)

{

int
int
double

p =0;
n = 0.0L;

long double answer,= 0=0L;

printf(enter the number ™);
scanf("%IF", &n);

printf('enter the power ');
scanf('%d", &p);

for(answer ‘= _ns count < _p; count++)

answer = answer * n;

printf('%.31F to the“power of [%duis %.9LF\n" J ng pr.answer);

return O;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow - Solutions

91

C for Programmers

O 1994/1997 - Cheltenham Computer Training

5. Write a program in “DRAWX . C” which draws an “x” of user specified height.

Drawing the top left/bottom right diagonal is easy since ‘*’ occurs when the row and column numbers
are equal. For the other diagonal, =’ occurs when the column number is equal to the height less the

row number plus one.

#include <stdio.h>

int main(void)

{

int height;
int row;
int column;

printf("’Enter height of *x* ");
scanf("'%i", &height);

for(row = 1; row <= height; row++) {
for(column = 1; column <= height; column++) {
if(row == column || column == height - row + 1)
printf('*");
else
printf(C" ™);

¥
printf('\n");
¥

return O;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

92 Control Flow - Solutions
O 1994/1997 - Cheltenham Computer Training C for Programmers

6. Write a program in “BASES.C” which offers the user a choice of converting integers between octal,
decimal and hexadecimal. Prompt the user for either ‘0’, ‘d’ or ‘h’ and read the number in the chosen
format. Then prompt the user for the output format (again ‘o’, ‘d’ or ‘h’) and print the number out
accordingly.

A nice enhancement would be to offer the user only the different output formats, i.e. if ‘0’ is chosen and
an octal number read, the user is offered only ‘d’ and ‘h’ as output format.

#include <stdio.h>

int main(void)

L i
int input;
int i_option;
int o_option;
int keep_going;

do {
printf(*'Input options:\n"
"Octal input o\n"
"Decimal input d\n*
"Hexadecimal input x ");

i_option = getchar();
keep_going = O;

switch(i_option) {

case "0":
printf(enter joctal"number *);
scanf(C'%o™, /&input);
break;
case "d":
printf(*'enter decimal number ™);
scanfC%d s & nput);
break;
case X" :
printf('enter hexadecimal=Aumber=")7;
scanf('%x'", &input);
break;
default:
keep_going =-1;
break;

}
while(getchar() = "\n*")

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow - Solutions

93

C for Programmers

} while(keep_going);

do {

if(i_option = "07%)
printf("\nOctal output

if(i_option = *d")
printf(""\nDecimal output

if(i_option = *"x")
printf("\nHexadecimal output

printf(” ");

o_option = getchar();
while(getchar() = "\n*")

keep_going = O;

switch(o_option) {
case "0":
printf(%o\n",
break;
"d":
printf(%d\n*,
break;
case "x":
printf(%x\n",
break;

default:
keep/going.= 1;
break;

input);

case
input);

input);

¥
3} while(keep_going);

return O;

O 1994/1997 - Cheltenham Computer Training

x");

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions 95

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Functions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

96 Functions

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Functions \

= Rules of functions

= Examples - writing a function, calling a function
= Function prototypes

» Visibility

= Call by value

= The stack

= auto, static and register

f (n) (I still want to be a tomato)
Q

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1 /

Functions

This chapter examines functions in C.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions 97
C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ The Rules \

= A function may accept as many parameters as it
needs, or no parameters (like main)

= A function may return either one or no values

= Variables declared inside a function are only
available to that function, unless explicitly
passed to another function

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

The Rules

Functions in C may take as many parameters as they need. An example of this is
printf which may take an arbitrary number of parameters, here 7:

printf('%i %-2IF %.21g %c %u %o\n",.j, f, g, c, poss oct);
Alternatively functions may.take no.parameters.at all, like main
int main(void)

A function may either return a value or not. In particular it may return ONE value
or not.

C is a block structured language and variables declared within a function block
may only be‘used within that block.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

98

Functions

0 1994/1997 - Cheltenham Computer Training

C for Programmers

/ Writing a Function - Example

this is the TYPE of the value handed back

accept 3 doubles when called

int print_table(double start, double end, double step)
{
double d;
int lines = 1;
printf("'Celsius\tFarenheit\n");
for(d = start; d <= end; d += step, lines++)
printf("%.11A\t%.11A\n", d, d * 1.8 + 32);
return lines;
3
this is the ACTUAL value handed back
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

<

J

Writing a Function - Example

Return Type

Function Name

Parameters

Return Value

There are a number of essential elements involved in writing functions:

If a function is to return a value, the value must have a type. The type of the
return value must be specified first.

Obviously each function must.have.a.unique:name to distinguish.it from the other
functions in the program.

A type and'a hame must be given to each parameter.

If the function is'to return a value, the actual value (corresponding to the type

already specified) must be passed back using the return keyword.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

99

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Calling a Function - Example \

IMPORTANT: this tells the compiler how print_table works

#include <stdio.h>
int print_table(double, double, double);

int main(void)

{

int how_many;
double end = 100.0;

) the compiler knows these
how_many = print_table(1.0, end, 3); should be doubles and
print_table(end, 200, 15); converts them automatically

return O;

o

here the function’s return value is ignored - this

is ok, if you don’t want it, you don’t have to use it
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Calling a Function - Example

Prototype

Call

Ignoring the
Return

There are a number of essential elements when calling functions:
A prototype informs the compiler how a function works. In this case:
int-print_table(double, double; double);

tells the compiler that the print_table function accepts three doubles and returns
an integer.

The function is called (executed, run) by sending three parameters, as in:
print_table(1.0, end, 3);
even though-the thirdparameter.“3” is not'of the correct type:it is automatically
converted by.the compiler. 'If necessary the returned value may be assigned to a
variable as.in:
how_many = print_table(1.0, end, 3);
It is not necessary to use the returned value as in:

print_table(end, 200, 15)3

any return value that is not used is discarded. Note that here the 200 and the 15
are automatically converted from int to double.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

100 Functions
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Calling a Function - Disaster! \

now the compiler does not know how the function works

#include <stdio.h>

int main(void)

{
int how_many; the compiler does NOT
double end = 100.0; convert these ints to

doubles. The function

how_many = print_table(1.0, end, 3); picks up doubles
print_table(end, 200, 15); anyway!
return O;

3

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5 /

Calling a Function - Disaster!

Missing The only difference between this and the previous example is the lack of the
Prototypes prototype:

int print_table(double, double, double);

This missing line causes serious problems. Now the compiler.does not have the
information it needs at the two points of call:

how_many = print table(1.0,%end, 3);
and
print_table(end, 200, 15);

The compiler assumes that all the parameters are correct. Thus the third
parameter “3"is\NOT-converted.from an-integer-to'a double:.. Neither are the
“200” or the “15”. This.is a major problem since integers and doubles are not the
same size and not the same format.

When the function picks up the parameters they are not what was intended and
the function behaves strangely.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

101

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Prototypes

The (optional) line
int print_table(double, double, double);

is known as a prototype

If the compiler meets a call to an unknown
function it “guesses”
— Guess 1: the function returns an int, even if it doesn’t

— Guess 2: you have passed the correct number of parameters
and made sure they are all of the correct type, even if you
haven’t

The prototype provides the compiler with
important information about the return type and
parameters

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

<

J

Prototypes

When a
Prototype is
Missing

The all important missing line is called the function “prototype”. The compiler

needs one of these for every single function called from your program. If you
forget to provide a prototype and go ahead and call a function anyway, the

compiler will assume some defaults.

First: the compiler will assume the.function returns an integer...This is rather

curious. A safer assumption might be that the function returns nothing, that way
any attempt to use the returned value would generate an error. However, int it
is. This is‘a special problem with the-mathematical functions, sin, cos, tan,

etc. ‘which return double. By not prototyping these functions'the compiler

incorrectly truncates the doubles, using only 2 or 4 bytes of the 8 bytes that are

returned.

Second: the compiler assumes that the correct:number of parameters have been
passed and that the type of each one is correct. This was.clearly not the case in
the previous program, whereas the number of parameters was correct, although

the types were not.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

102 Functions

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Prototyping is Not Optional \

= To achieve working programs the compiler is
best given a prototype for each function called

= When calling a Standard Library function,
#include the file specified in the help page(s) -
this file will contain the prototype

= When calling one of your own functions, write a
prototype by hand

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7 /

Prototyping is Not Optional

Since prototypes can make such a difference to whether a program works, it is
curious C regards them as optional. Even though this is the case, we should
regard them as compulsory.

We must ensure that‘each function called is properly prototyped. This is more
straightforward than it sounds.since.most C compilers come equipped with a
“warning level”. Although the compiler will not complain if a call is made to an
unprototyped function at a low warning level, turning the warning level up does
cause a message to appear. Various'programming standards employed by large
software houses state that programs should compile-without-a-single warning at
the highest.warning level.

Calling If we wish to call a Standard Library function, a prototype for it will already have
Standard been written-and. made-available.in one of the Standard header files. All we need
Library to do is #inelude the.relevant header file - its name will be given us by the on-
Functions line help or.text manual.

If we wish to call one of our own functions, we must write a prototype by hand.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

103

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= The function prototype may optionally include
variable names (which are ignored)

Writing Prototypes \

Prototype:

|int print_table(double, double, double);

Function header:

int print_table(double start, double end, double step)

{

|int print_table(double start, double end, double step); |

|int print_table(double x, double y, double z); |

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8 /

Writing Prototypes

Convert The
Function
Header Into The
Prototype

Parameter
Names Ignored

Added
Documentation

Writing a function involves writing the function header. Once that's been done
only a quick “cut and paste” is necessary to create the function prototype. You
can either slice out the whole header, including the names of the parameters, or
edit them out.

In fact the compiler completely ignores parameter names in function prototypes, if
provided, the names don’t have to relate to the ones used in the function itself.
The example above shows the print_table prototype using the name “start” or “x”
foriits first/parameter. Either of these are ok, even if the name of the first
parameter in fact turns out to be “artichoke”.

In fact this begs the question as to why parameter names should be put in at all,
if the compiler is just going to ignore them. The answer is that a function
prototype which includes meaningful names is far more helpful than one which
does not. The:names“start”, “stop” and-“end” provide meaning and save us
having to find either the code for'print_table or the manual which describes it.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

104 Functions

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Take Care With Semicolons \

= The prototype has a semicolon

|int print_table(double start, double end, double step);

= The function header has an open brace

int print_table(double start, double end, double step)
{

= Don’t confuse the compiler by adding a
semicolon into the function header! x

int print_table(double start, double end, double step);
{

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9 /

Take Care With Semicolons

Avoid We have seen that the prototype can be an almost exact copy of the function

Semicolons header. If they are so similar, how exactly does the compiler tell them apart? It is

After The all done by the character that follows the closing parenthesis. If that character is

Function an opening brace, the compiler knows the text forms the function header, if the

Header character is a semicolon, the compiler knows the text forms the function
prototype.

Adding a semicolon into the function header is particularly fatal. Meeting the
semicolonfirst, the compiler assumes'it has met the function prototype. After the
prototype comes the beginning of a block, but what-block?

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

105

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Example Prototypes \

/* no parameters, int return value */
int get_integer(void);

/* no parameters, double return value */
double get_double(void);

/* no parameters, no return value */
void clear_screen(void);

/* three int parameters, int return value */
int day_of_year(int day, int month, int year);

/* three int parameters, long int return value */
long day_since_1_ jan_1970(int, int, int);

/* parameter checking DISABLED, double return value */
double k_and_r_function();

/* short int parameter, (default) int return value */
transfer(short int s);

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

Example Prototypes

Above are examples of function prototypes. Notice that void must be used to
indicate the absence of a type. Thus in:

int_get_integer(void);

void for the parameter list indicatesthere are no/parameters. This isNOT the

same as saying:
int get_integer();

which would have the effect of disabling parameter checking to the get_integer
function. With this done, far from passing no parameters into the function, any
user could pass two, fourteen or fifty parameters with impunity!

C makes no distinction between functions (lumps of code that return a value) and
procedures (lumps of code that execute, but return no value) as do languages like
Pascal. [In Cthere are justfunctions, functions.which return-things and functions

which don’t return anything. An example of a prototype for a function which does

not return anything is:
void clear screen(void);

The first void indicates no return value, the second indicates (as before) no
parameters.

The day_of year and'day_since. 1_jan_1970 function prototypes indicate
the difference between naming parameters and not. With the day_of_year
function it is obvious that the day, month and year must be provided in that order
without resorting to any additional documentation. If day since_1 jan_1970
were written by an American, the month might be required as the first parameter.
It is impossible to tell without further recourse to documentation.

The prototype for the transfer function demonstrates a rather curious C rule. If
the return type is omitted, int is assumed.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

106 Functions

O 1994/1997 - Cheltenham Computer Training C for Programmers
/ Example Calls \
int i;
double d;
long 1;
short int s = 5;

i get_integer();
no mention of “void”
when calling these
functions

d = get_double(); -=

clear_screen();

day_of_year(16, 7, 1969);

day_since_1_jan_1970(1, 4, 1983);
the compiler cannot tell
which of these (if any) is
correct - neither can we
without resorting to
documentation!

k_and_r_function();
k_and_r_function(19.7);
k_and_r_function("hello world"™);

[eRyeRyoN
" n

= transfer(s);

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Example Calls

The most important thing to realize is that when calling a function with a prototype
like
int get_integer(void);

it is NOT correct to-say: i get_integer(void);

whereas it IS correct to say: i get_integer();

The compiler just doesn’t expect void at the point of call.

The examples above also illustrate a call to clear_screen. If you thought it
would be pointless to call a function which takes no parameters and returns no
value, here is an example. The clear_screen function does not need to be
passed a parameter to tell it how.many times to clear the screen, just once is
enough. Similarly it does not need to return.an integer to.say whether it
succeeded-or failed. We assume it succeeds.

It is difficult to say what date day_since_1_ jan_ 1970 is dealing with in the
code above, it'could be the 1st of April, or just as easily the 4th of January.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

107

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Cis ablock structured language, variables may

Rules of Visibility N

only be used in functions declaring them

int main(void)

int i =5, j, k=2; .
g ’ compiler does not
float f = 2.8F, g; P
oa 9 x know about “d
d =3.7;
void func(int v) “i” and “g” not
{ .
double d, e = 0.0, f: available here
i++; g--;
f = 0.0; func’s “f” is used,
s not main’s

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12 /

Rules of Visibility

C is a Block
Structured
Language

Variables allocated within each function block may only be used within that
function block. In fact C allows variables to be allocated wherever an opening
brace is used, for instance:

void| =func(int V)

{
double d, e = 0.0, T;
if(e ==0:0) {
int i, j =5;
i =3 -1
printf('i=%i1, e=%lg\n", i, €);
¥
d =0.1;
¥

The two variables “i” and “j” are created only in the then part of the i T statement.

If the variable “e” didn’t. compare with zero, these variables would never be
created. The variables are only available up until the “}" which closes the block
they are allocated in./ An attempt to.access “i” or " on or-after the line “d =
0.1” would cause an error.

The variables “d”, “e” and “f” are all available within this “if” block since the block
lives inside the function block.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

108 Functions

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Call by Value \

= When a function is called the parameters are
copied - “call by value”

= The function is unable to change any variable
passed as a parameter

» In the next chapter pointers are discussed which
allow “call by reference”

= We have already had a sneak preview of this
mechanism with scanf

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13 /

Call by Value

C is a “call by value” language. Whenever a parameter is passed to a function a
copy of the parameter is made. The function sees this copy and the original is
protected from change.

This can be a advantage and a disadvantage. If we wanted a
get_current_date function, for.instance, we.would want three.“returns”, the
day, month and year, but functions may only return one value. Three functions
get_current_day, get_current_month and get_current_year would be
needed. Clearly this is inconvenient!

In fact, C supports “call by reference”too.. This is a mechanism by which the
parameter becomes not a copy of the variable but its address. We have already
seen this mechanism with scanf, which is able to alter its parameters easily.
This is all tied up with the use of the mysterious “&™ operator which will be
explained in the.next-chapter.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions 109

C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Call by Value - Example \

#include <stdio.h>

void change(int v);

int main(void)

{ the function
int var = 5; was not able
change(var); to alter “var

printf("main: var = %i\n", var);

return O;

void change(int v) the function is

{ able to alter “v”
v *= 100;
printf(*'change: v = %iI\n", v);
s change: v = 500
main: var = 5

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

Call by Value - Example

This program shows an example of call by value. The main function allocates a
variable “var” of type int and value 5. When this variable is passed to the
change function a copy is made. This copy is.picked up in the parameter “v”.
“V"is then changed to 500 (to prove this, it/is printed out). On leaving the
change function the"parameter “v” is thrown away. The variable “var” still
contains 5.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

110 Functions

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ C and the Stack \

= C uses a stack to store local variables (i.e. those
declared in functions), it is also used when
passing parameters to functions

O The calling function pushes the parameters
® The function is called

© The called function picks up the parameters
® The called function pushes its local variables

© When finished, the called function pops its local
variables and jumps back to the calling function

O The calling function pops the parameters
@ The return value is handled

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15 /

C and the Stack

C is a stack-based language. Conceptually a stack is like a pile of books. New
books must be added to the pile only at the top. If an attempt is made to add a
new book to the middle of the pile, the whole thing will collapse. Similarly when
books are removed from the pile, they must only be removed from the top since
removing one from-the middle or bottom of the pile would cause a collapse.

Thus: a stack may only have a new item added to the top
a stack may only have an existing item removed from the top

You can imagine that while the books are in the pile;the spines of the books (i.e.
the title and author) could be easily read. Thus there is no problem accessing
items on the stack, it is only the addition and removal of items which is rigorously
controlled.

The list above.shows.the rules that C employs when calling functions. When a
variable is passed as a parameter to a function a copy of the variable is placed on
the stack. The function picks up this copy as the parameter. Since the function
may only access the parameter (because the original variable was allocated in
another function-block):the original variable cannot be changed.

If a function allocates any of its own variables, these too are placed on the stack.
When the function finishes'it is responsible for destroying these variables.

When the function returns to the point of call, the calling function destroys the
parameters that it copied onto the stack.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

111

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

<

Stack Example

#include <stdio.h>
double power(int, int);
int main(void)
{
int X = 23
double d;
d = power(x, 5);
printf("%IfA\n", d);
return O: 32.0 power: result
¥ 2 power: n
double power(int n, int p)
{ 5 power: p
double result = n; T
) ? main: d
while(--p > 0)
result *= n; 2 main: X
return result;

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16 /

Stack Example

When the main function starts, it allocates storage for two variables “x” and “d".
These are placed on the bottom of the otherwise empty stack. When main calls
the power function as in

d = power(x, 5);

“5” is.copied onto the stack;then-the-value of-“x”; which is “2"..The power
function is called. Itimmediately picks up two parameters “n” and “p”. The “n”
happens to be where the “2” was copied, the “p” where the “5” was copied.

The function requires its own local variable “result” which is'placed on the stack
above “n” and is initialized with the value “2.0”. The loop executes 4 times,
multiplying result by 2 each time. The value of “p” is now zero. The value stored
in “result” by this stage is “32.0". This value is returned. Different compilers have
different strategies for returningvalues from functions. Some compilers return
values on thesstack, others return values.in.registers. Some.do both depending
on wind direction and phase of the moon. Let'us say here that the return value is
copied into a handy register.

The return keyword causes the power function to finish.. Before it can truly
finish, however, it'is responsible for the destruction of the variable “result” which it
created. This is removed (popped) from the stack.

[Tot)

On return to the main function, the two parameters “n” and “p” are destroyed.
The return value, saved in a handy register is transferred into the variable “d”
(which is then printed on the next line).

The return 0 causes main to finish. Now “0” is stored in a handy register,

ready for the operating system to pick it up. Before things can truly finish, main
must destroy its own variables “x” and “d”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

112 Functions
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Storage \

= C stores local variables on the stack

= Global variables may be declared. These are not
stack based, but are placed in the data segment

= Special keywords exist to specify where local
variables are stored:

auto - place on the stack (default)
static - place in the data segment
register - place in a CPU register

= Data may also be placed on the heap, this will be
discussed in a later chapter

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17 /

Storage

When a program is running in memory it consists of a number of different parts:

Code Segment This is where all the code lives, main, printf, scanf etc. etc. This segment is
definitely read only (otherwise you could write self-modifying code!).

Stack This is where all the local variables-are stored...We have seen-how it becomes
deeper as functions are called and shallower as those functions return. The stack
alters size continuously during the execution of a program and is definitely NOT
read only.

Data Segment This is a fixed sized area of the program where global variables are stored. Since
global variables in a program are always there (not like local variables which are
created and destroyed) there are always a fixed number of fixed sized variables -
thus the data segment is fixed size.

Heap The last and strangest part of the executing program, the heap, can vary in size
during execution. lIts size is controlled by calls to the four dynamic memory
allocation routines that C defines: mall loc, cal loc, realloc and free. The
heap, and these routines, are discussed later.in the course.

Local variables which have been seen thus far have been stack based. Global
variables may also be created (though we have not yet seen how this is done).
Mixed in with locals and globals these notes have also hinted at the occasional
use of registers.

In fact keywords exist in C which allow us to control where local variables are
placed - on the stack (which they are by default), in the data segment along with
the global variables, or in registers.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

113

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

auto \

Local variables are automatically allocated on
entry into, and automatically deallocated on exit
from, a function

These variables are therefore called “automatic”
Initial value: random
Initialisation: recommended

int table(void)
{

int lines = 13; auto keyword
auto int columns; redundant

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18 /

auto

Stack Variables
are “Automatic”

Stack Variables
are Initially
Random

Performance

To be honest, C’s auto keyword is a complete waste of space. Local variables
are, by default, placed on the stack. When a function starts, stack storage is
allocated. When the function ends, the stack storage is reclaimed. Since this
happens totally automatically, stack based variables are called “automatic”
variables.

“int columns” and “auto int columns” are exactly identical. In other words
the auto keyword does nothing, it makes the automatic variable automatic
(which it isranyway).

An important thing to understand about automatic variables is although the
compiler is happy to allocate storage from the stack it will NOT initialize the
storage (unless explicitly instructed to do so). Thus automatic variables initially
contain whatever that piece of stack last'contained. You may see a quarter of a
double, half of.a return.address, literally anything. Certainly whatever it is will
make little sense. The upshot is'that if you need a value in an automatic variable
(including zero) it is vital to put that value in there by assignment.

It is possible to-imagine a scenario where a function is-called, say one thousand
times. The function allocates one stack based variable. Thus one thousand
times the variable must-be created, one thousand times the variable must be
destroyed. If you are worried about the last'nanosecond of performance, that
may be something you might want to worry about.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

114 Functions

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ static \

» The static keyword instructs the compiler to
place a variable into the data segment

» The data segment is permanent (static)

= A value leftin a static in one call to a function
will still be there at the next call

= |nitial value: 0
= |nitialisation: unnecessary if you like zeros

int running_total (void)
{ permanently allocated,
static int rows; but local to this
. function
rows++;
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19 /
static
static By default, a variable is stack based, random and continually goes through an
Variables are automatic creation and destruction process whenever the function declaring it is
Permanent called. Adding static into a variable declaration causes the variable to be
stored in the data segment. This'isthe same part of the program where the
global variables are stored. Thus.the variable is permanently allocated:
static This means the first time running_total is called, the storage for the variable
Variables are “rows” has already been allocated. It has also already been initialized (to zero). If
Initialized avalue of lisileft inrthevariable and thefunction returns, the-next time the
function is called the 1 will be seen. If 2 is left in the variable, the next time the 2
will be seen, etc. Since there is no creation and destruction a function containing
one static variable should execute faster than one having to allocate and
deallocate a stack based one.
static Although the variable is permanently allocated, its scope is local. The “rows”
Variables Have variable cannot be seen outside the running_total function. Itis perfectly
Local Scope possible to have tworstatic variables of the samename within'two different
functions:
int Ffuncl(void) int func2(Veid)
{ {
static int 1 .= 30; static int i = -30;
i++; i--;
} }

The variable “i” in the function funcl will steadily increase every time the
function is called. The variable “i" in the function func?2 will steadily decrease.
These two variables are permanent, separate and inaccessible by the other
function.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

115

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

register \

The register keyword tells the compiler to place
a variable into a CPU register (you cannot specify
which)

If a register is unavailable the request will be
ignored

Largely redundant with optimising compilers
Initial value: random
Initialisation: recommended

void speedy_function(void)

{

register int i;
for(i = 0; 1 < 10000; i++)

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20 /

register

register
Variables are
Initially Random

Slowing Code
Down

The register keyword requests a variable be placed in a CPU register. The
compiler is under no obligation to satisfy this request. The keyword goes back to
K&R C, when there were no optimizers. Thus various optimization features were
added to the language itself.

If a register is available, it will be allocated. ‘However, C will not.clear it out, thus
it will contain whatever value happened to be in there previously.

Optimizers for C have now been written and these are bestleft'to decide which
variables should be placed in registers._Infact is it possible to imagine a scenario
where code actually runs slower as a result of the use of this keyword.

Imagine the best strategy for optimizing a function is.to placethe first declared
variable “i” into.a CPU.register. This is/done for the first 10 lines of the function,
then the variable "|" becomes the one most frequently used and thus “i” is
swapped out of the register and “j” swapped in. The programmer tries to optimize
and places "“i” into a register. If only one register is available and the optimizer
feels-obliged to-satisfy the request the:second part of the-function will run more
slowly (since “j” needs to be placed in a register, but'cannot).

The optimizer is almost certainly better at making these decisions (unless you

have written the optimizer and you know how it works) and should be left to its
own devices.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

116 Functions
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Global Variables \

= Global variables are created by placing the
declaration outside all functions

= They are placed in the data segment
= |nitial value: 0
= |nitialisation: unnecessary if you like zeros

#include <stdio.h> variable “d” is global
double d; and available to all
int main(void) functions defined
{ below it

int 1i;

return O;
b

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21 /

Global Variables

You should be aware that many programming standards for C ban the use of
global variables. Since access to a global variable is universal and cannot be
controlled or restricted it becomes difficult to keep track of who is modifying it and
why.

Nonetheless global-variables may be easily created, by placing the variable
declaration outside any function. .This places.the variable in the.data segment
(along with all the static local variables) where it is permanently allocated
throughout the execution of the program.

Global Just as with static local variables, initialization to zero‘is performed by the
Variables are operating system when the program is first'loaded into memory.
Initialized

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions 117

C for Programmers 0 1994/1997 - Cheltenham Computer Training
/ Review \

= Writing and calling functions

= The need for function prototypes
= Visibility

= Cis “call by value”

= | ocal variables are stack based, this can be
changed with the static and register
keywords

= Global variables may be created, they are stored
in the data segment

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 22 /

Review Questions

1. Which two characters help the compiler determine the difference between the
function prototype and the function header?

What is automatic about an automatic variable?

What is the initial value of a register variable?

4. What are the namesof the four parts of an executing program?

w N

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions - Exercises 119

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Functions Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

120 Functions - Exercises

0 1994/1997 - Cheltenham Computer Training C for Programmers

Directory: FUNCS

1. By now you have probably experienced problems with scanT insofar as when an invalid character is
typed things go drastically wrong. In “GETVAL .C” write and test two functions:

double get_double(void);
int get_int(void);

which loop, prompting the user, until a valid double/valid integer are entered.

2. Copy “POW.C”" from the FLOW directory. Turn your power calculation into a function with the following
prototype:

long double power(double first, int second);

Use your get_double and get_int functions from part 1 to read the double and integer from the
user.

3. Copy “CIRC.C” from the FLOW directory. Write functions with the following prototypes:

double volume(double radius, double height);
double area(double radius);

double circumf(double radius);

char get_option(void);

Use the get_double function written in part 1 to read the radius (and height if necessary). The
get_optionfunction should accept only ‘a’, ‘A", ’c’, ‘C’, ‘v, V', ‘g’ or ‘Q’ where the lowercase letters
are the same. as their uppercase equivalents.

If you #include <ctype.h>, you will be able to use the tolower function which converts uppercase

letters to their lowercase equivalent. This should make things a little easier. Look up tolower in the
help.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions - Solutions 121

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Functions Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

122

Functions - Solutions

O 1994/1997 - Cheltenham Computer Training

1. In “GETVAL.C” write and test two functions:

double get_double(void);
int get_int(void);

which loop, prompting the user, until a valid double/valid integer are entered.

#include <stdio.h>

int
double

int

}

double
{

get_int(void);
get_double(void);

main(void)

int i;

double d;

printf(*"type an integer ");

i = get_int(Q);

printf(**the integer was %i\n", i);
printf(**type an double *);

d = get_double();

printf(**the double was %lg\n", d);

return O;

get_int(void)

int result;

printf(>1");

while(scanf("%i", &result) 1= 1) {
while(getchar() = "\n*")

printf(;>);
b

return result;

get_double(void)

double result;

printf("'> ");

while(scanf("%IFsg &result) = 1) [{
while(getcharQ, ¥= "\n")

printf(;>);

return result;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

C for Programmers

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions - Solutions

123

C for Programmers

2. Copy “POW.C" from the FLOW directory. Turn your power calculation into a function. Use your

get_double and get_int functions from part 1.

In the function “power” the parameter may be treated “destructively” since call by value is used, and

altering the parameter will have no effect on the main program.

#include <stdio.h>

int get_int();
double get_double();
long double power(double, int);
int main(void)
{
int p = 0;
doublen = 0.0;
printf('enter the number *);
n = get_double();
printf('enter the power ');
p = get_int();
printf("%.31Ff to the power of %d is %.9Lf\n"", n, p, power(n, p));
return O;
}
long double power(double_n, int p)
{
long double answer —="n;
for(--p; p > 0; p--)
answer *= n;
return answer;
}
int get_int(void)
int result;
printf("'>"%);
while(scanf("%i", &result) 1= 1) {
while(getchar() = "\n")
printf(“> ");
}
return result;
}

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O 1994/1997 - Cheltenham Computer Training

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

124 Functions - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers

double get_double(void)

{
double result;
printf("'> ");
while(scanf('%If", &result) 1= 1) {
while(getchar() !'= "\n-
printf(“>);
}
return result;
}

3. Copy “CIRC.C” from the FLOW directory. Write functions with the following prototypes....

Use the get_double function written in part 1 to read the radius (and height if necessary). The
get_option function should accept only ‘a’, ‘A’, ‘c’, ‘C’, ‘v, ‘V’, ‘q’ or ‘Q’ where the lowercase letters
are the same as their uppercase equivalents.

Using tolower should make things a little easier.

The version of get_double used here differs slightly from previous ones. Previously, if a double was
entered correctly the input buffer was not emptied. This causes scanf(“*%c”) in the get_option function
to read the newline left behind in the input buffer (getchar would do exactly the same). Thus whatever
the user types is ignored. This version always flushes the input buffer, regardless of whether the
double was successfully read.

#include <stdio.h>
#include <ctype.h>

double get double(void);

double area(double radius);
double circumf(double radius);
double volume(double radius, double height);
char get_option(void);
const double pi = 3.1415926353890;
int main(void)
{

int ch;

int still_going, = 1;

double radius = 0.0;

double height== 0.03

while(still_going) {
ch = get_option();

if(ch == "a® || ch == "c® || ch == "v*) {
printf('enter the radius ");
radius = get_double();

}

if(ch == "v) {
printf('enter the height ™);
height = get_double();

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions - Solutions 125

C for Programmers

O 1994/1997 - Cheltenham Computer Training

if(ch == "a%)
printf(**‘Area of circle with radius %.31f is %.121f\n",
radius, area(radius));
else if(ch == "c*)
printf(*Circumference of circle with radius
"% 301F is %.1201F\n"", radius, circumf(radius));
else if(ch == "v¥")
printf(**Volume of cylinder radius %.31f, height %.3IFf ™
“is %.121F\n"", radius, height,
volume(radius, height));

else if(ch == *q~%)

still_going = 0;
else

printf(**'Unknown option “%c*\n\n", ch);
0;

get_double(void)

got;
result;

printf("'> ");
got = scanf("%If", &result);
while(getchar() = "\n%)

}
while(got = 1);

return result;

area(double radius)

return pi =, radius * radius;

circumf(double radius)

return 2.0 * pi * radius;

volume(double radius, double height)

return area(radius) *pheight;

b
return

b

double

{
int
double
do {

b

double

{

b

double

{

b

double

{

b

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

126 Functions - Solutions

O 1994/1997 - Cheltenham Computer Training

char get_option(void)
{
char ch;
do {
printf("Area A\n"*
"Circumference C\n"
"Volume V\n"
"Quit Q\n\n"

"Please choose ™);
scanf("'%c', &ch);

ch = tolower(ch);
while(getchar() = "\n*")

) ;
while(ch = *"a® && ch = "c® && ch I= "v*® && ch = *q%);

return ch;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

C for Programmers

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers 127

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Pointers

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

128 Pointers

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Pointers \

» Declaring pointers
= The “&” operator

= The “*” operator

= |nitialising pointers
= Type mismatches

= Call by reference

= Pointers to pointers

o I

o]

(e]
(@)

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1 /

Pointers

This chapter deals with the concepts and some of the many uses of pointers in
the C language.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

129

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Using pointers allows us to:

= Already been using pointers with scanf
= Care must be taken when using pointers since

Pointers - Why? \

— Achieve call by reference (i.e. write functions which change
their parameters)

— Handle arrays efficiently

— Handle structures (records) efficiently
— Create linked lists, trees, graphs etc.
— Put data onto the heap

— Create tables of functions for handling Windows events,
signals etc.

there are no safety features

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Pointers - Why?

As C is such a low level language it is difficult to do anything without pointers.
We have already seen that it is impossible to write a function which alters any of
its parameters.

The next two chapters, dealing with arrays'and dealing with structures, would be
very difficult indeed without.pointers.

Pointers can also enable the writing of linked lists and other such data structures
(we look into linked lists at the end of the structures chapter).

Writing into.the heap, which we will do.towards the end of the course, would be
impossible without pointers.

The Standard Library, togetherwith the Windows, Windows 95 and NT
programming.environments use pointers to functions quite extensively.

One problem is that pointers have a bad reputation. They are supposed to be

difficult to use and difficult to understand. This is, however, not the case, pointers
are quite-straightforward.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

130 Pointers

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Declaring Pointers \

= Pointers are declared by using “*”
= Declare an integer:

int i;
= Declare a pointer to an integer:
int *p;

= There is some debate as to the best position of

the 1T 2k
int* p;

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3 /

Declaring Pointers

The first step is to know how to declare a pointer. This is done by using C’s
multiply character “*” (which obviously doesn’t perform a multiplication). The “*”
is placed at some point between the keyword int and the variable nhame. Instead
of creating an integer, a pointer to an integer is created.

There has been, and continues to-be;-a long running debate amongst C

programmers regarding the best position for the “*”. Should it be placed next to
the type or next to the variable?

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

131

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

Example Pointer Declarations \

int pi; /* pi is a pointer to an int */
long int *p; /* p is a pointer to a long int */
float* pf; /* pf is a pointer to a float */
char c, d, *pc; /* ¢ and d are a char

double* pd, e, f; /* pd is pointer to a double

e and f are double */
char* start; /* start is a pointer to a char */
char* end; /* end is a pointer to a char */

*

pc is a pointer to char */

o

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4 /

Example Pointer Declarations

Pointers Have
Different Types

Positioning the

[Tt

The first thing to notice about the examples above is that C has different kinds of
pointer. It has pointers which point to ints and pointers which point to 1ong
ints. There are also pointers which point at floats and pointers to chars.

This concept is rather strange to programmers with assembler backgrounds. In
assembler there are just pointers.-In-C this is-not possible, only-pointers to
certain types exist. This is so the compiler can keep track of how much valid data
exists on the end of a pointer. For instance, when looking down the pointer “start”
only 1 byte would be valid, but looking down the pointer “pd” 8 bytes would be
valid and the data would be expected to be in IEEE format.

Notice that in: char c, d, *pc;

it seems reasonable that “c” and.“d” are of type 'char, and “pc” is of type pointer
to char. However ittmay seem less reasonable that in:

double* pd, e, T;

the type of “e”and “f” is doull e and NOT pointer to double. This illustrates the
case for placing the “*” next to the variable and not next to the type.

The last two examples show how supporters of the “place the * next to the type”
school of thought would declare two pointers. One is declared on each line.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

132 Pointers

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ The “&” Operator \

= The “&”, “address of” operator, generates the
address of a variable

= All variables have addresses except register

variables

char g = "z%;

int main(void) p c

{
char ¢ = "a"; n
char *p;
p = é&c p g
return O;

}

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5 /

The “&” Operator

The “&” operator, which we have been using all along with scanf, generates the
address of a variable. You can take the address of any variable which is stack
based or data segment based. In the example.above the variable “c” is stack
based. Because the variable “g” is global, it is placed in the data segment. It is
not.possible to take the address of any register variable, because CPU
registers do not have addresses.-Even if the'request was ignored:by the
compiler, and the variable is stack based anyway, its address still cannot be

taken.
Pointers Are You see from the program above that pointers are really just numbers, although
Really Just we cannot say.or rely upon the number. of bits required to hold.the number (there
Numbers will be as many bits as required by the hardware). The variable “p” contains not a

character, but the address of a character. Firstly it contains the address of “c”,
then it contains the address of “g”. The pointer“p” may only point to one variable
at a time and'when pointing to “c” it is not.pointing anywhere else.

By “tradition” addresses are written in hexadecimal notation. This helps to
distinguish them from “ordinary” values.

Printing The value of a pointer'may be seen by calling printf with the %p format
Pointers specifier.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

133

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Rules \

Pointers may only point to variables of the same
type as the pointer has been declared to point to

A pointer to an int may only pointto an int

— not to char, short int or long int, certainly not to float,
double or long double

A pointer to a double may only point to a double

— not to Float or long double, certainly not to char or any of
the integers

Etc......
int *p; /* p is a pointer to an int */
long large = 27L; /* large is a long int,

initialised with 27 */

p = &large; x /* ERROR */ /

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Rules

Assigning
Addresses

The compiler is very firm with regard to the rule that a pointer can only point at
the type it is declared to point to.

Let us imagine a machine where an int and a short int are the same size,
(presumably 2 bytes)." It would seem safe to assume that if we declared a pointer
to an int the compiler would.allow-us to point.itat an int and.a.short int with
impunity. This is definitely not the case. The compiler disallows such behavior
because of the possibility that the next machine the code is ported to has a 2 byte
short int and a 4 byte int.

How about the case where we are guaranteed two things will be the same size?
Can a pointer to an int be used to point to an unsigned int? Again the answer
is no. Here the compiler would disallow the behavior because using the
unsigned antdirectly and in an expression versus the value at the end of the
pointer (which-would-be-expected to be knt) could give very different results!

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

134 Pointers

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ The “*” Operator \

= The “*”, “points to” operator, finds the value at
the end of a pointer

#include <stdio.h> p

char g = "z"; 0x1132

int main(void)

C
char c¢ = "a"; P g
char *p; 0x91A2

p = &c;
printf("'%c\n", *p);
p = &g; print “what p points to”
printf("'%c\n", *p);
return O; a
; [

z
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

The “*” Operator

The “*” operator is in a sense the opposite of the “&” operator. “&” generates the
address of a variable, the “*” uses the address that is stored in a variable and
finds what is at that location in memory.

Thus, in the'example above, the pointer “p” is set to point to the variable “c”. The
variable “p” contains the number 0x1132 (that's-4402 in case you're interested).
“*p” causes the program to find what is stored at location 0x1132 in memory.
Sure enough stored in location 0x1132 is the value 97. This 97 is converted by
“%e” format specifier and ‘a’ is printed.

When the pointer is set to point to “g”, the-pointer contains 0x91A2 (that is 37282
in decimal). Now the pointer points to the other end of memory into the data
segment. Again when “*p” is used, the machine finds out what is stored in
location 0x91A2 and finds 122. This is converted by the “%c” format specifier,
printing ‘z’.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

135

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= |tis not only possible to read the values at the

= |tis possible to write over the value at the end of a

<

Writing Down Pointers

end of a pointer as with:

char ¢ = "a";

char *p;

p = &c;
printf(*"%c\n", *p);

pointer:
p c
char c = "a";
p = &c;
*p = "b"; make what p points to
printf('%c\n", *p);

equal to ‘b’
sales@ccttrain.demon.co.uk Slide No. 8 /

© Cheltenham Computer Training 1994/1997

Writing Down Pointers

We have just seen an example of reading the value at the end of a pointer. But it
is possible not only to read a value, but to write over and thus change it. This is
done in a very natural way, we change variables by using the assignment
operator, “="./ Similarly the value at the end of a pointer may be changed by
placing “*pointer” (where “pointer” is the variable containing the address) on the
left hand side of an assignment.
In the example above: *p = "b";

literally says, take the value of 98 and write it into wherever“p”points (in other
words write.into'memory location 0x1132,.or the variable “c”).

Now you're probably looking at this and thinking, why do it that way, since
c = "b°;
would achieve the same result and be a lot easier to understand. Consider that

the variables “p” and “c” may live in different blocks and you start to see how a
function-could-alter a parameter:passed down to it.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

136

Pointers

0 1994/1997 - Cheltenham Computer Training

C for Programmers

-

= The following code contains a horrible error:

<

Initialisation Warning!

int

#include <stdio.h> p i

main(void)

short
short

i = 13;
*p;

*p = 23;
printf(""%hi\n", *p);

return O;

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

Slide No. 9 /

Initialization Warning!

Always Initialize

Pointers

General

Protection Fault

The code above contains an all too common example of a pointer bug. The user

presumably expects the statement:

to overwrite the variable “i".

*p = 233

If this is what is desired it would help if the pointer “p”

were first set to point to “i”. This could be easily done by the single statement:

which.is so sadly missing from this program. “p

P ==&i;

is an automatic variable, stack

based and initialized with a random value:~All automatic variables are initialized
with random values, pointers are no exception. Thus when the statement:

*p [=723;

is executed.we take 23 and randomly overwrite the two bytes of memory whose

address appears in

p”. These two random bytes are very unlikely to be the

variable “i", although it is theoretically possible. We could write anywhere in the
program:=Writing.into the code segment,would cause-usto crash immediately
(because the code segment is read only). Writing into the data segment, the
stack or the heap would“work” because we are allowed to write there (though
some machines make parts of the data segment read only).

There is also a possibility that this random address lies outside the bounds of our

program. If this is the case and we are running under a protect mode operating

system (like Unix and NT) our program will be killed before it does any real
damage. If not (say we were running under MS DOS) we would corrupt not our
own program, but another one running in memory. This could produce
unexpected results in another program. Under Windows this error produces the
famous “GPF” or General Protection Fault.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

137

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Initialise Pointers! \

Pointers are best initialised!

A pointer may be declared and initialised in a
single step

short i = 13;
short *p = &i;

This does NOT mean “make what p points to
equal to the address of i’

It DOES mean “declare p as a pointer to a short
int, make p equal to the address of i’

short *p

short *p = &i;
I |

3
p = &i;
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Initialize Pointers!

Understanding
Initialization

Hours of grief may be saved by ensuring that all pointers are initialized before
use. Three extra characters stop the program on the previous page from
destroying the machine and transforms it into a well behaved program.

In the line: short™p = &i;

it is very important to understand that the “*” is not the “find what is pointed to”
operator. Instead it ensures we do not declare a short int, but a pointer to a
short int instead.

This is the case for placing the “*” next.to.the type,.if we had written

It would have been somewhat more obvious.that we were.declaring “p” to be a
pointer to a:short int and that we were initializing“p” to point to “i".

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

138

Pointers

0 1994/1997 - Cheltenham Computer Training

C for Programmers

-

NULL

= A special invalid pointer value exists #defined in
various header files, called NULL

= When assigned to a pointer, or when found in a
pointer, it indicates the pointer is invalid

#include <stdio.h>
int main(void)
{
short i = 13;
short *p = NULL;
if(p == NULL)
printf(*"the pointer is invalid!\n");
else
printf(""the pointer points to %hi\n", *p);
return O;
by
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

<

J

NULL

We have already seen the concept of preprocessor constants, and how they are
#defined into existence. A special define exists in the “stdio.h” header file (and
a few other of the Standard headers just in case), called NULL. It is a special

invalid value of a pointer.

The value may be placed in-any kind-of pointer,-regardless of whether it points to
int, long, float or double.

NULL and Zero

You shouldn’t enquire too closely into'what the value of NULL actually is. Mostly

it is defined as zero, but you should never assume this.. On'some machines zero

is a legal pointer and so NULL will be defined as something else.

Never write code assuming NULL and zero are the same thing, otherwise it will be

non portable.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

139

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

and:

A World of Difference!

» There is a great deal of difference between:

p i
int i =10, j = 14;
int *p = &i; 0x15A0
int *g = &j;
p = *q: q j
v 0x15A4
nt i =10, j = 14
int *p = &i
int *g = &j
q e
= “
—

0x15A4

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

<

Slide No. 12 /

A World of Difference!

It is important to understand the difference between:

What is Pointed

to vs the

Pointer Itself

and

*p — *q;

P =14

In the first, “*p = *q", what is pointed to by “p” is overwritten with what is pointed

to by “g”. Since “p” points to

win

stored in “j”. Thus “i” becomes 14.

, and “g” points to “j", “i" is overwritten by the value

In the second statement, “p = q” there.are.no “*”s._Thus the value contained in
“p” itself is overwritten by the value in “q”. The value in q is 0x15A4 (which is
5540 in decimal) which is written into “p”. If “p” and “g” contain the same
address, Ox15A4, they must point to the same place.in memory, i.e. the variable

]

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

140 Pointers

O 1994/1997 - Cheltenham Computer Training C for Programmers

/ Fill in the Gaps \

int main(void)

i
int *p = &i 0x2100
*p 4= 1 0x2104

k
p = &k;

0x1208
*n = *
p =4q; 0x120B
0x1210
return O;

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Fill in the Gaps

Using the variables and addresses provided, complete the picture. Do not attach
any significance to the addresses given to the variables, just treat them as
random numbers.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

141

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= The compiler will not allow type mismatches

Type Mismatch \

when assigning to pointers, or to where pointers
point
p i

int i =10, j = 14;
int *p = &i; q i
int *g = &j;
0x15A4
p = *q;
*p = q;

cannot write

0x15A4 into i cannot write

l4intop

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

Type Mismatch

The compiler checks very carefully the syntactic correctness of the pointer code

you write. It will make sure when you assign to a pointer, an address is assigned.

Similarly if you assign to what is at the end of a pointer, the compiler will check
you assign the “pointed ta” type.

There are some programming. errors.in the program above. The.statement:
p = *a;

would assign what is pointed to by “q” (i.e. 14), into-“p”. Although this would
seem to make sense (because “p” just.contains a number anyway) the compiler
will not allow it because the types are wrong. We are assigning an int into an
int*. The valid pointer 0x15A0 (5536 in decimal) is corrupted with 14. There is
no/guarantee that there'is an‘integer at address 14, or even that 14 is a valid
address.

Alternatively the statement: *p = q;

takes thevalue stored in “q”,/0x15A4 (5540 in decimal)-and writes it into what “p”
points to, i.e. the variable “i". This might seem to make sense, since 5540 is a
valid number. Howeyerthe address in “q’ may be a different size to what can be
stored in “i"." There are no guarantees in C that pointers and integers are the
same size.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

142 Pointers

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Call by Value - Reminder \

#include <stdio.h>
void change(int v);

int main(void) .
{ the function
int var = 5; was not able

change(var); to alter “var
printf("main: var = %i\n", var);

return O;

void change(int v) the function is

{ able to alter “v”
v *= 100;
printf(*'change: v = %iI\n", v);
s change: v = 500
main: var = 5

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15 /

Call by Value - Reminder

This is a reminder of the call by value program.

The main function allocates a variable “var” of type int and value 5. When this
variable is passed to the change function a copy is made. This copy is‘picked up
in.the parameter “v"."*v” is then changed to 500 (to prove this, it is printed out).
On leaving the change function the-parameter“v” is thrown away. The variable
“var” still contains 5.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

143

C for Programmers

O 1994/1997 - Cheltenham Computer Training

-

Call by Reference \

prototype “forces” us to pass a pointer

o

#include <stdio.h> /
void change(int* p);

int main(void)

{ int var = 5- main: var
change(&var); OxllZO[::}i::]
printf("main: var = %i\n", var); 777777ﬂ 7777777
return O; change: p

b 0x1120

void change(int* p) 0x1124

{

*p *= 100;
printf(*'change: *p = %i\n", *p);
}

change: *p = 500
main: var = 500

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Call by Reference

This program demonstrates call by reference in C. Notice the prototype which
requires a single pointer to int to be passed as a parameter.

When the change function is invoked, the address of “var” is passed across:
change (&var)s;

The variable “p”, declared as the parameter to function change, thus points to the

variable “var” within main. This takes some thinking about since “var” is not

directly accessible to main (because it is declared in“another function block)

however “p”.is.and so is wherever it points:

By using the “*p” notation the change function writes down the pointer over “var”
which is changed to 500.

When the change function returns, “var” retains its value of 500.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

144 Pointers
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Pointers to Pointers \

= C allows pointers to any type
= |tis possible to declare a pointer to a pointer

#include <stdio.h> Ppis a “pointer to” a
“pointer to an int”
int main(void)
{
int 1 = 16;
int *p = &i;
int **pp;
pp = &p;
printf(""%i\n", **pp);
return O;
3 0x2324

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17 /

Pointers to Pointers

The declaration: int i;
declares “i” to be of type int: int *p;

declares “p”/to be of'type pointer to int. One “*” means one “pointer to”. Thus in
the declaration:

int **pp;
two *s must therefore declare “pp” to be of type a pointer to-a pointer to int.

Just as “p” must point to Ints, so “pp” must point to pointers to int. This is
indeed the case, since “pp” is made to point to “p”. “*p” causes 16 to be printed

printr(ipz, (pp);
would print 0x2324 whereas

printfE %p s, “pp);
would print 0x2320 (what “pp” paints.to).

printf('%i", **pp);

would cause what “0x2320 points to” to be printed, i.e. the value stored in
location 0x2320 which is 16.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers 145
C for Programmers O 1994/1997 - Cheltenham Computer Training

/ Review \

int main(void)

**pp += 1;

**pp = *q;

i = *q***pp;

i = *q/**pp; /* headache? */;

return O;

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Review Questions

What values should be placed in the boxes?

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers - Exercises 147

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Pointers Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

148 Pointers - Exercises

O 1994/1997 - Cheltenham Computer Training C for Programmers

Directory: POINT

1. Work your way through the following code fragments. What would be printed? When you have
decided, compile and run the program “POINTEX.C” to check your answers. You will find it helpful,
especially with some of the later exercises, to draw boxes representing the variables and arrows
representing the pointers.

a) int i
int * p

printf(""*p = %i\n", *p);

b) int i;
int * p = &i;

printf(""*p = %i\n", *p);

c) int i = 48;
int * p;

printf(""*p = %i\n", *p);

d) int i = 10;
int * p = &i;
int J;
J = ++*p;
printfC'j =%i\n"’, J);
printf('i = %i\n", A);
e) int i'=10,"j = 20;
int * p = &i;
int * q =.&j
*p = *q;

printfC'i = %iy j =%i\n", i, j);
printf("*p = %i, *gq = %i\n", *p, *q);

-
1l
=
o
[
1l
N
o

printfC'i = %i, j = %i\n", i, j);
printf("*p = %i, *gq = %i\n", *p, *q);

f) int i =10, j = 0;
int * p = &i
int * q = ¢&j
p=4a;
printfC'i = %i, j = %i\n", i, j);
printf("*p = %i, *q = %i\n", *p, *q);
*p — *q;

printfC'i = %i, j = %i\n", i, j);
printf("*p = %i, *gq = %i\n", *p, *q);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers - Exercises 149

C for Programmers O 1994/1997 - Cheltenham Computer Training

g) float ten = 10.0F;
float hundred = 100.0F;
float * fp0 = &ten, * fpl = &hundred;

fpl = fpO;
fp0 = &hundred;
*fpl = *fp0o;

printf(**ten/hundred = %f\n", ten/hundred);

h) char a = "b", b = "c", c, d = "e";
char *I = &, *m = &b, *n, *o0 = &a;
n=2&b; *m = ++*o; m = n; *1 = "a";

printf(‘fa = %c, b = %c, ¢ = %c, d = %c\n", a, b, c, d);
printf(C**l = %c, *m = %c, *n = %c, *o = %c\n", *I, *m, *n, *0);

i) iInt i =2, j =3, k;
int * p=&i, *q = &j;
int ** r;

r = 4&p;

printf(C"**r = %i\n", **r);
k = *p** :

printf("k = %i\n", k);

*p = *q;

printf(C"**r = %i\n", **r);
k = **r**q;

printfC'k = %i\n", Kk);

k =(*p/"*q;

printfCk = _%i\n", /K);

2. Open the file “SWAP .C”. You will see the program reads two integers, then calls the swap function to
swap them. The program doesn’t work because it uses call by value. Alter the function to use call by
reference and confirm it works.

3. Inthe file “BIGGEST . C” two functions are called:

mt_*biggest of two(int*, int*);
and
int *biggest _of _three(int*, Int*, int*);

The first function is passed-pointers to two integers. The function should-return whichever pointer
points to the larger integer. The second function should return whichever pointer points to the largest
of the three integers whose addresses are provided.

4. Open the file “DIV.C". You will see the program reads two integers. Then a function with the following
prototype is called:

void div_rem(int a, int b, int *divides, iInt *remains);

This function is passed the two integers. It divides them (using integer division), and writes the answer
over wherever “divides” points. Then it finds the remainder and writes it into where “remains” points.
Thus for 20 and 3, 20 divided by 3 is 6, remainder 2. Implement the div_rem function.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

150 Pointers - Exercises

0 1994/1997 - Cheltenham Computer Training C for Programmers

5. The program in “CHOP.C” reads a doubl e before calling the chop function, which has the following
prototype:

void chop(double d, long *whole_part, double *fraction_part);

This function chops the double into two parts, the whole part and the fraction. So “365.25” would be
chopped into “365” and “.25”. Implement and test the function.

6. The Floor function returns, as a double, the “whole part” of its parameter (the fractional part is
truncated). By checking this returned value against the maximum value of a Iong (found in
limits.h) print an error message if the chop function would overflow the 1ong whose address is
passed.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers - Solutions 151

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Pointers Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

152 Pointers - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers

2. Open the file “SWAP .C”. You will see the program reads two integers, then calls the function swap to
swap them. Alter the function to use call by reference and confirm it works.

#include <stdio.h>
void swap(int*, int*);
int main(void)

int a
int b

100;
_5;

printf(*the initial value of a is %i\n", a);
printf(*the initial value of b is %i\n", b);

swap(&a, &b);

printf(*'after swap, the value of a is %i\n", a);
printf('and the value of b is %i\n", b);

return O;
¥
void swap(int *i, Int *j)
{
int temp = *i;
*i = *';
*j = temp;
¥

3. In the file “BIGGEST..C” implement the two functions called:
int *biggest_of _two(int*, int*);
and
intf*biggest of_three(int*,\int*, Int*);

The biggest_of_three function.could have been implemented with a complex.series of ifithen/else
constructs, however since the biggest_of_two function was already implemented, it seemed reasonable
to get it to do most of the work.

#include <stdio.h>

int* biggest_of_two(int*, iInt*);
int* biggest_of_three(int*, Int*, int*);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers - Solutions 153

C for Programmers O 1994/1997 - Cheltenham Computer Training

int main(void)

{
int a = 100;
int b = -5;
int c = 200;
int *p;
p = biggest_of_two(&a, &b);
printf(**the biggest of %i and %i is %iI\n", a, b, *p);
p = biggest_of_three(&a, &b, &c);
printf(**the biggest of %i %I and %i is %i\n", a, b, c, *p);
return O;
}
int* biggest_of_two(int * p, int * Q)
{
return (*p > *q) ? p : Q;
}
int* biggest_of_three(int * p, iInt * g, Int * r)
{
int *first = biggest_of_two(p, q);
int *second = biggest_of_two(q, r);
return biggest _of_two(first, second);
}

4. In“DIV.C"implement

void div_rem(int a, int b, int *divides, int *remains);

#include <stdio:h>
void div_rem(int a, int b, int *divides, Int *remains);

int main(void)

{
int a, b;
int div =403
int rem = 0;
printf(enter two integers ");
scanf("'%i1 %i", &a;"&b);
div_rem(a, b, &div, &rem);
printf("%i divided by %i = %i ™

“remainder %i\n", a, b, div, rem);

return O;

}

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

154 Pointers - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers

void div_rem(int a, int b, int *divides, int *remains)
{
*divides
*remains

a/ b;
a% b;

5. The program in “CHOP.C” reads a doubl e before calling the chop function, which has the following
prototype:

void chop(double d, long *whole_part, double *fraction_part);

6. By checking the Floor function returned value against the maximum value of a long print an error
message if the chop function would overflow the 1ong whose address is passed.

One of the most important things in the following program is to include “math.h”. Without this header
file, the compiler assumes floor returns an integer. Thus the truncated double actually returned is
corrupted. Since it is the cornerstone of all calculations in chop, it is important this value be intact. Use
of the floor function is important, since if the user types 32767.9 and the maximum value of a long were
32767, testing the double directly against LONG_MAX would cause our overflow message to appear,
despite the whole value being able to fit into a long int.

#include <stdio.h>
#include <math.h>
#include <limits.h>

void chop(double d, long *whole_part, double *fraction_part);

int main(void)

{
double d = 0.0;
1ong whole/s= 03
double fraction = 0.0;

printf('enter a 'double ™);
scanf('%I1f", &d);

chop(d, &whole,s&Fraction);

printf(C'%1¥ chopped' is %ld and %.50g\n"},
d, whole, Ffraction);

return O;

void chop(doublle d, longhy*whole_part, double”*fraction_part)
double truncated = floor(d);
if(truncated > LONG_MAX) {

printf(assigning /%.01f to a long int would.overflow
T(maximum %Id)\n", [truncated, LONG.LMAX);

*whole_part = LONG_MAX;
} else
*whole_part = (long)truncated;

*fraction_part = d - truncated;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C 155

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Arrays in C

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

156 Arrays in C
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Arrays in C \

= Declaring arrays
= Accessing elements

= Passing arrays into functions

» Using pointers to access arrays
= Strings

= The null terminator

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1 /

Arrays in C

This chapter discusses all aspects of arrays in C.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

157

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Declaring Arrays \

An array is a collection of data items (called
elements) all of the same type

It is declared using a type, a variable name and a
CONSTANT placed in square brackets

C always allocates the array in a single block of
memory

The size of the array, once declared, is fixed
forever - there is no equivalent of, for instance,
the “redim” command in BASIC

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Declaring Arrays

An important fact to understand about arrays is that they consist of the same type
all the way through. For instance, an array of 10 int is a group of 10 integers all
bunched together. The array doesn’t change type half way through so there are 5
intand 5 float, or 1 int, 1 float followed by 1 int and 1 Float five times.
Data structures likethese could be created in C, but an array isn’t the way to do
it.

Thus to create an array we merely need a type for the elements and a count. For
instance:
long a[5];

creates an array called “a” which consists of 5 long ints. Itis a rule of C that
the storage for an array is physically contiguous in memory. Thus wherever, say,
the 'second element sits'in memory, the third element will'be adjacent to it, the
fourth next to:that and-so on.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

158 Arrays in C
O 1994/1997 - Cheltenham Computer Training C for Programmers

/ Examples \

#define SI1ZE 10

int a[5]1; /* a is an array of 5 ints */
long int big[100]; /* big is 400 bytes! */
double d[100]; /* but d is 800 bytes! */

long double V[SIZE]; 10 long doubles, 100 bytes */

all five

elements

int a[5] = { 10, 20, 30 eleme
double d[100] = { 1.5, 2. initialised
short primes[] = { 1, 2, 3

long n[50] ={0};

first two elements
initialised,
remaining ones
set to zero

compiler fixes
size at 7
elements

int i 7;
const int 5;

(9]

int a[i]l;
double d[c];
short primes[];

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Examples

quickest way of setting
ALL elements to zero

Above are examples of declaring and initializing arrays. Notice that C can
support arrays of any type, including structures (which will be covered the next
chapter), except void (which isn’t a type so much as the absence of a type). You
will notice that a constant must appear within the brackets so:

long int a[10]3;

is fine, as is: #define SIZE 10
long int a[SIZE];

But: int size = 10;
long int a[size];

and const int a_size = 10;
long.int ala.size];

will NOT compile. The'last is rather curious'since “a_size™is obviously constant,
however, the .compiler will not.accept it. Another.thing to point out is that the
number provided must be an integral type, “int a[5.3]" is obviously nonsense.

Initializing 1. The number of initializing values is exactly the same as:the number of
Arrays elements in-the array. In this case the values are assigned one to one, e.g.
int a[5] =.{/1, 2, 3, 4,.5 };
2. The number of initializing values is less than the number of elements in the
array. Here the values are assigned “one to one” until they run out. The
remaining array elements are initialized to zero, e.g.
int a[5] = { 1, 2 };
3. The number of elements in the array has not been specified, but a number of
initializing values has. Here the compiler fixes the size of the array to the
number of initializing values and they are assigned one to one, e.g.
inta[] ={1, 2, 3, 4, 5 };

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

159

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= The elements are accessed via an integer which

= There is no bounds checking

<

Accessing Elements

ranges from 0..size-1

int main(void)

{
int a[6]; a
int i=17; 0
a[0] = 59; 1
a[5] = -10;
al[i/z2] = 2 2

3

a[6] = 0
a[-1] = 5 x 4
return O; 5

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4 /

Accessing Elements

Numbering
Starts at Zero

THE most important thing to remember about arrays in C is the scheme by which
the elements are numbered. The FIRST element in the array is element number
ZERO, the second element is number one and so on. The LAST element in the
array “a” above is element number FIVE, i.e. the total number of elements less
one.

This scheme, together with the fact that there is no bounds checking in C
accounts for a great deal of errors where array bounds accessing is concerned. It
is all too easy to.write “a[6] = 0” and'index one beyond the end of the array. In
this case whatever variable were located in the piece‘of memory (maybe the
variable “i").would be corrupted.

Notice that the array access a[i/2] is fine, since “i"
causes integer division.

is an integer and thus i1/2

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

160 Arrays in C
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Array Names \

» There is a special and unusual property of array
names in C

= The name of an array is a pointer to the start of
the array, i.e. the zeroth element, thus

a == &a|0]
int a[10];
int *p;
L1 I rrTirr
float f[5] p a
float *fp;
p=a; /% p-=ga[0] */ fp f
e _ [N
fp = f; /* fp = &F[0] */

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5 /

Array Names

A Pointer to the In C, array names have a rather unusual property. The compiler treats the name
Start of an array as an address which may be used to initialize a pointer without error.
The address is that of the first element (i.e. the element with index 0).

Cannot Assign Note that the address’is a constant. If you are wondering what would happen
to an Array with the following:

int a[10];
int b[x0];

a = b;
the answer is that you'd get a compiler error. The address that “a” yields is a
constant and-thus it cannot'be-assigned to:~This'makes sense. If it were possible

to assign to the name_ of an array, the compiler might “forget” the address at
which the array lived in memory.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

161

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Passing Arrays to Functions \

When an array is passed to a function a pointer to
the zeroth element is passed across

The function may alter any element

The corresponding parameter may be declared as
a pointer, or by using the following special syntax

o

int add_elements(int a[f, int size)

{

int add_elements(int *p, int size)

{

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6 /

Passing Arrays to Functions

Bounds
Checking
Within
Functions

If we declare an array:
int a[60];

and then pass this array to a function:
function(a);

the compiler treats the name of the array “a” in exactly the same way it did before,
i.e. as a pointer to the zeroth element of the array. This means that a pointer is
passed to the*function;i.e. the-array is-NOT passed-by. value:

One problem with this strategy is that there is no way for the function to know
how many elements are in the array (all'the function gets is'a pointer to one
integer, this could be one lone integer or there could be one hundred other
integers immediately. after it).. This accounts. for the second.parameter in the two
versions of the add_ e lements function above. This parameter must be
provided by us as the valid number of elements in the array.

Note that there is some special syntax which makes the parameter a pointer.
This is:

int/a[]
This is one of very few places this syntax may be used. Try to use it to declare an
array and the compiler will complain because it cannot determine how much
storage to allocate for the array. All it is doing here is the same as:

int * a;

Since pointers are being used here and we can write down pointers, any element
of the array may be changed.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

162

Arrays in C

O 1994/1997 - Cheltenham Computer Training

C for Programmers

/ Example

N

e

primes
#include <stdio.h> 1
void sum(long [1, int); 2
int main(void)
{ 3
long primes[6] = { 1, 2, 5
3,5, 7, 11 };
sum(primes, 6); 7
printf(C'%li\n", primes[0]); 11
N return O; a
void sum(long a[], int sz)
{ sz 6
int i;
long total = 0;
for(i = 0; i < s7; i++) provides bounds checking
total += a[i];
a[0] = total; the total is written over
element zero

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

Example

A Pointer is
Passed

Bounds
Checking

In the example above the array “primes” is passed down to the function “sum” by
way of a pointer. “a@” is initialized to point to primes[0], which contains the value
1.

Within the function-the array access a[i] is quite valid. When “i” is zero, a[0] gives
access to the value 1. When."i" is.one, a[1] gives access to the.value 2 and so
on. Think of “i” as an offset of the number of long ints beyond where “a”
points.

The second parameter, “sz” is 6 and provides bounds'checking: You will see the
for loop:

for(i = 0; 1 < sz; i+t)
is ideally suited.for accessing the array elements. a[0] gives-access to the first
element, containing 1. The last element to be ‘accessed will be a[5] (because “i”
being equal to 6 causes the loop to exit) which contains the 11.
Notice-that because call:by reference is used, the;sumfunction is able to alter any

element of the array. In this example, element a[0], in other words prime[0] is
altered to contain the sum.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

163

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Using Pointers \

Pointers may be used to access array elements
rather than using constructs involving “[]”
Pointers in C are automatically scaled by the size
of the object pointed to when involved in
arithmetic

long v[6] = { 1,2,
3,4,5,6 }; T T

L pt .
p = v; ///// \\ N
printf("%ld\n", *p); / \
p++; p

printfC"%ld\n", *p); | 1000 | | 1 | 2 | 3| 4| 5| 6|
p += 4; \4
printf(C'%ld\n", *p);

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8 /

long *p;

N

Using Pointers

Addition
Pointers

With

Pointers in C are ideally suited for accessing the elements of an array. We have
already seen how the name of an array acts like a pointer.

In the example above the array “v” starts at address 1000 in memory, i.e. the
address of element-zero is 1000. Since the elements are long ints and hence 4
bytes.in size, the next element, v[1].sits at address 1004 in memory.

If a pointer to a long int is initialised with “v” it will contain 1000. The printf
prints what is pointed to by “p”, i.e. 1. The most important thing to realize is that
on the next line “p++” the value contained by “p” does'NOT become 1001. The
compiler, realizing that “p” is a pointer.to a‘fong int,and knowing that longs
are 4 bytes in size makes the value 1004. Addition to pointers is scaled by the
size of the object pointed to. printf now prints 2 at the end of the pointer
1004.

With the next statement “p += 47, the 4lis scaled by 4, thus 16 is added to the

pointer. 1004 + 16 = 1020. This is the address of the sixth element, v[5]. Now
the printf prints 6.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

164 Arrays in C
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Pointers Go Backwards Too \

= Scaling not only happens when addition is done,
it happens with subtraction too

long v[6] = { 1,2,
3,4,5,6 };
long *p;

p=vVv+5;
printf("%Ild\n", *p);

-- p
prisenave oy [| [T [sTeT o]
DFmErCHIdNT™, *p): 5

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9 /

Pointers Go Backwards Too

This scaling of pointers by the size of the object pointed to not only occurs with
addition. Whenever subtraction is done on a pointer, the scaling occurs too.

So, in the assignment: p =v +/5;

as we have already seen, v.gives rise-to the address 1000 and-the 5 is scaled by
the size of a long int, 4 bytes to give 1000 + 5 * 4, i.e. 1020. Thus the pointer
“p” points to the last of the long integers within the array, element v[5], containing
6.

Subtraction When the statement: p--;

From Pointers
is executed the pointer does NOT become 1019. Instead the compiler subtracts

one times the size of a Tong int. Thus 4 bytes are subtracted and the pointer
goes from 1020.to 1016= Thus the pointer.now points to the element v[4]
containing 5.

With the statement: p -= 2;

the 2 is scaled by 4, giving 8. 1016 - 8 gives 1008, this being the address of the
element “v[2]".

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

165

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

= When two pointers into the same array are

Pointers May be Subtracted \

subtracted C scales again, giving the number of
array elements separating them

double d[7] = { 1.1, 2.2,

pl p2
3.3, 4.4, 5.5, 6.6, 7.7 };
double *pi; 2008 2048

double *p2;

pl
p2

printf(""%i\n", p2 - pl);

d+ d|l.1|2.2|3.3|4.4|5.5|6.6|7.7|
d +

1;
6;

(5]

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

Pointers May be Subtracted

We have discussed adding and subtracting integers from pointers. When this
occurs the compiler scales the integer by the size of the thing pointed to and adds
or subtracts the scaled amount. When two pointers are subtracted (note: two
pointers may/NOT be added) the compiler scales the distance between them. In
the example above we are using an array of doubl e, each double being 8 bytes
in size. If the address of thefirst.is.2000, the.address of the second is 2008, the
third is 2016 etc.

In the statement: pl =d + 1;
“d” yields the address 2000, 1 is scaled by 8 giving 2000 + 8, i.e. 2008.
In: p2 = d + 6;
“d"yields the-address.2000;-6-is scaled.by-8.giving.2000.+:48, i.e. 2048.
When these two,pointers are subtractedin:

p2 - pl

the apparent answer is 2048 - 2008 = 40. However, the compiler scales the 40 by
the size of the object pointed to. Since these are pointers to double, it scales by
8 bytes, thus 40/ 8 =/5;

Notice there are some rules here. The first pointer “p2” must point “higher” into
memory than the second pointer “p1”. If the subtraction had been written as

pl - p2

the result would not have been meaningful. Also, the two pointers must point into
the same array. If you subtract two pointers into different arrays this only gives
information on where in memory the compiler has placed the arrays.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

166

Arrays in C

0 1994/1997 - Cheltenham Computer Training

C for Programmers

/ Using Pointers - Example \

#include <stdio.h>

int main(void)

return O;
}
long sum(long *p,
{

long total =

return total;

long sum(long*, int);

long primes[6] = { 1, 2,

3,5, 7, 11 };

printf("%li\n", sum(primes, 6));

int sz)

long *end = p + sz;

0;

while(p < end)
total += *p++;

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

primes

end

~N~Njajw N |)e

1000

1024

Slide No. 11 /

Using Pointers - Example

Above is an example of using pointers to handle an array. In the statement:

sum(primes, 6)

the use of the hame of the array “primes” causes the address of the zeroth
element, 1000, to be copied into “p”. The 6 is copied into “sz” and provides

bounds checking.

The initialization:

long *end = p + sz;

sets the pointer “end” to be 1000 + 6 * 4 (since long.dnt is 4 bytes in size), i.e.
1024.. The location with address 1024 lies one beyondthe end of the array,

hence

and NOT:

The statement:

while(p < end)
while(p <s=_end)

total += *p++;

adds into “total” (initially zero) the value at the end of the pointer “p”, i.e. 1. The
pointer is then incremented, 4 is added, “p” becoming'1004. Since 1004 is less
than the 1024.stored in “end”, the loop continues and the. value at location 1004,
i.e. 2 is added in'to total. The painter increases to 1008, still less than 1024. Itis
only when all the values in the array have been added, i.e. 1, 2, 3,5, 7 and 11
that the pointer “p” points one beyond the 11 to the location whose address is
1024. Since the pointer “p” now contains 1024 and the pointer “end” contains

1024 the condition:

while(p < end)

is no longer true and the loop terminates. The value stored in total, 34, is

returned.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

167

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ *and ++ \

*p++ means:

*p find the value at the end of the pointer

p++ increment the POINTER to point to the
next element

(*p)++ means:
*p find the value at the end of the pointer

(")++ increment the VALUE AT THE END OF THE
POINTER (the pointer never moves)

*++p means:
++p increment the pointer
* find the value at the end of the pointer

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

*and ++

In u*p++11

In fact “++" has a higher precedence than “*”. If “++" gets done first, why isn’t the

Which Operator pointer incremented and THEN the value at the end of the pointer obtained?

is Done First?

(*p)++

*++p

Clearly in the last program this didn’t happen. To understand the answer it is
important to remember the register used when postfix ++ is specified. In

int i=5,/4;
J = i++;
The valueof “I",'5, is saved in a register. “i”.is then incremented, becoming 6.

The value in the register, 5, is then transferred into“j".- Thusthe increment is
done before the'assignment, yet is appears as though.the assignment happens

first. Now consider:
X = *p++

and imagine that “p” contains 1000 (as before) and that “p” points to long ints
(as before). The value of “p”, 1000, is saved in a register. “p” is incremented and
becomes 1004." The pre-incremented value of 1000, saved in the register is used

with “*”. Thus we find what is stored in location 1000. This was the value 1
which.is transferred into.“x”.

With “(*p)++"the contents of location 1000, i.e. 1, is saved in the register. The
contents of location 1000 are then incremented. The 1-becomes a 2 and the
pointer still contains 1000. This construct is guaranteed never to move the
pointer, but to continually increment at the end of the pointer, i.e. the value in
element zero of the array.

With “*++p”, because prefix increment is used, the register is not used. The
value of “p”, 1000, is incremented directly, becoming 1004. The value stored in

location 1004, i.e. 2, is then accessed. This construct is guaranteed to miss the

first value in the array.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

168 Arrays in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Which Notation? \

= An axiom of C states a[i] is equivalent to *(a + i)

short a[8] = { 10, 20, 30, 40, 50, 60, 70, 80 };

short *p = a;

printf(C'%i\n", a[3]1);

printfC'%i\n", *(a + 3));

printfC'%i\n", *(p + 3)); 40

printfC'%i\n", p[31); 40

printf(C'%i\n", 3[al); ig
40

P | | a|1o|2o|30|4o|50|60|7o|80|

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13 /

Which Notation?

If both array access notation, “afindex]”, and pointer notation, “*p++", may be
used to access array elements which is better? First, here are all the variations:

A'fundamental truth (what mathematicians call an “axiom”) in C is that any array
access al 1] is equivalent to * (a+i).

Consider a[3] which will access the element containing 40. This element is also
accessed by *(a+3). Since “a” is the name of an array, the address 1000 is
yielded.giving-*(1000+3). Since.the address has type pointer.to short int, the
3 is scaled by the size of the object pointed to, i.e: *(1000+3*2). The contents of
location 1006 is the same 40 as yielded by a[3].

Now consider *(p+3). The pointer “p” contains the address 1000. So *(p+3)
gives *(1000+3). Because of the type of the pointer, 3 is scaled by the size of a
short intgiving *(1000+3*2),.i.e. the contents of location 1006, i.e. 40.

The next variation, p[3], looks strange. How can something that is clearly not an
array be used on the “outside” of a set of brackets? To understand this, all that is
needed is to apply the axiom above, i.e. a[i], and hence p[3], is equivalent to
(a+i)-hence(p+3). Above.is an explanation of how.*(p+3) works.

This last variation, 3[a],.looks strangest of all. However,:a[3] is equivalent to
*(a+3), but *(a+3).must be equivalent to *(3+a) since:“+"is commutative (10+20
is the same as 20+10). This, reapplying the axiom, must be equivalent to 3[a]. It
is not generally recommended to write array accesses this way, however it not
only must compile, but must access the element containing 40.

Use What is This doesn’t answer the question of which notation is best, pointer or array

Easiest! access. The answer is stick with what is easier to read and understand. Neither
a[3] nor *(p+3) notations will have any significant speed or efficiency advantage
over one another. If they both produce approximately the same speed code, why
not choose the one that is clearest and makes the code most maintainable?

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

169

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

C has no native string type, instead we use arrays
of char

A special character, called a “null”, marks the
end (don’t confuse this with the NULL pointer)
This may be written as ‘\O’ (zero not capital ‘0’)
This is the only character whose ASCII value is
zero

Depending on how arrays of characters are built,
we may need to add the null by hand, or the
compiler may add it for us

Strings \

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

Strings

The sudden topic change may seem a little strange until you realize that C doesn't
really support strings. In C, strings are just arrays of characters, hence the
discussion here.

C has a special marker to denote the'last character in a string. This character is
called the null and is written..as "\0.". You should not confuse.this null with the
NULL pointer seen in the pointers chapter. The difference is that NULL is an
invalid pointer value and may be defined in some strange and exotic way. The
null character is entirely different as itis always, and is guaranteed to be, zero.

Why the strange way of writing "\0 " rather than just 0? This is because the
compiler assigns the type of int to 0, whereas it assigns the type char to "\0".
The difference between the types is the number of bits, int gives 16 or 32 bits
worth of zero, char gives 8 bits'\worth of zero. ~Thus; potentially, the compiler
might see a problem-with:

char c¢ = 0;

sincethere are 16 or 32 bits of zero on the right of “=";"but.room for only 8 of
those bits in “c”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

170 Arrays in C

O 1994/1997 - Cheltenham Computer Training C for Programmers
/ Example \

char first_name[5] = { "J", "o, "h", "n", "\O" };

char last_name[6] = "Minor";

char other[] = "Tony Blurt";

characters[7] “No null";

this special case specifically
excludes the null terminator

first_name | ' | ‘o' | 'h' |'n' | 0 |

last_name | 'M'| i | n' | ‘o' | T | 0 |

otner [o [[s2][] v [w]+[¢] o]

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

characters | 'N' | 'o'| 32 | n' | 'u

Example
The example above shows the two ways of constructing strings in C. The first
requires the string to be assembled by hand as in:
char firstiname[5]/= { 3", "o",« A%, Mn",["\O" }3
Character Each character value occupies a successive position in the array. Here the
Arrays vs. compiler is not smart enough to figure we are constructing a string and so we
Strings must add the null character *\0" by hand. If we had forgotten, the array of
characters would have-been just that, an-array of characters; not a string.
Null Added The second method is much more convenient and is shown by:

Automatically char last_name[6] = "Minor';

Here too the'characters occupy-successive locations.in the-array. The compiler
realizes we are constructing a string and automatically adds the null terminator,
thus 6 slots.in the array and NOT 5.

As already seen, when providing an initial value with an array, the size may be
omitted, as in:
char other[] = "Tony Blurt™;

Here, the size deduced by the compiler is 11 which includes space for the null
terminator.

Excluding Null A special case exists in C when the size is set to exactly the number of characters
used in the initialization not including the null character. As in:

char characters[7] = "No null*;

Here the compiler deliberately excludes the null terminator. Here is an array of
characters and not a string.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in

C

171

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Strings may be printed by hand
= Alternatively printf supports “%s”

Printing Strings \

|char other[] = "Tony Blurt"; |

char *p; int i =0;

p = other; while(other[i] '= "\0")

while(*p = "\0") printf(""%c", other[i++]);
printf(""%c", *p++); printf(*'\n");

printf("'\n");

|printf(“%s\n“, other); |

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16 /

Printing Strings

printf “%s”

Format
Specifier

Strings may be printed by hand, character by character until the null is found or
by using the “%s” format specifier to printf. scanf understands this format
specifier too and will read a sequence of characters from the keyboard.

Consider the way: printfF(™%s\n', other);

actually works. Being an array, “other” generates the address of the first
character in the array. If this address were, say, 2010 the “%s” format specifier
tells printt to print the character stored at location 2010. This is the character
.

printf then increments its pointer to become 2011 (because char is being delt
with, there is no scaling of the pointer). The value at this location “0” is tested to
see if it nulld Since it is not, this'value is printed too. Again the pointer is
incremented and becomes 2012. The character in this location “n” is tested to
see.if itis null, since it is nat, it is printed.

This carries on right through the “y”, space, “B”, “I", “u”, “r" and “t". With “t” the
pointer is2019. Since the “t™is not null, it is printed, the pointer is incremented.
Now its value is 2020 and the value “\0” stored at that location is tested. printf
breaks out of its loop and returns to the caller.

Consider also the chaos that would result if the array “characters” defined
previously were thrown at printf and the “%s” format specifier. This array of
characters did not contain the null terminator and, since there is no bounds
checking in C, printf would continue printing characters randomly from
memory until by the laws of chance found a byte containing zero. This is a very
popular error in C programs.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

172 Arrays in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Null Really Does Mark the End! \

#include <stdio.h>

int main(void) even though the rest of
N y the data is still there,
char other[] = "Tony Blurt"; printf will NOT move

) past the null terminator
printf(""%s\n", other);

other[4] = "\0";

printf(""%s\n", other);

t 0;
} return 9 Tony Blurt

Tony

other |.T.I.O.I.n.|.y.| 32|'B'|'P I.u.l.r I.f | 0
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17 /

Null Really Does Mark the End!

The example here shows how printf will not move past the null terminator. In
the first case, 11 characters are output (including the space).

When the null terminator is written into the fifth pasition in the array only the four

characters before it-are printed. Those other characters are still there, but simply
not printed.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

173

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Strings may be initialised with “=", but not

= Remember the name of an array is a CONSTANT

Assigning to Strings \

assigned to with “="

pointer to the zeroth element

#include <stdio.h>

#include <string.h>

int main(void)

{
char who[] = "Tony Blurt";
who = "John Minor";
strcpy(who, "John Minor');
return O;

3

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18 /

Assigning to Strings

Don’t make the mistake of trying to assign values into strings at run time as in:

who = ""John Minor";

By trying to assign to “who” the compiler would attempt to assign to the‘address
at-which the “T” is stored (since “who” is the name of an array and therefore the
address of the'zeroth element). " This-addresstis'a constant. Instead the Standard
Library function strcpy should be used as in:

strcpy(who, "“John Minor'™);
notice how the format is: strcpy(destination, source);

this routine contains a loop (similar to that contained in printf) which walks the
string checking for the null terminator. While it hasn’t been found it continues
copying into the target array. It ensures the null is copied too, thus making “who”
a valid string rather than‘just an array of-.characters. Notice also how strcpy does
absolutely no bounds.checking,so:

strcpy(who, "a really very long string indeed™);

would overflow the array “who” and corrupt the memory around it. This would
very likely cause the program to crash. A safer option entirely is to use strcpy’s
cousin strncpy which is count driven:

strncpy(who, "a really very long string indeed",
sizeof(who));

This copies either up to the null terminator, or up to the count provided (here 11,
the number of bytes yielded by sizeoT). Unfortunately when strncpy hits the
count first, it fails to null terminate. We have to do this by hand as in:

who[sizeof(who) - 1] = *\0";

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

174 Arrays in C

0 1994/1997 - Cheltenham Computer Training C for Programmers
/ Pointing to Strings \

= To save us declaring many character arrays to
store strings, the compiler can store them
directly in the data segment

= We need only declare a pointer

= The compiler may recycle some of these strings,
therefore we must NOT alter any of the characters

char *p
char *q

"Data segment!!";
ntiit;

q [OxF10A

P [0xF100
|'D1 ﬁllT |h'|32|'§|'e1'g|'m1'e1'ﬁ|'r|'F|'P| Ol
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19 /

Pointing to Strings

Strings May be The compiler stores strings in the data segment whenever we use double quotes
Stored in the and are not initializing an array of characters. For instance:

Data Segmegk char str[] = "th#s™is a string";

does not cause str, or the characters “t”, “h”, “i” etc. to be placed in the data
segment. Instead we get a“normal™stack based array of characters. ‘However,
the entirely different initialization:

char *str =/"this is| a string"™;
declares a stack based pointer “str” pointing directly into the data segment.

The ANSI and ISO Standards committees thought it would be really neat if the
compiler could optimize the storage of these strings. Thus the compiler is
allowed to set more than one pointer into the same block of memory, as shown
above. Obviously it can-only do this when-one string is a-substring of another. If
we had.changed the initialization to read:

char *gq = NTII™;
or even: char *g = "nt'f;

then the compiler would not have been able to perform this optimization. Other
storage in the data segment would need to be allocated. Because we don't know
how many pointers will be pointing into a block of storage it is inadvisable to write
down any of these pointers. Really the declaration would be better as:

const char *p = "Data segment';

Which declares “p” as a pointer to a constant character. In fact it is not only “D”
(the character to which “p” is set to point) which is the constant character, all the
characters accessible by “p” become constant.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

175

C for Programmers

O 1994/1997 - Cheltenham Computer Training

e

e

Example \

this utterly pointless statement causes the
compiler to store the characters, unfortunately
we forget to save the address

#include <stdio.h>

int main(void)

char *p = "a string in the data segment\n";
"a second string in the data segment\n";
printf("a third string in the data segment\n");
printf(C'%s”, p);

printf(p);

a third string in the data segment
string in the data segment
string in the data segment

return O;

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20

Example

The program above gives an insight into the nature of strings stored in the data
segment. Each of the lines:

char~*p [+ "a[string in~the data|segment\n';

"a second string. in the data segment\n";

printf(''a third string in/ the data segment\n™);
and printf("%s™, p);

cause strings-to besstored in the data segment. The'second-of-these is rather a
waste of time (indeed most compilers will produce a warning to this effect) as

although the characters are carefully'stored by the compiler we forget to provide a

variable to store the address. Thus the address is forgotten and unless we trawl
the data segment looking for them we’d have a hard task finding them. A smart
compiler.may.decide.not to store these characters.at all.. Although the third
statement:

printfC'a third string in.the (data.segment\n');

does not provide a variable to store the address, it does pass the address as the

first and only parameterto printf (remember the address will be that of the “a”

at the front ofthe string). printf takes this address and-prints the characters
stored at successive locations until the null is encountered:

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

176 Arrays in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

The fourth line also causes characters to be placed in the data segment, though
perhaps not as obviously as with the previous statements. Here only three
characters are stored, “%”, “s” and the null, “\O”. As before the address of the first
character, the “%", is passed to printf, which encounters the %s format

specifier. This instructs it to take the address stored in “p” and to walk down the
array of characters it finds there, stopping when the null is encountered.

The statement:

printf(p);

passes the pointer “p” directly to printf. Instead of having to wade through a
“%s”, it is handed a pointer to the character “a” on the front of “a second string in
the data segment\n”.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

177

C for Programmers

O 1994/1997 - Cheltenham Computer Training

-

o

= C does not support multidimensional arrays
= However, C does support arrays of any type

Multidimensional Arrays \

including arrays of arrays
|f|0at rainfal 1[12][365]; I “rainfall” is an array of 12
arrays of 365 float
short exam_marks[500][10]; “exam_marks” is an array of
500 arrays of 10 short int

const int brighton = 7;
int day_of_year = 238;

rainfall[brighton][day_of year] = 0.0F;

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21 J

Multidimensional Arrays

Sometimes a simple array just isn’t enough. Say a program needed to store the
rainfall for 12 places for each of the 365 days in the year (pretend it isn’t a leap
year). 12 arrays of 365 reals would be needed. This is exactly what:

float rainfall[12][365]5
gives. Alternatively imagine a (big) college with up to 500 students completing
exams. Each student may sit up to 10 exams. This would call for 500 arrays of

10 integers (we're not interested in fractions of a percent, so whole numbers will
do). This is'what: shortexam marks[500][10];

gives. Although it may be tempting to regard these variables as multi
dimensional.arrays, C doesn't treat them.as such. Firstly, to.access the 5th
location’s rainfall on the 108th day of the year we would write:

printf('rainfall was %f\n', rainfall[5][108]);
and NOT (as.in some languages):
prantf('rainfall’ was %f\n", ‘rainfall[5, 108]);

which wouldn’t compile. In fact, C expects these variables to be initialized as
arrays of arrays. Consider:

int rainfall_in_mmyper_month[4][12] = {

{ ¥7s»15, 20, 25, 30, 35,48, 37,728, 19, 18, 10 },
{ A3, 13,18, 20, 27, 29, 29, 26,+20, 15, 11, 8 },
{£ 7, 9, 11, 11, 12, 14, 16, 13, 11, 8, 6, 3},
{ 29, 35, 40, 44, 47, 51, 59, 57, 42, 39, 35, 28 },

};

where each of the four arrays of twelve floats are initialized separately.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

178 Arrays in C

O 1994/1997 - Cheltenham Computer Training C for Programmers

/ Review \

= How many times does the following program
loop?

#include <stdio.h>
int main(void)
int i;
int a[10];
for(i = 0; 1 <= 10; i++) {

printf(""%d\n", 1);
a[i] = O;

}

return O;

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 22

Review

Time for a break. How many times will the loop execute?

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C 179
C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Summary \

= Arrays are declared with a type, a name, “[]” and
a CONSTANT

= Access to elements by array name, “[]” and an
integer

= Arrays passed into functions by pointer
= Pointer arithmetic

= Strings - arrays of characters with a null
terminator

= Sometimes compiler stores null for us (when
double quotes are used) otherwise we have to
store it ourselves

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 23 /

Summary

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Exercises 181

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Arrays Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

182 Arrays in C - Exercises

0 1994/1997 - Cheltenham Computer Training C for Programmers

Directory: ARRAYS

1. Inthe file “ARRAY1.C". There is a call to a function:
void print_array(int a[], int count);
Implement this function using either pointer or array index notation. This file also contains a call to the
preprocessor macro ASIZE which determines the number of elements in an array. Don’t worry about
this, the macro works and how it works will be discussed in a later chapter.
2. In the file “ARRAY2 .C” there is a call to the function:

float average(int a[], int count);

Implement this function which averages the “count” values in the array “a” and returns the answer as a
float. You will need to cut and paste your print_array function from the previous exercise.

3. In “ARRAY3.C" you need to write the copy_array function, which has the prototype:
void copy_array(int to[], int from[], int count);
which copies the array passed as its second parameter into the array passed as its first parameter.
The third parameter is a count of the number of elements to be copied. You should assume the target

array has a number of elements greater than or equal to that of the source array.

Write this routine using either pointers or array index notation. Once again, you will need to cut and
paste your print_array function.

4. In "ARRAY4 .C", implement the function
int *biggest(int *a, int count);
such that the function returns a pointer to the largest element in the array pointed to by “a”.

5. In “ARRAY5.C", there.is a call to the print_in_reverse function which has.the following prototype:
void print in_ reverse(float *a, int count);

Using pointers, write this function to print the array in reverse order.

6. Open the file “STRING1.C"." There are two strings declared and a call to the function Ien for each one.
The function has the prototype

int len(char *str);

and returns the number of characters in the string.. Implement this function by walking down the array
searching for the null terminator character.

7. Open the file “STRING2.C". Implement the count_char function with the prototype:
int count_char(char *str, char what);

which returns the number of occurrences of the character what within the string str.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Exercises 183

C for Programmers 0 1994/1997 - Cheltenham Computer Training

8. Open the file “STRING3.C". There is a call to the copy_string function which has the prototype:

void copy_string(char *to, char *from);
Notice that unlike the copy_array function, there is no third parameter to indicate the number of
characters to be copied. Always assume there is enough storage in the target array to contain the data
from the source array.
9. Open the file “LOTTERY .C”". If you run the program you will see that 6 random numbers in the range
1..49 are stored in the selected array before it is printed. No checking is done to see if the same
number occurs more than once.

Add the required checking and as a final touch, sort the numbers before you print them.

Could you think of a better strategy for generating the 6 different numbers?

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Solutions 185

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Arrays Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

186 Arrays in C - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers

1

In the file “ARRAY1 .C” implement the function
void print_array(int a[], int count);
This solution uses array index notation

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(A[0])
void print_array(int a[], int count);
int main(void)
{
int values[] = { 17, 27, 34, 52, 79,

87, 103, 109, 187, 214 };

printf(*'The array contains the following values\n');
print_array(values, A_SI1ZE(values));

return O;
}
void print_array(int a[], int count)
{
int i;
for(i = 0; 1 < count; i++)
printfC%i\t", a[i]);
printf'\n'");
}

In the file “ARRAY2 _C” implement the function

float average(int a[}.,._int count);
The only problem here is to ensure that the average is calculated using floating point arithmetic. This
will not necessarily happen since the routine deals with an array.of integers. By declaring the sum as a
float, when the sum is divided by.the number of elements,.floating point division is achieved.
#include <stdio.h>
#define A_SIZE(A) sizeof(A)/sizeofi(ALO])

void print_array(int a[], int count);
float average(int a[], int count);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Solutions 187

C for Programmers O 1994/1997 - Cheltenham Computer Training
int main(void)
{
int values[] = { 17, 27, 34, 52, 79,

float

87, 103, 109, 187, 214 };

printf(*'The array contains the following values\n');
print_array(values, A_SI1ZE(values));

printf(*'and has an average of %.2f\n",
average(values, A _SI1ZE(values)));

return O;

print_array(int a[], int count)
int i;

for(i = 0; 1 < count; i++)
printf(C%i\t", a[i]);

printf('\n");

average(int a[], int count)

float av = 0.0F;
int i;

for(i/= 0; i </ count$ i++)
av +=/a[il;

return av / count;

3. In “ARRAY3.C” implement the function:

void copy_array(int to[], int from[], int count);

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(A[0])

print_array(int=a[], int count);
copy_array(int to[]s; int from[], int count);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

188 Arrays in C - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers
int main(void)
int orig[6] { 17, 27, 37, 47, 57, 67 };

int copy[6] = { -1, -1, -1, -1, -1, -1 };
copy_array(copy, orig, A _SIZE(copy));

printf(**'The copy contains the following values\n™);
print_array(copy, A_SIZE(copy));

return O;
¥
/* This function is as before
*
/
void print_array(int a[], int count)
{
int i;
for(i = 0; 1 < count; i++)
printf(C%i\t", a[i]);
printf('\n");
¥
void copy_array(int to[], int from[], int count)
{
int i;
for(i = 0; 1 < count; i++)
to[i] = fromfi];
¥

4. In "ARRAY4 _.C", implement the function
int *biggest(int *a, int count);

The function “biggest” initializes a pointer “current_biggest” to the first element of the array. It then
starts searching one beyond this element (since it is pointless to compare the first element with itself).

#include <stdio.h>
#define A_SIZE(A) sizeoF(A)7sizeof(A[O])

int* biggest(int_*a, int _count);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Solutions 189

C for Programmers O 1994/1997 - Cheltenham Computer Training
int main(void)
int values[16] = { 47, 17, 38, 91, 33, 24, 99, 35, 42, 10,

int*

11, 43, 32, 97, 108, -8 };
int *p;

p = biggest(values, A_SIZE(values));
printf(**the biggest element in the array is %i\n", *p);

return O;

biggest(int *a, int count)

int “*current_biggest = a;
int *p = a + 1;
int *end = a + count;

while(p < end) {
if(*current_biggest < *p)
current_biggest = p;

p++;

}

return current_biggest;

In “ARRAY5 _C” implement the print_in_reverse function which has the following prototype:

void print_in_reverse(float *a,_int count);

The -1 in the'initialization of “end” is‘important, since without it, “end” points one beyond the end of the
array and-this element.is printed within the loop. 'Where no -1iis.used, “*end--"would need to be
changed to “*--end”.

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(CALO])

void print_in_réverse(float a[],«int count);

int main(vaid)

{
float values[6] = { 12.1F, 22.2F, 32.3F,

42 _4F .52 .5F; 62.6F };

printf(""The array in-reverse\n®);
print_in_reverse(values, A SIZE(values));
return O;

}

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

190 Arrays in C - Solutions

O 1994/1997 - Cheltenham Computer Training

void print_in_reverse(float a[], int count)
float * end = a + count - 1;

while(end >= a)
printf("%.1F\t", *end--);

printf('\n");

C for Programmers

6. In “STRING1.C” implement the function Ien which has the prototype

int len(char *str);

Although the while loop within slen is already consise, it would be possible to write “while(*str++)” which
would achieve the same results. This would rely on the ASCII values of the characters being non zero

(true). When the null terminator is encountered, it has a value of zero (false).

#include <stdio.h>

int slen(char *str);
int main(void)
{
char si[] "Question 6.";

char s2[1 “"Twenty eight characters long";

printf("'The string-\%s\" is.%i.characters Jdong\n’,
sl, slen(sl));

printf(""The string \"%s\'=is=Y%i=characters "long\n'y
s2, slen(s2));

return.O;

¥

int slen(char* str)
int count"="0Q;
while(Fstr#+ .= T\0")

count++;

return count;

¥

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Solutions 191

C for Programmers O 1994/1997 - Cheltenham Computer Training

7

In “STRING2.C” implement the count_char function which has the prototype:
int count_char(char *str, char what);

The solution uses the tricky, yet popular, construct “n += first == second”. This relies on the guaranteed
result of a boolean expression being 1 or 0. If first and second are not alike false, i.e. 0, results. When
added into the running total, no difference is made. If first and second are the same true, i.e. 1, results.
When added to the running total, the total is increased by one more. By the end of the loop we have
counted all the trues. This is a count of the matching characters.

#include <stdio.h>
int count_char(char *str, char what);
int main(void)

char si[]
char s2[1

“"Twenty eight characters long";
"count_char';

printf(""The string \"%s\" contains "%c® %i times\n',
sl, "e", count_char(sl, "e"));

printf(""The string \"%s\" contains "%c® %I times\n',

s2, "c", count_char(s2, "c"));
return O;
¥
int count_char(char *str, char what)
{
int count = 03
while(*str 1= "\07) {
count += *str == what;
str++;
¥
return count;
¥

In “STRING3.C” implement:

void copy_string(char *to, char *=from);

The copy_string function uses.one of the.most concise C constructs imaginable. Here the “=" is not a
mistake (normally “==" would be intended). One byte at a time is copied via the “=", both pointers being
moved to the next byte by the “++” operators. The byte that has just been copied is then tested. C
treats any non zero value as'true. Thus if we had copied ‘A”its ASCII value would be 65 and thus true.
Copying the next character gives another ASCII value and so on. At the end of the “from” string is a
null terminator. This is the only character whose ASCII value is zero. Zero always tests false. Don't
forget the assignment must complete before the value may be tested.

#include <stdio.h>

void copy_string(char to[], char from[]);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

192 Arrays in C - Solutions

O 1994/1997 - Cheltenham Computer Training

int main(void)
char si[] = "Twenty eight characters long";
char s2[] = "Important data™;

copy_string(sl, s2);

printf(*'The string sl1 now contains \"%s\"\n", sl);

return O;
}
void copy_string(char to[], char from[])
{ while(*to++ = *from++)
y :

C for Programmers

In “LOTTERY .C” 6 random numbers in the range 1..49 are stored in the selected array before printing.

No checking is done to see if the same number occurs more than once. Add the required checking and

as a final touch, sort the numbers before you print them.

The search function checks to see if the new number to be added is already present in the array.
Although it is a “brute force” approach, there are only a maximum of 6 numbers so this is not a problem.
Once chosen, the Standard Library routine gsort is used to sort the numbers. This routine requires the

int_compare function. Look up gsort in the help to understand what is going on here.
#include <stdio.h>

#include=<stdkib.h>

#include <time:8h>

#define=TOTAL_NUMBER 6

void seed_generator(void);
int get_rand_inrange(int from, int/to);
int search(int target, int array[],| int size);
int int_compare(const void* v_one, censt void*_ v/ two);
int main(void)
int i;
int r;
int selected[TOTAL_NUMBER];

seed_generator()s;
for(i = 0; 1 < TOTAL NUMBER; i1++) {
do
r = get_rand_in_range(l, 49);

while(search(r, selected, 1));

selected[i] = r;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Solutions 193

C for Programmers O 1994/1997 - Cheltenham Computer Training

gsort(selected, TOTAL_NUMBER, sizeof(int), int_compare);

for(i = 0; 1 < TOTAL_NUMBER; i++)
printf(%i\t", selected[i]);

printf('\n");

return O;
}
int get_rand_in_range(int from, int to)
{

int min = (from > to) ? to : from;

return rand() % abs(to - from + 1) + min;
}
void seed_generator(void)
{

time_t now;

now = time(NULL);

srand((unsigned)now) ;
}
int search(int target, int array[], iInt size)
{

int i;

for(i/= 0; i <size;ji++)

if(array[i].== target)
return 1;

return O;
}
int int_compare(const void* v_one, const void* v _two)
{

const int* one = v_one;

const int* two_=_Vv two;

return *one - *two;
}

Could you think of a better strategy for generating the 6 different numbers?

This solution uses an array of “hits” with 49 slots. Say 17 is drawn, location17 in the array is tested to
see if 17 has been drawn before. If it has, the location will contain 1. If not (the array is cleared at the
start) array element 17 is set to 1. We are finished when there are 6 1s in the array. The index of each
slot containing “1” is printed, i.e. 17 plus the other five. Since the array is searched in ascending order
there is no need for sorting.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

194 Arrays in C - Solutions
O 1994/1997 - Cheltenham Computer Training C for Programmers

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX 49
#define TOTAL_NUMBER 6
void seed_generator(void);
int get_rand_in_range(int from, int to);
int count_entries(int array[]):
int main(void)
{
in i =0;
int r;
int all[MAX + 1] = { 0 }; /* Nothing selected */

seed_generator();
while(count_entries(all) < TOTAL_NUMBER) {
do

r = get_rand_in_range(l, 49);
while(all[r]);

all[r] = 1;

}

for(i = 1; 1 <= MAX; i++)
ifCallli])

prantf("%aNe", | 1);

printf("\n");

return.O;
}
int get_rand_in_range(int from, int to)
{
int min =.(from.>.to)..2 to : from;
return rand() % abs(to - from + 1) + min;
}
void seed_generator(void)
{
time_t naow;
now = time(NULL);
srand((unsigned)now) ;
}

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C - Solutions 195

C for Programmers 0 1994/1997 - Cheltenham Computer Training
int count_entries(int array[])
{ i i
int i;
int total ;

for(i = 1, total = 0; 1 <= MAX; i++)
total += array[i] == 1;

return total;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C 197

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Structures in C

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

198 Structures in C

O 1994/1997 - Cheltenham Computer Training C for Programmers
/ Structures in C \
= Concepts

= Creating a structure template

= Using the template to create an instance
= |nitialising an instance

= Accessing an instance’s members

= Passing instances to functions

= Linked lists

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1 J

Structures in C

This chapters investigates structures (records) in C.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

199

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Concepts \

A structure is a collection of one of more
variables grouped together under a single name
for convenient handling

The variables in a structure are called members
and may have any type, including arrays or other
structures

The steps are:

— set-up a template (blueprint) to tell the compiler how to build
the structure

— Use the template to create as many instances of the structure
as desired

— Access the members of an instance as desired

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Concepts

Thus far we have examined arrays. The fundamental property of the array is that
all of the elements are exactly the same type. Sometimes this is not what is
desired. We would like to group things of potentially different types together in a
tidy “lump” for convenience.

Whereas the parts of an array. are.called “elements” the parts of.a structure are
called “members”.

Just as it is possible to have arrays of any type, so it is possible to have any type
within a structure (except void). It is possible to place arrays-inside structures,
structures inside structures and possible to'create arrays of structures.

The first step is to set up a blueprint to tell the compiler how to make the kinds of
structures we want! Forinstance, if you wanted to build a‘car, you'd need a
detailed drawing first...Just because you possess the drawing does not mean you
have a car.. It would be necessary to take the drawing to a factory and get them
to make one. The factory wouldn't just stop at one, it could make two, three or
even three hundred. Each car would be a single individual instance, with its own
doors;-wheels;mirrors etc.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

200 Structures in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Setting up the Template \

= Structure templates are created by using the
struct keyword

struct Library_member
struct Date {
{ char name[80] ;
int day; char address[200];
int month; long member_number;
int year; float fines[10];
3 struct Date dob;
struct Date enrolled;
struct Book };

{

char title[80]: struct Library_book

char author[80]; {
float price;
char isbn[20];

}; .
};
k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3 /

Setting up the Template

struct Book b;
struct Date due;
struct Library_member *who;

The four examples above show how the template (or blueprint) is specified to the
compiler. The keyword struct is followed by a name (called a tag). The tag
helps us to tell the compiler which of the templates we're interested in. Just
because we have a structure template does not mean we have any structures.
No stack, data segment or heap memory is allocated when we create a structure
template. Just because we-have.a-blueprinttelling us that a beok:has a title,
author, ISBN number and price does not mean we have a book.

Structures vs. The Date structure, consisting as it does of three integers offers advantages over

Arrays an array of three integers. With an array the elements.would"be numbered 0, 1
and 2. 'This.would give no clue as to which'one was the day, which the month
and which the year. Using a structure gives these members names so there can
be no confusion.

The Book structure not-only contains members of different.types (char and
float).it also contains three arrays.

The Library_member structure contains two Date structures, a date of birth as
well'as adate of-enrolment within the llibrary:

Finally the Library_book structure contains a Book structure, a Date structure and
a pointer to a Library_member structure.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

201

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Having created the template, an instance (or

Creating Instances \

instances) of the structure may be declared

struct Date

{ instances must be
int day; declared before the ;" ...
int month;
int year;

} today, tomorrow;

.. or “struct Date” has

struct Date next_monday;
to be repeated

struct Date next_week[7];

an array of 7

date instances
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Creating Instances

Instance?

The template gives the compiler all the information it needs on how to build an
instance or instances. An “instance” is defined in the dictionary as “an example,
or illustration of”. Going back to the car example, the blueprint enables us to
make many cars. Each car is different and‘distinct. If one car is painted blue, it
doesn’t mean all cars are painted blue. Each car is an “instance”. Each instance
is separate from every other.instance-and separate from the template. There is
only ever one template (unless you want to start building slightly different kinds of
car).

Above, the Date template is used to create two datesinstances; “today” and
“tomorrow”.. Any variable names placed after the closing brace and before the
terminating semicolon are structures of the specified type.

After the semicolon of the structure template, “struct Date” needs to be
repeated.

With the array “next_week”, each element of the array is an individual Date
structure. Each element has its own distinct day, month and year members. For
instanceythe day-member of the first (i.eszeroth) date would be accessed with:

next_week[0] - day
the month of the fourth date would be accessed with:
next_week[3] -month
and the year of the last date with:

next_week[6] -year

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

202 Structures in C
O 1994/1997 - Cheltenham Computer Training C for Programmers

/ Initialising Instances \

= Structure instances may be initialised using
braces (as with arrays)

int primes[7] = {1, 2, 3, 5, 7, 11, 13 };
struct Date bug_day = { 1, 1, 2000 };

struct Book k_and_r = {
"The C Programming Language 2nd edition",
"Brian W. Kernighan and Dennis M. Ritchie",
31.95,
"0_13_110362_8" struct Book

¥ {

char title[80];
char author[80];
float price;

char isbn[20];

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Initializing Instances

In the last chapter we saw how braces were used in the initialization of arrays, as
in the “primes” example above. The seven slots in the array are filled with the
corresponding value from the braces.

A similar syntax is-used in the initialization of structures. With the initialization of
“bug_day” above, the first value L.is.assigned.into bug_day’s first. member, “day”.
The second value “1” is assigned into bug_day’s second member, “month”. The

2000 is assigned into bug_day'’s third member “year”. It is just as though we had

written:
struct Date bug_day;

bug_day.day = 1;
bug_day.month = 1;
bug_day.year ==2000;

With the initialization of “k_and_r” the first string is assigned to the member “title”,
the second string assigned to the member “author” etc. It is as though we had
written:

struct Book k_and_r;

strcpy(k_and_r.title, "The C Programming Language 2nd edition');
strcpy(k_and_r.author, "Brian W. Kernighan and Dennis M. Ritchie");
k_and_r.price = 31.95;

strcpy(k_and_r.isbn, "0-13-110362-8");

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C 203

C for Programmers O 1994/1997 - Cheltenham Computer Training

/ Structures Within Structures \

struct Library_member

{
char name[80] ; P .
char address[200] ; initialises first 4
long member_number ; elements of array
Float fines[10]; “fines”, remainder are

struct Date dob;

struct Date enrolled; initialised to 0.0

struct Library_member m = {
"Arthur Dent",

""16 New Bypass",

42,

{ 0.10, 2.58, 0.13, 1.10 },
{18, 9, 1959 },
{1, 4, 1978 }

initialises day, month
and year of “dob”

initialises day, month
and year of “enrolled”

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Structures Within Structures

We have already seen that it is possible to declare structures within structures, here
is an example of how to initialize them. To initialize a structure or an array braces
are used. To initialize an array within a structure two sets of braces must be used.
To initialize ‘a structure within a structure, again, two sets of braces must be used.

It is as though we had written:

struct Library_member m;

strcpy(méname,), "Arthur Dent™);
strcpy(m.address, '"16 New Bypass'™)j

m.member_number = 42;
m.fines[0},=.0-.10; m.fines[1] = 2.58; m«Fines[2].=,0.13; m-Fines[3] = 1.10;
m.Ffines[4] = 0.00; m.fines[5] = 0.00; m.fines[6] = 0.00; m.fines[7] = 0.00
m.Fines[8] = 0.00; m.fines[9] = 0.00;
m.dob.day = 18; m.dob.month = 9; m.dob.year = 1959;
m.enrolled.day = 1; m.enrollTed:month = 4; m_enrolled.year = 1978;

Reminder - Although a'small point, notice the date initialization:

Avoid

- 18, 9, 1959
Leading { ¥
Zeros above. Itis important to resist the temptation to write:

{ 18,909, 1959}

since the leading zero introduces an octal number and “9” is not a valid octal digit.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

204 Structures in C
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Accessing Members \

= Members are accessed using the instance name,
“.” and the member name

struct Library_member
{
char name[80];
char address[200];
long member_number;
float fines[10];
struct Date dob; |struct Library_member m;|
struct Date enrolled;
¥}: 1

printf("'name = %s\n", m.name);
printf("'membership number = %li\n", m.member_number);

printf("fines: ");
for(i = 0; 1 < 10 && m.fines[i] > 0.0; i++)
printf("£%.2F ", m_fines[i]);
printf(""\njoined %i/%i/%i\n", m.enrolled.day,
m.enrolled.month, m.enrolled.year);

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7 /

Accessing Members

Members of structures are accessed using C’s “.” operator. The syntax is:

structure_variable._member_name

Accessing If the member being-accessed happens to be an array (as is the case with
Members Which / “fines”), square brackets must be used to access'the elements. (just as they would

are Arrays with any other array):

m.Fines[0]

would access the first (i.e. zeroth) element.of the array.

Accessing When a structure is nested inside a structure, two dots must be used as in
Members Which
are Structures m.enrolled.month

which literally says “the member of ‘m’ called ‘enrolled’, which has a member
called ‘month™. If “month” were a structure, a third dot would be needed to
access-one of.its.members and so on.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

205

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Structures have some very “un-C-like” properties,

handled
Arrays Structures
Name is pointer to the structure itself
zeroth element
Passed to functions by pointer value or pointer
Returned from functions no way by value or pointer
May be assigned with “=” no way yes

Unusual Properties \

certainly when considering how arrays are

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8 /

Unusual Properties

Common
Features
Between Arrays
and Structures

Differences
Between Arrays
and Structures

Structures and arrays have features in common. Both cause the compiler to
group variables together. In the case of arrays, the variables are elements and
have the same type. In the case of structures the variables are members and
may have differing type.

Despite this, the compiler does nottreat arrays-and structures-in‘the same way.
As seen in the last chapter, in C the name of an array yields the address of the
zeroth element of the array. With structures, the name of a structure instance is
just.the name of the structure instance, NOT a pointer to one of the members.

When an array-is passed to a function you‘have no.choice as-to how the array is
passed. As the name of an array is “automatically” a pointer to the start, arrays
are passed by pointer. There is no mechanism to request an array to be passed
by value. Structures, on the other hand may be passed either by value or by
pointer.

An array cannot be returned from a function. The nature of arrays makes it
possible to return a pointer to a particular element, however this is not be the
same as returning.the whole array. Iticould be arguedthat by returning a pointer
to the first element, the whole array. is returned, however this is a somewhat weak
argument. With structures the programmer may. choose to return a structure or a
pointer to the structure.

Finally, arrays cannot be assigned with C's assignment operator. Since the name
of an array is a constant pointer to the first element, it may not appear on the left
hand side of an assignment (since no constant may be assigned to). Two
structures may be assigned to one another. The values stored in the members of
the right hand structure are copied over the members of the left hand structure,
even if these members are arrays or other structures.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

206

Structures in C

0 1994/1997 - Cheltenham Computer Training

C for Programmers

e

Instances may be Assigned

N

= Two structure instances may be assigned to one
another via “="

= All the members of the instance are copied
(including arrays or other structures)

};

tmp = m;

struct Library_member m = {
"Arthur Dent",

struct Library_member tmp;

o

kcopies array “name”, array “address”,

© Cheltenham Computer Training 1994/1997

long integer “member_number”, array
“fines”, Date structure “dob” and Date

structure “enrolled”
Slide No. 9 /

sales@ccttrain.demon.co.uk

Instances May be Assigned

Cannot Assign

It is not possible to assign arrays in C, consider:

int a[l10];
int Db[10];
a = b;

The name of the array “a” is a constant pointer to the zeroth element of “a”. A
constant may not be assigned to, thus'the compiler will throw out the assignment

Arrays

“‘a=Db".
Can Assign Consider:
Structures
Containing
Arrays

struct A {
it arrayf10]}s;
3

struct A. a, b;

a = b;

Now bath instances “a” and “b” contain an array of 10 integers. The ten elements
contained in “b.array” are copied over the ten elements in“a.array”. Not only
does this statement.compile, it also works! All the members of a structure are
copied, no matter how complicated they are. Members which are arrays are
copied, members which are nested structures are also copied.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

207

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Passing Instances to Functions \

o

An instance of a structure may be passed to a
function by value or by pointer

Pass by value becomes less and less efficient as
the structure size increases

Pass by pointer remains efficient regardless of
the structure size

void by_value(struct Library_member);
void by_reference(struct Library_member *);

by_value(m);
by_reference(&m);

compiler writes a pointer compiler writes 300+

(4 bytes?) onto the stack bytes onto the stack
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

Passing Instances to Functions

Pass by Value
or Pass by
Reference?

As a programmer you have a choice of passing a structure instance either by
value or by pointer. It is important to consider which of these is better. When
passing an array to a function there is no choice. There isn't a choice for one
important reason, it is invariably less efficient to pass an array by value than it is
by pointer. Consideran array of 100 long int. Since a long int is 4 bytes in
size, and C guarantees to allocate-an-array in.contiguous storage; the ‘array would
be a total of 400 bytes.

If the compiler used pass by value, it would need to copy 400 bytes onto the
stack. This would be time consuming and we may, on.a small'machine, run out
of stack space (remember we would need.to maintain two copies - the original
and the parameter). Here we are considering a “small” array. Arrays can very
quickly become larger and occupy even more storage.

When the compiler uses-pass by reference. it copies a pointer onto the stack.
This pointer. may be 2 or 4 bytes; perhaps larger, but there is.no way its size will
compare unfavorably with 400 bytes.

The same-arguments apply to structures: The Library=member structure is over

300 bytes in size.. The choice between copying over 300 bytes vs. copying
around 4 bytes is.an easy one to make.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

208

Structures in C

0 1994/1997 - Cheltenham Computer Training

C for Programmers

e

Pointers to Structures

Passing pointers to structure instances is more
efficient

Dealing with an instance at the end of a pointer is
not so straightforward!

N

void member_display(struct Library_member *p)

{

printf("'name = %s\n", (*p).name);
printf("'membership number = %li\n", (*p).member_number);

printf("fines: ");
for(i = 0; 1 < 10 && (*p)-fines[i] > 0.0; i++)
printf("E%.2F ", (*p).Ffines[i]);
printf(""\njoined %i/%i/%i\n", (*p).enrolled.day,
(*p) -enrolled.month, (*p).enrolled.year);

o

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

J

Pointers to Structures

Passing a pointer to a structure in preference to passing the structure by value

will almost invariably be more efficient. Unfortunately when a pointer to a
structure is passed, coding the function becomes tricky. The rather messy

construct:

Cp) -name

SAMPLE ONLY NOT TO BE USED FOR TRAINING

is necessary to access the member called “name” (an array of characters) of the
structure at the end of the pointer.

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

209

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Why (*p) .name ? \

The messy syntax is needed because “.” has
higher precedence than “*”, thus:

*p.name

means “what p.name points to” (a problem
because there is no structure instance “p”)

As Kernighan and Ritchie foresaw pointers and
structures being used frequently they invented a
new operator

p->name = (*p).name

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12 /

Why (*p) .name?

A New Operator

The question occurs as to why: (*p) -name
is necessary as opposed to: *p.name

The two operators “*"and “.” live at different’levels in the precedence table. In
fact “.”, the structure-member operator, is one of the highest precedence
operators there is. The “pointer to” operator;.“*".although being a high
precedence operator is not quite as high up the table.

Thus: *p=hame
would implicitly mean: *(p-name)

For this to compile there would need to be a structure called “p”. However “p”
does not have type “structure”, but “pointer to structure”. Things get worse. If “p”
were a structure after.all,.the.-name member.would.be accessed. The “*” operator
would find where “p.name” pointed. Far from accessing what we thought (a
pointer to the zeroth element of the array) we would access the first character of
the name. With printf's fundamental inability to'tell when we’'ve got things right
or wrong, printing the first character with the “%s” format specifier would be a
fundamental error (printf would take the ASCII value.of the character, go to
that location in memory and print out all the bytes it found there up until the next
byte containing zero):

Since Kernighan and Ritchie foresaw themselves using pointers to structures
frequently, they invented an operator that would be easier to use. This new
operator consists of two separate characters “-” and “>” combined together into “-
>". This is similar to the combination of divide, “/”, and multiply, “*”, which gives
the open comment sequence.

The messy (*p) -.name now becomes p->name which is both easier to write
and easier to read.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

210 Structures in C

0 1994/1997 - Cheltenham Computer Training C for Programmers
/ Using p->name \

= Now dealing with the instance at the end of the
pointer is more straightforward

void member_display(struct Library_member *p)

{
printf("'name = %s\n', p->name);
printf("address = %s\n', p->address);
printf("'membership number = %li\n", p->member_number);

printf("fines: ");
for(i = 0; 1 < 10 && p->fines[i] > 0.0; i++)
printf("E%.2F ', p->Fines[i]);

printf(""\njoined %i/%i/%i\n", p->enrolled.day,
p->enrolled.month, p->enrolled.year);

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13 /

Using p->name

As can be seen from the code above, the notation:

p->name

although exactly equivalent to:
*p) -name

is easier to read, easier to write and easier to understand. All that is happening is

[Tt}

that the member “name” of the structure at the end of the pointer “p” is being

accessed.
Note: p->enrol led.day
and NOT: p->enrolled->day

since “enrolled”.is a structure and not a pointer to a structure.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

211

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Pass by Reference - Warning \

o

Although pass by reference is more efficient, the
function can alter the structure (perhaps
inadvertently)

Use a pointer to a constant structure instead

oid member_display(struct Library_member *
E ! display(Y ! y- L function alters

printf('fines: "); theligrar_y
for(i = 0; i < 10 && p->Fines[i] = 0.0; i++) member instance
printf("E%.2F ', p->Fines[i]);

void member_display(const struct Library_member *p

{

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

Pass by Reference - Warning

const to the
Rescue!

We have already seen how passing structure instances by reference is more
efficient than pass by value. However, never forget that when a pointer is passed
we have the ability to alter the thing at the end of the pointer._This is certainly
true with arrays where any element of the array may be altered by a function
passed a pointer to-the start.

Although we may not intend to alter the structure, we may do so accidentally.

upshot is that instead of testing against 0.0, we assign 0.0 into the zeroth element
of the “fines” array. Thus the array, and hence the structure-are changed.

The solution to this problem which lies with the const keyword (discussed in the
first chapter). In C it is possible to declare a pointer to a constant. So:

int *p;

declares “p”.to be a pointer to_an integer, whereas:
const int *p;

declares “p” to be a pointer to a constant integer. The pointer “p” may change, so
P+t ;

would be allowed. However the value at the end of the pointer could not be
changed, thus
*p = 17;

would NOT compile. The parameter “p” to the function member_display has
type “pointer to constant structure Library_member” meaning the structure Library
member on the end of the pointer cannot be changed.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

212
0 1994/1997 - Cheltenham Computer Training

Structures in C
C for Programmers

/ Returning Structure Instances \

= Structure instances may be returned by value
from functions

= This can be as inefficient as with pass by value
= Sometimes it is convenient!

struct Complex add(struct Complex a, struct Complex b)
{

struct Complex result = a;

result.real_part += b.real_part;
result.imag_part += b.imag_part;

return result;
} struct Complex cl
struct Complex c2
struct Complex c3;

c3 = add(cl, c2); /* c3 =cl +c2*
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15 /

Returning Structure Instances

As well as pass by value, it is also possible to return structures by value in C. The same
consideration should be given to efficiency. The larger the structure the less efficient
return by value becomes as opposed to return by pointer. Sometimes the benefits of
return by value outweigh the inefficiencies. Take for example the code above which
manipulates complex numbers. The add function returns the structure “result” by value.
Consider this version which attempts-to-use return.-by pointer:

struct Complex* add(struct Complex a, struct Complex b)

{
struct Complex result = a;
/* as above */
return &result;

¥

This function contains a fatal error! The variable “result” is stack based, thus it is
allocated on entry into the function and deallocated on exit from the function. When this
function returns to:the calling function it hands-back a painter.to‘a piece of storage
which'has been deallocated. Any attempt to use that storage would be very unwise
indeed. Here is a working version which attempts to be as efficient as possible:

void add(struct Complex *a, struct Complex *b, struct Complex
*result)
{

result->real_part

a=>real_part + b->real_part;
result->imag_part

a->imag_part + b->imag_part;

}

Pass by pointer is used for all parameters. There is no inefficient return by value,
however consider how this function must be called and whether the resulting code is as
obvious as the code above:

struct Complex c1 = { 1.0, 1.1 }, c2 = { 2.0, 2.1 }, c3;
add(&cl, &c2, &c3l);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

213

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= A linked list node containing a single forward

= A linked list node containing a forward and a

Linked Lists N

pointer may be declared as follows

struct Node {
int data; /* or whatever */
struct Node *next_in_line;

}: pointer to next
Node structure

backward pointer may be declared as follows

struct Node { pointer to next
int data; Node structure
struct Node *next_in_line;
struct Node *previous_in_line; pointer to previous
}; Node structure

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16 /

Linked Lists

A Recursive
Template?

It is possible to declare and manipulate any number of “advanced” data structures
in C, like linked lists, binary trees, “red/black” trees, multi threaded trees, directed
graphs and so on.

Above is the first step’in manipulating linked lists, i.e. declaring the template.
This particular template assumes.the.linked list.will contain integers. The sort of
picture we're looking for is as follows:

data| 10 data| 16 data| 28
next_in_line next in_line next_in_line

where each structure-contains-one integer-and one-pointer-to.the next structure.
The integeris stored in the member “data”, while the pointer is stored in the
member “next_in_line”.

The structure template: struct Node {
int data;
struct Node* next in_line;

};

looks rather curious because the structure refers to itself. What it says is “a Node
structure consists of an integer, followed by a pointer to another Node structure”.
Although the compiler is not entirely sure about the “followed by a pointer to
another Node structure” it is sure about pointers and how many bytes they
occupy. Thus it creates a pointer sized “hole” in the structure and proceeds
onwards.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

214

Structures in C

O 1994/1997 - Cheltenham Computer Training

=

N

Example
#include <stdio.h>
struct Node {
char name[10];

struct Node *next_in_line;

};

struct Node al
struct Node a2
struct Node a3
struct Node a4

{ "John™, NULL };

{ "Harriet", &al },
{ "Claire", &a2 }
{ "Tony", &a3 };

a4 a3 a2 ai
i Tony\O F | Claire\0 F i Harriet\0o |3 | John\0 |
| 0x1020 1| ox102E | ox1032 ———// NULL |
\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17
Example

Creating a List

In the example above, the data has changed from integers to strings. Other than
that, all else is the same. A Node structure consists of data followed by a pointer
to another Node structure.

Four nodes are declared, “al” through “a4”. Notice that “al” is declared first and
goes at the end of the chain...*a2”.is.declared.next and points back at “al”. This
is the only way to do this, since if we attempted to make “al” point forwards to
“a2” the compiler would complain because when “al” is initialized, “a2” doesn't
exist. An alternative would be to declare the structures as follows:

struct Node al = { ®'John", NULL /};
struct Node a2 = { "Harriet"™, NULL };
struct Node a3 = { "Claire™, NULL };
struct Node a4 = { "Tony", NULL };

and then “fill in the gaps” by writing:

&a3; a3d.next_in_line = &a2;

&al;

ad.next_in_line =
a2.next_in_lipe =
Which would give exactly the same picture as above. Ofcourse it would be just
as possible to write:

&a2; a2.next_in_line = &a3;

&a4d;

al.next_in_line
a3.next_in_line

and make the chain run the opposite way. Here “al” would be the first node and
“a4” the last node in the chain.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

C for Programmers

Structures in C

215

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

current

= The list may be printed with the following code:

<

Printing the List

struct Node * current = &a4;

while(current '= NULL) {
printf(""%s\n", current->name);

current = current->next_in_line;
0x1012 }
ad ¥y
Tony\0 | Claire\O | Harriet\O | John\0 |

-

Slide No. 18 /

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

Printing the

List

Above is an example of how to visit, and print the data contained in, each node in
the list. A pointer is set to point at the first node in the list. This is done with:

struct Node *cufrent = &a4;
creating a Node pointer called “current” and initializing it to point.to the first node
in the chain. Notice that if we had initialized this to point to, say, “al”, we would
be sunk since there is no way to get from “al” back to “a2”.

Theloop condition is: while(current = NULL)

let us imagine (even though it is not always true) that NULL is zero. We check
the address contained in “current”, i.e. 0x1012 against zero. Clearly “current” is
not zero, thus the loopis entered. The statement

printf('%s\n"", current->name);

causes the “name” member of the structure at address 0x1012 to be printed, i.e.
“Tony”.- Then-the statement

current = current->next_in_line;
is executed, causing the value of the “next_in_line” member, i.e. 0x1020 to be
transferred into “current”. Now the pointer “current” points to the second structure
instance “a3”. Once again the loop condition

while(current = NULL)

is evaluated. Now “current” is 0x1020 and is still not zero, hence the condition is
still true and so the loop is entered once more.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

216 Structures in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

Printing the List (Continued)

The statement
printf('%s\n"", current->name);

is executed, causing the “name” member of the structure at address 0x1020 to be
accessed, i.e. “Claire”. Next, the statement

current = current->next_in_line;
is executed taking the value of the member “next_in_line”, i.e. 0x102E and
transferring it into “current”. Now “current” points to the third structure instance,
“a2”. Again the loop condition is evaluated:

while(current = NULL)

Since 0x102E is not zero the condition is again true and the loop body is entered.
Now the statement

printf('%s\n"", current->name);

prints “Harriet”, i.e. the value contained in the “name” field for the structure whose
address is 0x102E. The statement

current = current->next_in_line;
causes the value in the “next_in_line” member, i.e. 0x1032 to be transferred into
“current”. '"Now “current” points to the last of the structure instances “al”. The
loop condition:
while(current = NULL)

is evaluated, since 0x1032 does not contain zero, the condition is still true and the
loop body is entered once more. The statement:

printf('%s\n"", current->name);

prints “John” since this is the value in the “name” field of the structure whose
address is 0x1032. Nowthe statement

current = current->next_in_line;
causes the value'NULL to be transferredinto current (since this is the value
stored in the “next_in_line” member of the structure whose address is 0x1032).
Now the “current” pointer is invalid. The loop condition

while(current = NULL)

is evaluated. Since “current” does contain NULL, the condition is no longer true
and the loop terminates.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C 217

C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Summary \

= Creating structure templates using struct
= Creating and initialising instances
= Accessing members

= Passing instances to functions by value and by
reference

= A new operator: “->"
= Return by value
» Linked lists

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19 /

Summary

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C - Exercises 219

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Structures Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

220 Structures in C - Exercises

0 1994/1997 - Cheltenham Computer Training C for Programmers

Directory: STRUCT

1. Open “CARD1.C"” which declares and initializes two card structures. There are two functions for you to
implement:

void print_card_by value(struct Card which);
void print_card_by ref(struct Card * p);

The first of these is passed a copy of the card to print out. The second is passed a pointer to the card.
Both functions should print the same output.

2. In “CARD2.C" are the definitions of several cards. Implement the is_red function which has the
following prototype:

int is_red(struct Card * p);

This function should return true (i.e. 1) if the argument points to a red card (a heart or a diamond) and
return false (i.e. 0) otherwise. You will need to copy your print_card_by reT function from part 1
and rename it print_card.

3. Open the file “CARD3.C". Implement the function may be placed which has the following prototype:

int may_be placed(struct Card * lower, struct Card * upper);

This function uses the rules of solitaire to return true if the card “upper” may be placed on the card
“lower”. The cards must be of different colors, the upper card (i.e. the one being placed) must have a
value which is one less than the lower card (i.e. the one already there).. You will need your
print_cardand is_red functions.

4. In“LIST1.C" Node structures are declared, like those in the chapter notes. Implement the function:

void print_list(struct Node *first_in_list);

which will print out all the integers in the list.

5. The file “LIST2.C” has an exact copy. of the Nodes declared in “LI1ST1.C". Now there is a call to the
function

void print_list_in_reverse(struct Node *first_in_list);

Using recursion, print the integers in reverse order.. If you are unfamiliar with recursion, ask your
instructor.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C - Exercises 221
C for Programmers 0 1994/1997 - Cheltenham Computer Training

6. Linked lists enable new values to be inserted merely by altering a few pointers. “LIST3.C" creates the
same listas in “LIST1.C" and “LIST2.C”", but also declares three other nodes which should be
inserted into the correct point in the list. Implement the function:

struct Node* insert(struct Node *first_in_list, struct Node *new_node);
which will insert each of the three nodes at the correct point in the list. Notice that one insertion occurs
at the start, one in the middle and one at the end of the list. Remove the comments when you are
ready to try these insertions. You will need your print_list function from “LIST1.C".

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C - Solutions 223

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Structures Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

224 Structures in C - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers

1

In “CARD1 . C” implement the functions:

void print_card_by value(struct Card which);
void print_card_by ref(struct Card * p);

The print_card_by_value function is straightforward, print_card_by_ref more elaborate. The essential
difference between the two is merely the difference between use of “.” and “->". The shorter version
(with one printf) is used throughout the following solutions for brevity.

#include <stdio.h>

struct Card

{
int index;
char suit;
}:
void print_card_by value(struct Card which);

void print_card_by ref(struct Card * p);

int main(void)

struct Card king_of_spades = { 13, "s” };
struct Card four_of clubs = { 4, “c* };

print_card_by value(king_of_spades);
print_card_by ref(&king_of_spades);

print_card_by value(four_of_clubs);
print/card_ by ref(&Ffour of clubs);

return 0;
}
void printgcard by=value(struct-Card which)
{
printf("%i of %c\n", which.index, which.suit);
}

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C - Solutions

225

C for Programmers

void print_card_by ref(struct Card * p)
{

switch(p->index) {
case 14:
case 1:
printf(**Ace™);
break;
case 13:
printf(*'King™);
break;
case 12:
printf(*'Queen™);
break;
case 11:
printf(*'Jack™);
break;
default:
printf(%i", p->index);
break;

¥

printf(* of ");

switch(p->suit) {
case "c":
printf('clubs\n™);
break;
case "d":
printf(**diamonds\n*);
break;
case "s":
printf(*'spades\n™);
break;
case Th-":
printf(’hearts\n™);
break;

}

O 1994/1997 - Cheltenham Computer Training

2. In “CARD2.C" implement the Is_red function which has the following prototype:

int Jisyred(struet.,Card #=p)s;

The value returned from is_red (i.e. one or zero) is already the value yielded by C’s “==" operator.

#include <stdio.h>

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

226

Structures in C - Solutions

O 1994/1997 - Cheltenham Computer Training

#define ASIZE(A) sizeof(A)/sizeof(A[0])

struct Card

{

¥

int
void

int index;
char suit;

is_red(struct Card* p);
print_card(struct Card * p);

main(void)

int i;

struct Card hand[] = {
{13, "s" },
{ 4, "c" },
{ 9, "d" },
{12, *h" },
{ 5, "¢}

}:

for(i = 0; 1 < ASIZE(hand); i++) {

printf('the ™);
print_card(&hand[i]);
if(is_red(&hand[i]))

printf(’" is red\n");
else

printf(’ is not=red\n™);
}

return O;

print_card(struct Card * p)

printf("%i of %c\n", p->index, p->suit);

is_red(struct Card *p)

return p->suit == "h* || p->suit == °d";

C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C - Solutions 227

C for Programmers O 1994/1997 - Cheltenham Computer Training

3

In “CARD3.C” implement the function may be placed

#include <stdio.h>

#define ASIZE(A) sizeof(A)/sizeof(A[0])

struct Card

{

};
int
void
int

int index;
char suit;

is_red(struct Card* p);
print_card(struct Card * p);
may_be_placed(struct Card * lower, struct Card * upper);

main(void)
int i;
struct Card lower_cards[] = {
{ 13, "s" },
{ 4, "c” },
{ 9, "d” },
{ 12, "h" },
{ 5, "c" }
};
struct Card upper_cards[] = {
{ 10, "c" %},
{ 3, 7d” },
{ .8, "d” k.
{ 11, *s" },
HWeVA N .,
§ 5=

for(i = 0; 1 < ASIZE(lower_cards); i++) {

printf("'the *);
print_card(&upper_cards[il);

if(may_be_placed(&lower_cards[i1], &upper_cards[i]))
printE('pmay. be placed onwthe)3
else
printf (' may/NOT be placed jon the);
print_card(&lower_cards[i]);
printfC"\n");
}

return O;

print_card(struct Card * p)

printf("%i of %c\n", p->index, p->suit);

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

228

Structures in C - Solutions

O 1994/1997 - Cheltenham Computer Training

C for Programmers

may_be_placed(struct Card * lower, struct Card * upper)

/* If both the same colour, that"s bad */
if(is_red(lower) == is_red(upper))
return O;

/* Ace does not take part */

if(lower->index == 14 || upper->index == 14)
return O;

if(lower->index == upper->index + 1)
return 1;

return O;

is_red(struct Card * p)

return p->suit == "h* || p->suit == °d";

In “LIST1.C” implement the function:

void print_list(struct Node *first_in_list);

Rather than creating a local variable and assigning the value of “first_in_list”, this version of print_list
uses the parameter directly. Since call by value is always used, any parameter may be treated
“destructively”. Note that now the parameter name used in the prototype does not correspond to that
used in the-function header. C.doesn’t.care about.this.and indeed this.is good-because the user sees
“first_in_list” and knows the correct parameter to pass whereas the function sees “current” which is far
more meaningful than changing the “first_in_list” pointer.

#include <stdio.h>

struct

Node {
int data;
struct Node* next_in_line;

print_list(struct Node *| first_in_list);

main(void)

struct sNode nl = £ 100, NULLs }s
struct Node n2 =/{80, NULL };
struct Node n3 = {=40, NULL };
struct Node n4d = { 10, 'NULL" };
n4._next_in_line = &n3;
n3.next_in_line = &n2;
n2.next_in_line = &nl;

print_list(&n4);

return O;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C - Solutions 229

C for Programmers

O 1994/1997 - Cheltenham Computer Training

void print_list(struct Node * current)

while(current = NULL) {

printf(""%i\t"", current->data);
current = current->next_in_line;

¥
printf('\n");

5. In“LIST2.C" implement the function

void print_list_in_reverse(struct Node *first_in_list);

The first version of print_list_in_reverse suffers from the problem of no trailing newline. Whereas this is
not a problem with DOS (since COMMAND.COM always prints a few newlines just in case) it is an
annoyance with other operating systems (like Unix).

#include <stdio.h>

struct Node {

int data;
struct Node* next_in_line;
}:
void print_list_in_reverse(struct Node * first_in_list);
int main(void)
{
struct " Node nl = £ 100, NULL };
struct-Node n2="{ 80, NULL };
struct Node n3 = { 40y= NUbklk=};
struct Node n4 = { 10, NULL };
n4_next, in, _ldne = &n3;
n3.next_in_line = &n2;
n2.next_in_l'ine = &nl;
print_list_in_reverse(&n4);
return O;
}
void print_list_in_reverse(struct Node * p)
{
if(p == NULL)
return;
print_list_in_reverse(p->next_in_line);
printf(""%i\t", p->data);
by

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

230 Structures in C - Solutions
O 1994/1997 - Cheltenham Computer Training C for Programmers

This second version copes with this newline problem using a static variable. Remember that all
instances of the print_list_in_reverse function will share the same static.

void print_list_in_reverse(struct Node * p)

{

static int newline;

if(p == NULL)
return;

++newline;
print_list_in_reverse(p->next_in_line);
--newline;
printf(C"%i\t", p->data);
if(newline == 0)

printf('\n");

6. In “LIST3.C" implement the function:
struct Node* insert(struct Node *first_in_list, struct Node *new_node);

The insert function keeps the pointer “lag” one step behind the insertion point. This makes it very easy
to refer to the node which must be rewired (especially as there is no way via traversing the list to return
back to it). Since it is initialised to NULL, it is possible to detect when the body of the “find the insertion
point” has not been entered. In this case the new node becomes the new head of the list.

#include,<stdio.h>

struct Node {

int data;
struct Node*next-in_line;
};
void print_list(struct Node * first'in_list)]

struct Node*insert(struct Node *first_in_list, struct Node *new_node);

int main(vaid)

{
struct Node nl1 = { 100, NULL };
struct Node n2 = { 80, NULL };
struct Node~n3, = {140,/ NULL};
struct Node_n4 = 4 10,/ NULL };
struct Node * . head;
struct Node new_head = { 1, NULL };
struct Node new_tail = { 200, NULL };

struct Node new_middle = { 60, NULL };

n4._next_in_line = &n3;
n3.next_in_line = &n2;
n2.next_in_line = &nl;

head = &n4;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C - Solutions 231

C for Programmers 0 1994/1997 - Cheltenham Computer Training

struct

printf(*'Before insersions, list is ");
print_list(head);

printf(*'inserting %i into middle of list\n", new_middle.data);
head = insert(head, &new_middle);
print_list(head);

printf(*'inserting %i at end of list\n", new_tail._.data);
head = insert(head, &new_tail);
print_list(head);

printf('inserting %i in front of list\n"”, new_head.data);
head = insert(head, &new_head);
print_list(head);

return O;

print_list(struct Node * current)

while(current = NULL) {
printf(""%i\t"", current->data);
current = current->next_in_line;

b
printf('\n");

Node* insert(struct Node *p, struct Node *new_node)

struct Node®* start\= p;
struct Node* lag,.= NULL;

while(p = NULL && p->data < new_node->data) {
lag = p;
pr= p->next. in=kine;

if(lag =="NULE)"{ /* insert before lrst*/
new_node->next_in_line = p;
return new._node;

}

lag->nextn_“Line =.new, node;
new_node->next_in_line = p;

return start:

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations 233

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Reading C declarations

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

234 Reading C Declarations
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Reading C Declarations \

= |ntroduction
= SOAC

= Examples
= typedef

= Examples revisited 1ond

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1 /

Reading C Declarations

Reading declarations in C is almost impossible unless you know the rules.
Fortunately the rules are very simple indeed and are covered in this chapter.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations

235

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Up until now we have seen straightforward
declarations:

Plus a few trickier ones:

= However, they can become much worse:

Introduction \

long sum;
int* p;

|void member_display(const struct Library_member *p); |

int *p[15];

float (*pfa)[23];

long (*f)(char, int);
double *(*(*n)(void))[5];

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Introduction

Thus far in the course we have seen some straightforward declarations. We have
declared ints, floats, arrays of char, structures containing doubles, pointers
to those structures. However, C has the capability to declare some really mind
boggling things, as you can see above. Trying to understand these declarations
is.almost entirely hopeless until you understand the rules the compiler uses.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

236

Reading C Declarations

O 1994/199

7 - Cheltenham Computer Training C for Programmers

/ SOAC \

O Find the variable being declared
® Spiral Qutwards Anti Clockwise
© On meeting: say:

* pointer to
[] array of
() function taking and returning

O Remember to read “struct S”, “union U” or
“enum E” all at once

© Remember to read adjacent collections of [][] all
at once

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3 /

SOAC

Fortunately, although mind boggling things may be declared, the rules the
compiler uses are far from mind boggling. They are very straightforward and may
be remember as SOAC (most easily remembered if pronounced as “soak”). As
mentioned above this stands for Spiral Outwards Anti Clockwise. Start spiraling
from the variable name and if while spiraling you meet any of the characters “*”,
“[1" etc.. mentioned above,-say the-corresponding thing.

The only other things to remember is that structures, enums (which we haven't
covered yet) and unions (which we also haven't covered yet) followed by their
tags should be read in one go.

Also array of array declarations (effectively multi-dimensional arrays) should be
read in one go.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations 237

C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Example 1. \

= What is “int * p[15]” ?

/A

[int = p (151 ;]
= pis an array of 15 pointers to integers

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4 /

Example 1.

[Tl)

The declaration “int * p[15]” could declare “p” as:

1. an array of 15 pointers to integers, or
2. apointer to an array of 15 integers

so which is'it?

Always start reading at the name of the variable being declared, here “p”. Spiral
outwards anti clockwise (in other words right from here). We immediately find:

[15]
which causes us to say “array of 15”. Carrying on spiraling again, the next thing
we meet is the “*” which causes us to say “pointer to”, or in this case where we're
dealing with 15 of them, perhaps “pointers to”./Spiraling again, we sail between
the “I” and the*;” and-meet

int
causing us to say “integer”.
Putting all this together gives:

1. pisan

2. array of 15

3. pointers to

4. integer
The variable “p” is therefore an array containing 15 elements, each of which is a
pointer to an integer.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

238 Reading C Declarations
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Example 2. \

= What is “double (*p)[38]” ?

A

[doubte (= p &) [381; |

v

= pis a pointer to an array of 38 doubles

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5 /

Example 2.

Essentially the only difference between this and the last example is the extra set
of parentheses around “*p”. Whereas these might look as though they have little
effect, they change the order in which we see things when we spiral.

Starting at “p” we spiral inside the parenthesis and see the “*” causing us to say
“pointer to”. Now spiraling-outwards-we meet.the
[38]
causing us to say “array of 38”. From there we spiral round and see:
double

Putting this together:

1. pisa

2. pointerto.an

3. array.of 38
4. double(s)

Thus the variable “p” is'a single pointer. At the end of the pointer (once
initialized) will. be-a single array of 38 doubles.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations

239

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= What is “short **ab[5][10]” ?

Example 3. \

A

short * * ab [5][10] ;|
N/

ab is an array of 5 arrays of 10 arrays of pointers
to pointers to short int

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6 /

Example 3.

Although we're throwing in the kitchen sink here, it doesn't really make things that
much more difficult.

Find the variable being declared “ab” and spiral. ‘We find:
[51010]1

which we read in one go according to our special rule giving “array of 5 arrays of
10". Spiraling again we meet the “*” closest to “ab” and say “pointer to”.
Spiraling between the “]” and the semicolon we meet the next “*” causing us to
say “pointer to” again. Spiraling once again between the “]"and the semicolon we
meet

short

Putting this together:

ab is an

array of'5 arrays of 10
pointers to

._pointers to

short int

o wNE

Thus “ab” is'a collection of 50 pointers, each pointing to.a-slot in memory
containing an address. This address is the address of a short integer somewhere
else in memory.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

240 Reading C Declarations
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Example 4. \

= What is “long * f(int, float)” ?

A

| long * f (int, float) ; |
» fis a function taking an int and a float returning a
pointer to a long int

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7 /

Example 4.

Here we see the “function returning” parentheses. Once again starting at “f” we
spiral and find

(int, float)

and say “function (taking an int and a float as parameters) returning”, next spiral
to find “*” causing us to say-“pointer-to”, then:spiraling between:-the closing
parenthesis and the semicolon to finally land on “long”.

Putting this together gives:

fisa

function (taking an int and a float as parameters) returning a
pointer to a

long

PwnhpE

Thus we find this is merely a function prototype for the function “f".

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations

241

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= What is “int (*pf)(void)” ?

Example 5. \

N

[int (> pfh) (voic)y ;|

\4

C

pf is a pointer to a function taking no parameters
and returning an int

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8 /

Example 5.

This example shows the effect of placing parentheses around “*pf” when dealing
with functions. The variable being declared is “pf”. We spiral inside the closing
parenthesis and meet the “*” causing us to say “pointer to”. From there we spiral
out to find:

(void)

which causes us to say “function (taking no parameters) and returning”. From
there we spiral and find:

int

Putting this together gives:

1. pfisa

2. pointerto a

3. function (taking no parameters) and returning.an
4. integer

Thus “pf” is not a function prototype, but the declaration of a single individual
pointer. At the end of this pointer is a function. The course has examined the
concept of pointers and seen pointers initialized to point at.the stack and at the
data segment._lt.is also possible to point pointers into the heap (which will be
discussed later). “pf’ is'an example of a pointer which can point into the code
segment. This is the area of the program which contains the various functions in
the program, main, printf, scanf etc.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

242 Reading C Declarations

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Example 6. \

= What is “struct Book (*fpa[8])(void)” ?

F

struct Book (* fpa[8]) (void) ;|
\U_/‘

» fpais an array of 8 pointers to functions, taking
no parameters, returning Book structures

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9 /

Example 6.

Here once again, the kitchen sink has been thrown into this declaration and
without our rules it would be almost impossible to understand.
Starting with “fpa” and spiraling we find:

[8]

causing us to say “array of 8”. Spiraling onwards we find “*” causing us to say
“pointer to”. Next we encounter:
(void)

causing us to say “function (taking no parameters) returning”. Now we meet
struct Book

which, according to-our-special.case, we-read in-one go:
Putting this together gives:

fpais an

array,of 8

pointers to

functions (taking-no parameters) returning
Book structures

arwidE

Thus fpa is an array of 8 slots. Each slot contains a pointer. Each pointer points
to a function. Each function returns one Book structure by value.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations

243

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

= What is “char (*(*fprp)(void))[6]” ?

o

Example 7. \

(o

|char (* fprph) (void)) [6] ;|

=

fprp is a pointer to a function taking no
parameters returning a pointer to an array of 6
char

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

Example 7.

The declaration above is hideous and the temptation arises to start screaming.
However, “fprp” is being declared. Spiraling inside the parenthesis leads us to “*”
and we _say “pointer to”. Spiraling further leads us to:

(void)

causing us to say “function-(taking-no-parameters) returning”. -Spiraling beyond
this leads us to the second “*” causing us to say “pointer to”. Now we spiral to

(RS
which is an “array of 6”, and finally we alight on
char

Putting this together gives:

fprpis a

pointer.to a

function (taking no parameters) returning a
pointer to an

array of 6

char

ook wiE

Thus only one pointer is being declared here. The remainder of the declaration
merely serves to tell us what type is at the end of the pointer (once it has been
initialized). ltis, in fact, a code pointer and points to a function. The function
takes no parameters but returns a pointer. The returned pointer points to an array
of 6 characters.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

244 Reading C Declarations
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Example 8. \

= What is “int * (*(*ptf)(int))(char)” ?

()

int * (* (*ptfh) (int)) (char) ; |

N

= ptfis a pointer to a function, taking an integer,
returning a pointer to a function, taking a char,
returning a pointer to an int

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11 /

Example 8.

Although hideous, this declaration is only one degree worse than the last. Finding
“ptf” and spiraling inside the parenthesis we find “*” causing us to say “pointer to”.
Now we spiral and find

(int)

meaning “function taking anvinteger-and returning”. Spiraling further we find
another “*” meaning “pointer to”. Spiraling further we find

(char)

meaning “function taking a character and returning”. Again another “*” meaning
“pointer to”, then finally spiraling just in front of the semicolonto meet

int
Putting this together:

ptfisa

pointer to a

function taking an integer and returning a
pointer to a

function-taking a character and returning.an
integer

O 0 Ay NV

Thus “ptf” declares a single pointer. Again the rest of the declaration serves only
to tell us what is at the end of the pointer once initialized. At the end of the
pointer lives a function. This function expects an integer as a parameter. The
function returns a pointer. The returned pointer points to another function which
expects a character as a parameter. This function (the one taking the character)
returns a single integer value.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations 245
C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ typedef \

It doesn’t have to be this difficult!

The declaration can be broken into simpler steps
by using typedef

To tackle typedef, pretend it isn’t there and read
the declaration as for a variable

When finished remember that a type has been
declared, not a variable

k © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12 /

typedef

When we read a declaration, we break it down into a number of simpler steps. It
is possible to give each one of these simpler steps to the compiler using the
typedef keyword.

To understand typedef, ignore it. Pretend it isn’t there and that a variable is
being declared. Read the declaration.just as.forany other variable. But
remember, once the declaration has been fully read the compiler has declared a
type rather than a variable. This becomes a completely new compiler type and
may be used just as validly wherever int, float, double etc. were used.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

246 Reading C Declarations
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Example 1 Revisited \

= Simplify “int * p[15]”

A

| typedef int * pti; | pti is a pointer to an int

N\
2

| pti p[151; | pis an array of 15

\4

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13 /

Example 1 Revisited

We want to simplify the declaration “int * p[15]” which, you will remember,
declares “p” as an array of 15 pointers to integer. Starting from the end of this,
create a new type “pointer to int”._If we wrote:

int * pti;
we would declare a variable-“pti” of-type “pointer'to integer”. By-placing typedef
before this, as in:
typedef int * pti;

we create a new type called “pti”. Wherever “pti” is used in a declaration, the
compiler will.understand “pointer to integer”, just as-wherever-int is used in a
declaration the compiler understands “integer”. This, as a quick aside, gives a
possible solution to the dilemma of where to place the “*” in a declaration. You
will remember the problems and merits of:

int* ps
VS. int *p;
and especially-the problem with .. int* P, g3

where “p” has type “pointer to int”, but “q” has type int. This typedef can solve
the latter problem as'in:

pti P, 4;

where the type of both “p” and “q” is “pointer to int” without the problems
mentioned above.

Having created this new type, declaring an array of 15 pointers to integers merely
becomes:

pti p[15];

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations

247

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Example 3 Revisited \

= Simplify “short **ab[5][10]”

(N ™

typedef short * * pt_pt_s ; | |typedef pt_pt_s ao5[5]; |

_A4 ¥
ao5 is an array of 5

pt_pt_s is a pointer to a
pointer to a short

ao5 ab[10]; ab is an array of 10

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14 /

Example 3 Revisited

We wish to simplify the declaration “short **ab[5][10]” which as we already
know declares “ab” as an array of 5 arrays of 10 pointers to pointers to short
int.
Start from the back with the “pointers to pointers to short int”:

typedef short * * pt_pt_s;

creates a new. type called “pt_pt_s” meaning “pointer to pointer to short”.

In fact we could stop here and define “ab” as:
pt_pt_s ab[5]1[10];

which is slightly more obvious than it was. However, again peeling away from the
back, here is a definition for an array of 5 pointers to pointers to short:

typedeT pt_pt_s'ao5[5];

(Remember that if the typedef were covered, we would be creating a variable
called “ao5” which would be an array of 5 pointers to pointers to short). Once
this has been done, creating “ab” is easily done. Wejust need 10 of the ao5’s as
follows:

ao5 ab[10];

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

248 Reading C Declarations
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Example 5 Revisited \

= Simplify “int (*pf)(void)”

F

typedef int fri(void); | |fri * pf ; |
fri is a function, taking no pf is a pointer to

parameters, returning an int

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15 /

Example 5 Revisited

Now we wish to simplify the declaration of “pf” in “int (*pf) (void)” which as
we already know declares “pf” to be a pointer to a function taking no parameters
and returning an integer.

Tackling this last partfirst, a new type is created, “fri” which is a function, taking
no parameters, returning an-integer

typedef int fri(void);

does this quite nicely. Remember that if typedeT were covered we would be
writing a function prototype for “fri”.

From here “pf” is created quite simply by declaring a pointer to an “fri” as:
fri| * pf;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations 249
C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Example 6 Revisited \

= Simplify “struct Book (*fpa[8])(void)”

A

| typedef struct Book f(void); | | typedef £ * fp ; |
_4
f is a function, taking no fp is a pointer to

parameters, returning a
Book structure

m fpais an array of 8

[fo fpal[8]: |

\A

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16 /

Example 6 Revisited

We wish to simplify the declaration “struct Book (*fpa[8])(void)” which as we
already know declares “fpa” as an array of 8 pointers to functions, taking no
parameters, returning Book structures.

We start by creating-a typedef for a single function, taking no parameters,
returning a Book structure.-Such.a-function would be:

struct Book f(void);

Adding the typedef ensures that instead of “f” being the function it instead
becomes the new type:

typedef struct Book T(void);
Now all we have to do is create a pointer to one of these:
typedef T *Tp;
Now.allwe'need is an.array of 8 of these:

fp fpa[8];

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

250

Reading C Declarations

0 1994/1997 - Cheltenham Computer Training

C for Programmers

e

= Simplify “char (*(*fprp)(void))[6]”

£

Example 7 Revisited

<

typedef char * ptaGc‘) [e1 :

|typedef pta6c f(void); |

N

ptaéce is a pointer to an
array of 6 char

r

* fprp

N

© Cheltenham Computer Training 1994/1997

fprp is a pointer

sales@ccttrain.demon.co.uk

-

f is a function, taking no
parameters, returning

Slide No. 17 /

Example 7 Revisited

We wish to simplify the declaration “char (*(*fprp) (void))[6]"” which, as
we already know declares “fprp” as a pointer to a function, taking no parameters,

returning a pointer to an array of 6 characters.

The first thing to tackle, once again, is the last part of this declaration, the pointer
to an array of 6 characters..-This can-be done.in‘one step as above, or in two

steps as:
typedef char

typedeT array of 6cchar *ptabc;

array_of_6_char[6];

Now for a function, taking no parameters, that returns one of these:

typedef ptab6e f(void);

All that is leftis.to create."fprp”.as a pointer.to one-of these:
L *fprp;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations

251

C for Programmers

0 1994/1997 - Cheltenham Computer Training

/ Example 8 Revisited \

= Simplify “int * (*(*ptf)(int))(char)”

)

|typedef int * pti ; | |typedef pti f(char); |

N2

f is a function, taking a

pti is a pointer to an int char, returning

|typedef f * ptfri ;| |ptfri (* ptf)(int) ;|

N2 A

ptfri is a pointer to ptf is a pointer to a function, taking int,
returning

(

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18 /

Example 8 Revisited

Finally, we wish to simplify the declaration “int * (*(ptf)(int))(char)”
which as we already know declares “ptf” as a pointer to a function, taking an int,
returning a pointer to a function, taking a char, returning a pointer to an int.

Starting at the end.with the “pointer-to int” part,
typedef int *pti ;

creates the type “pti” which is a “pointer to an int”. Again picking away at the end,
we need afunction taking a char returning one of these, thus:

typedef pti f(char);
Now, a pointer to one of these:
typedef f *ptfri;

Next a function, taking an int and returning a pointer to one of these (there wasn’t
room:-for this:step above):

typedef ptfri func_returning_ptfri(int);
Now, a pointer to one of these:
typedef/ TfTunc_ returning ptfri “*ptf r_ptfri;
So that finally the variable “ptf” can be declared:
ptf_r_ptfri ptf;
Alternatively we could have used the previous typedef as in:

func_returning_ptfri *ptf;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

252 Reading C Declarations

O 1994/1997 - Cheltenham Computer Training C for Programmers

/ Summary \

= Don’t Panic!
= SOAC - Spiral Outwards Anti Clockwise
» To simplify, use typedef(s)

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19 /

Summary

*,

&)

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations - Exercises 253

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Reading C Declarations Practical Exercises

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

254

Reading C Declarations - Exercises

O 1994/1997 - Cheltenham Computer Training

1. What types do the following variables have?

int
int
int
int
int
int
int

char
char
char
char
char
char
char

float
float
float
float

short
short
short
short

long
long
long

*a;
b[10];
*c[10];
(d)[10];
*(*e)[10];
C>=H)[10];
*(*9)[10]1;

h(void);
*i(void);
1) (void);
*(*k)(void);
**1(void);
C*m)(void);
*(**n)(void);

(*o(void))[6];
*(*p(void))[6];
(**q(void))[6];
*(*r(void))[6];

(*s(void))(int);

*(*t(void)) (int);
C*u(void)) (int);
*(**v(void))(int);

C(x(void)) (int)) [6];
*(*Cy(void)) (int))[6];

*CiEC2)(votd) [7P (void);

2. Using typedef, simplify the declaration of:

N X cCcT oS —Qao

in 3 steps
in 4 steps
in 3 steps
in 3 steps
in 4 steps
in 4 steps
in 5 steps
in 7 steps

C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations - Solutions 255

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Reading C declarations Solutions

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

256 Reading C Declarations - Solutions

0 1994/1997 - Cheltenham Computer Training C for Programmers

1. What types do the following variables have?

int *a;

‘a’ is a pointer to int.

int b[10];

‘b’ is an array of 10 int.

int *c[10];

‘c’ is an array of 10 pointers to int.

int (*d)[10];

‘d’ is a pointer to an array of 10 int.

int *(*e)[10];

‘e’ is a pointer to an array of 10 pointers to int.

int *)[10];

‘f" is a pointer to a pointer to an array of 10 int.

int *(*9)[10]1;

‘g’ is a pointer to a pointer to an array of 10 pointer to int.

char hQveid) ;

‘h’ is a function, taking no parameters, returning a char.

char *i(vaid);

‘" is a function, taking no parameters, returning a pointer.to‘char.
char J)(void);

‘" is a pointer to a function, taking no parameters, returning.a char.
char *(*k) (void);

'k’ is a pointer to a function, taking:no parameters, returning a pointer to a char.
char **1(void);

‘" is a function, taking no parameters, returning a pointer to a pointer to a char.
char *m) (void);

‘m’ is a pointer to a pointer to a function, taking no parameters, returning a char.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations - Solutions 257

C for Programmers 0 1994/1997 - Cheltenham Computer Training

char *(**n)(void);

‘n’ is a pointer to a pointer to a function, taking no parameters, returning a pointer to a char.

float (*o(void))[6]:

‘0’ is a function, taking no parameters, returning a pointer to an array of 6 float.

float *(*p(void))[6];

‘p’ is a function, taking no parameters, returning a pointer to an array of 6 pointers to float.

float (**q(void))[6];

‘g’ is a function, taking no parameters, returning a pointer to a pointer to an array of 6 float.

float *(**r(void))[6];

‘r' is a function, taking no parameters, returning a pointer to a pointer to an array of 6 pointer to float.
short (*s(void))(int);

‘s’ is a function, taking no parameters, returning a pointer to a function, taking an int, returning a short.
short *(*t(void)) (int);

‘t" is a function, taking no parameters, returning a pointer to a function, taking an int, returning a pointer
to a short.

short C*uvoid)) (int);

‘U’ is a function, taking.no parameters, returning a-pointer to a.pointer to a function, taking an int,
returning a short.

short *(**v(void)) (int);

‘v’ is a function, taking no parameters, returning a pointer to'a pointer to a function, taking an int,
returning a pointer to a short.

long CCx(void)) (Int))[6];

‘X" is a function, taking no parameters, returning a pointer to a function, taking an int, returning a pointer
to an array of 6 long.

long *CCy(uotd)) () 6];

'y’ is a function, taking no parameters; returning a pointer to a function, taking an int, returning a pointer
to an array of 6 pointers to long.

long *CCC2)(void)) [7] (void);

‘Z’ is a pointer to a function, taking no parameters, returning a pointer to an array of 7 pointers to
functions, taking no parameters, returning pointers to long.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

258 Reading C Declarations - Solutions

O 1994/1997 - Cheltenham Computer Training C for Programmers

Using typedeT, simplify the declaration of:
e in 3 steps. ‘e’ is a pointer to an array of 10 pointers to int.

i) typedef for pointer to int:
typedef int * Int_ptr;

i) typedef for 10 of “i":
typedef int_ptr arr_int_ptr[10];

iii) typedef for a pointer to “ii":
typedef arr_int_ptr * ptr_arr_int_ptr;

g in 4 steps. ‘g’ is a pointer to a pointer to an array of 10 pointer to int.

Continuing from (iii) above:

ii)

ii)

LN

iv) typedef for a pointer to “iii":
typedef ptr_arr_int_ptr * ptr_ptr_arr_int_ptr;

lin 3 steps. ‘I'is a function, taking no parameters, returning a pointer to a pointer to a char.

typedef for a pointer to a char:
typedef char * ptr_char;

typedef for a pointer to “i":
typedef ptr_char * ptr_ptr_char;

typedef of a function returning “ii":
typedef ptr_ptr_ichar func_returninggptr, ptr_char(void);

nin 3 steps. ‘n’/is a pointer to a pointer to a function, taking no parameters, returning a pointer to a
char.

typedef for a pointer to a char:
typedef char * ptr_char;

typedef for a function, taking no parameters, returning “i":
typedef ptr_char func_returning_ptr_char(void);

typedef of a pointer to “ji”
typedef ptr_to“func * ptr_char funec returning-ptr_char;

pin 4 steps. ‘p’is a function, taking no parameters, returning a pointer to an array of 6 pointers to
float.

typedef for a pointer to a float:
typedef float * ptr_FIt;

typedef for an array of 6 “i’s:
typedef ptr_flt arr_ptr_TIt[6];

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations - Solutions 259

C for Programmers O 1994/1997 - Cheltenham Computer Training

iii) typedef of a pointer to “ii":
typedef arr_ptr_flt * ptr_to_arr;
iv) typedef of a function returning “iii":
typedef ptr_to_arr func_returning_ptr_to_arr(void);

uin 4 steps. ‘U’ is a function, taking no parameters, returning a pointer to a pointer to a function, taking
an int, returning a short.

i) typedef for the function taking an int and returning a short:
typedef short f(int);

i) typedef for a pointer to “i":
typedef T * ptr_func;

iii) typedef of a pointer to “ii":
typedef ptr_func * ptr_ptr_func;

iv) typedef of a function returning “iii":
typedef ptr_ptr_func func_returning_ptr_ptr_func(void);

x in 5 steps. ‘X’ is a function, taking no parameters, returning a pointer to a function, taking an int,
returning a pointer to an array of 6 long.

i) typedef for an array of 6 long:
typedef long arr_long[6];

i) typedef for a pointer to “i":
typedef arr_long * ptr_arr_long;

iii) typedef of‘afunction taking an‘int and-returning a “ji":
typedef ptr_arr_long F(int);

iv) typedef fora pointer to “iii":
typedef T * ptr_to_func;

v) typedef for a function, taking no parameters returning“iv”:
typedef ptr_to_func func(void);

zin 7 steps. ‘Z’is a pointer to a function, taking no parameters, returning a pointer to an array of 7
pointers to functions, taking no_parameters, returning pointers to long.

i) typedef for a pointer to a long:
typedef.dong * ptl;

i) typedef for a function, taking no parameters, returning “i”:
typedef ptl f(void);

iii) typedef of a pointer to “ii”:
typedef f * ptr_func;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

260 Reading C Declarations - Solutions
0 1994/1997 - Cheltenham Computer Training C for Programmers

THTLE

iv) typedef for an array of 7 “iii":
typedef ptr_func arr_ptr_func[7];

v) typedef for a pointer to a “iv":
typedef arr_ptr_func * ptr_arr_ptr_func;

vi) typedef for a function, taking no parameters, returning “iv":
typedef ptr_arr_ptr_func frp(void);

vii) typedef for a pointer to a “vi”:
typedef frp * ptr_frp;

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C 261

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Handling Files in C

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

262 Handling Files in C

0 1994/1997 - Cheltenham Computer Training C for Programmers
/ Handling Files in C \
= Streams

= stdin, stdout, stderr
= Opening files

= When things go wrong - perror
= Copying files

= Accessing the command line
= Dealing with binary files

o
o
<
K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk /

Slide No. 1

Handling Files in C

This chapter discusses how the Standard Library makes files accessible from the
C language.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C 263

C for Programmers 0 1994/1997 - Cheltenham Computer Training

/ Introduction \

= File handling is not built into the C language itself

= |tis provided by The Standard Library (via a set
of routines invariably beginning with *“f”)

= Covered by The Standard, the routines will
always be there and work the same way,
regardless of hardware/operating system

» Files are presented as a sequence of characters

= |tis easy to move forwards reading/writing
characters, it is less easy (though far from
impossible) to go backwards

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2 /

Introduction

The Standard Some languages have special keywords for dealing with files. C doesn't, instead

Library it uses routines in the Standard Library which, because they are covered by The
Standard will always work the same way despite the environment they are used
in. Thus a Cray running Unix or a PC running CP/M (if there are any), the
mechanism for opening a file is exactly the same.

Opening a file is rather like being presented with a large array of characters,
except whereas an array provides random access to its elements a file provides
sequentialaccess to its characters. It'is possible to achieve random access, but
the routines are most easily driven forwards through-the file-character by
character.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

264 Handling Files in C
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Streams \

Before a file can be read or written, a data
structure known as a stream must be associated
with it

A stream is usually a pointer to a structure
(although it isn’t necessary to know this)

There are three streams opened by every C
program, stdin, stdout and stderr

stdin (standard input) is connected to the
keyboard and may be read from

stdout (standard output) and stderr (standard

error) are connected to the screen and may be
written to

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3 /

Streams

The procedure by which files are manipulated in C is that a stream must be
associated with a file to be read or written. A stream is a “black box” (although
not in the aircraft sense) in that you don’t really need to know what is going on in
a stream. In fact it is best not to have to know, since there can be some
headache inducing-stuff happening in there.

As far as we are concerned the stream is transparent, we don’t know what is it
and we don't care. This is a similar idea to the “handle” concept popularized with
Microsoft Windows programming. We don’t know what a handle is, we just get
them back from functions and pass them around to-other functions that are
interestedin them. Same idea with a stream.

stdin, stdout Whenever a C program runs (it doesn’t matter what it does) it has 3 streams
and stderr associated with'it. These are:

1. 'the standard input, or stdin, connected to the keyboard. When characters
are read from stdin the program will wait for the user to type something.
scanf, for instance, uses stdin.

2. the'standard-output;or stdout, connected tojthe screen. When characters
are written to stdout characters appear on the screen. printf, for instance,
uses stdout.

3. the standard error, or stderr, also connected to the screen. Characters
written to stderr will also appear on the screen. The perror function uses
stderr.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C

265

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

What is a Stream? \

Although implementations vary, a stream creates
a buffer between the program running in memory
and the file on the disk

This reduces the program’s need to access slow
hardware devices

Characters are silently read a block at a time into
the buffer, or written a block at a time to the file

Ialblcldlelflglhli Ijlklli
vV output stream
VL / 4
input stream

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4 /

What is a Stream?

Fast Programs
Deal with Slow
Hardware

Caches and
Streams

It is all very well saying a stream must be associated with each file to be
manipulated, but what is a stream and what does it do? The Standard does not
say how a stream should be implemented, this is left to the compiler writers.

Streams were invented in the very early days of C when devices were slow (much
slower than they are today)...Programs executing in memaory run.much faster
than hardware devices can provide the information they need. It was found that
when a program read characters individually from a disk, the program would have
to wait excessively for the correct part of the disk to spin around. The character
would be grabbed and processed, then the program-would have to wait again for
the disk.

In the intervening years manufacturers have invented caches (large buffers) so
the disk never reads a single character. Thus when:the program requests the
next character.it is provided immediately from the buffer. Complex algorithms are
used to determine which characters should be'buffered and which should be
discarded.

Streams-do this-buffering in software. Thusif the device-you are using does not

support caching, it doesn’t matter because the stream will do it for you. If the
device does cache requests, there is a minor duplication of effort.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

266 Handling Files in C
0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Why stdout and stderr? \

= There are two output streams because of
redirection, supported by Unix, DOS, OS/2 etc.

#include <stdio.h>

int main(void)

{ output written to
printf("written to stdout\n'); stderr first
fprintf(stderr, "written to stderr\n'); because it is
return O: C:> outprog unbuffered

} witten to stderr

written to stdout
C:> outprog > file.txt
witten to stderr
C:> type Ffile.txt
written to stdout

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5 /

Why stdout and stderr?

It seems strange to have two separate streams, stdout and stderr both going
to the screen. After all, there is only one screen and it seems odd that a
minimalist language like C would. specifically attempt.to cope with us having two
monitors on our desks.

The real reason C has two-streams-going to the:same place goes:to the heart of
Unix. Remember that C and Unix grew up together. Unix invented the idea of file
redirection and of the pipe. In fact both ideas proved so popular that were
adopted into other operating systems; e.g. MS-DOS, Windows 95, NT and OS/2
to name but a few.

The idea is that: prog
would run a'program “normally™with its output going:to the screen in front of us,
but:

prog > myfile.txt

would run the program and take its screen output and write it to the file “myfile.txt”
whichris-created-in whatever directory;the user is running-in. Alternatively:

prog | print

would take the screen output and run it through the program called “print” (which
I’'m guessing would cause it to appear on a handy printer).

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C 267

C for Programmers 0 1994/1997 - Cheltenham Computer Training

Why stdout and stderr? (Continued)

These ideas have become fundamental to Unix, but in the early days it was
discovered there was a problem. If the program “prog” needed to output any error
messages these would either be mixed into the file, or printed on the line printer.
What was needed was a way to write messages to the user that would be
independent of the redirection currently in force. This was done by creating two
separate streams, one for output, stdout, the other for errors, stderr.

Although the standard output of the programs is redirected above, the standard
error remains attached to the screen.

stderr guarantees the program a “direct connection” to the user despite any
redirection currently in force.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

268

Handling Files in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ stdin is Line Buffered \

= Characters typed at the keyboard are buffered
until Enter/Return is pressed

- - C:> inprog
#include <stdio.h>

abc
int main(void) read 'a'
{ read 'b’'
int ch; read 'c'

read '
while((ch = getchar()) != EOF) '

printf(read "%c"\n", ch); || 4

printf("EOF\n™); read 'd’
read '
return O; '
} A7
EOF
declared as an int, even though C:>

we are dealing with characters

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6 /

stdin is Line Buffered

Signaling End
of File

int not char

Above is a program that uses the getchar routine. The important thing to notice
is that because getchar uses the stdin stream, and stdin is line buffered, the
characters “abc” which are typed.are. not processed until the enter key is pressed.
Then they (and the enter key) are processed in one go as the loop executes four
times.

By this time getchar has run out of characters and it must go back to the
keyboard and wait for more. The second time around only “d” is typed, again
followed by the enter key. These two'characters, “d” and enter are processed in
one go as the loop executes twice.

Under MS-DOS the Control Z character is used to indicate end of file. When this
is typed (again followed by enter) the getchar routine returns EOF and the loop
terminates.

It must seem curious that the variable “ch” is declared as type int and not char
since we are dealing with characters, after all. The reason for this is that neither
K&R C nor Standard C says whether char is signed or unsigned. This seems
rathérirrelevant until itis revealed that the value of the EOFE define is -1. Now, if a
compiler chose.to implement char as an unsigned quantity, when getchar
returned -1 to indicate end of file, it would cause 255 to be stored (since an
unsigned variable cannot represent a negative value). When the 255 were
compared with the -1 value of EOF, the comparison would fail. Thus the poor
user would repeatedly type ~Z (or whatever your local flavour of end of file is) with
no effect.

Using the type int guarantees that signed values may be represented properly.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C

269

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

Opening Files

» Files are opened and streams created with the
fopen function

<

|FILE* fopen(const char* name, const char* mode);l

#include <stdio.h>

int main(void)

€ FILE* in: need one for each
EILE* out; file you want
FILE* append; open
in = fopen("autoexec.bat", "r');
out = fopen('autoexec.bak™™, "w');
append = fopen(‘'config.sys", "a');

streams, you'll

o

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

Slide No. 7 /

Opening Files

Before a file may be manipulated, a stream must be associated with it. This
association between stream and file is made with the fopen routine.

All'that is needed is to plug in the file name; the access mode (read, write,
append) and the stream comes back. This is similar in'concept to placing coins
in a slot machine, pressing.buttons.and obtaining a chocolate bar. One kind of
thing goes in (the coins, the file name) and another kind of thing comes back out
(the chocolate bar, the stream).

The Stream
Type

A stream is actually declared as:

FILE/ >

i.e. a pointer to a FILE structure. If you want to see what this structure looks like,
it is defined.in‘the stdio. h header.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

270 Handling Files in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Dealing with Errors \

= fopen may fail for one of many reasons, how to
tell which?

|void perror(const char* message);l

#include <stdio.h>

int main(void)
{
FILE* in;
if((in = fopen("autoexec.bat", "r')) == NULL) {
fprintf(stderr, "open of autoexec.bat failed ");
perror(*“'because');
return 1;

}

40pen of autoexec.bat failed because: No such file or directoryl

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8 /

Dealing with Errors

The important thing to realize about streams is that because they are pointers it is
possible for fopen to indicate a problem by returning NULL. This is a special
definition of an invalid pointer seen previously. Thus if fopen returns NULL, we
are guaranteed something has gone wrong:

What Went The problem is that “something has-gone wrong” is not really good enough. We

Wrong? need to know what has gone wrong and whether we can fix it. Is it merely that
the user has spelt the filename wrong and needs to be given the opportunity to try
again or has the network crashed?

The Standard Library deals with errors by manipulating a variable called “errno”,
the error number. Each implementation of C assigns a unique number to each
possible error situation. Thus 1 could be “file does not exist”, 2 could be “not
enough memory” and-so-on:-lIt.is possible:to access “errne™by placing:

extern Ent=errno;
somewhere at the top of the program. After the failed call to fopen we could say:
fprintf('open of autoexec failed because %i\n", errno);
this would produce:
open of ‘autoexec failed because 1

which is rather unhelpful. What perror does is to look up the value of 1 in a
table and find a useful text message. Notice that it prints whatever string is
passed to it (“because” in the program above) followed by a “:” character. If you
don’t want this, invoke it as:

perror('');

In which case no text is prepended to the error text.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C

271

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

&

File Access Problem \

Can you see why the following will ALWAYS fail,
despite the file existing and being fully
accessible?

if((in = fopen(''C:\autoexec.bat™, "r')) == NULL) {
fprintf(stderr, "open of autoexec.bat failed ");
perror(*'because™);
return 1;

}

C:> dir C:\autoexec.bat
Volume in drive C is MS-DOS_62
Directory of C:\

autoexec bat 805 29/07/90 8:15
1 file(s) 805 bytes
1,264,183,808 bytes free
C:> myprog

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

open of autoexec.bat failed because: No such file or directoii////

File Access Problem

There is a rather nasty problem waiting in the wings when C interacts with
operating systems like MS-DOS, NT and OS/2 which use pathnames of the form:

\name\text\afile

but.not Unix which uses pathnames of the form:
/name/text/aftile

The problem is with the directory separator character, “\" vs. “/”. Why is this such
a problem? Remember that the character sequences “\n”, “\t” and “\a” have
special significance in C (as do “\f", “\r”, “\v"'and “\x”). “The file'we would actually
be trying to:open would be:

<newline>ame<tab>ext<alert>File

No such problem exists in Unix, because C attaches no special significance to
“In” which it sees as two-characters, not one-as in the case-of “\n”. There are two
solutions. The first: (which is rather inelegant) is to prepend “\” as follows:

\\name\\text\\afile

The 'second: despite the fact we are not using Unix, specify.a Unix style path.
Some routine.somewhere within the depths of MS-DOS, Windows, NT etc. seems
to understand and switch the separators around the other way. This behavior is
not covered by The Standard and thus you can't rely upon it. The safest choice is
the first solution which will always work, even though it does look messy.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

272

Handling Files in C

0 1994/1997 - Cheltenham Computer Training

-

Displaying a File \

{

#include <stdio.h>

int main(void)

char in_name[80];

FILE *in_stream;

int ch;

printf('Display file: ");
scanf("'%79s', in_name);

if((in_stream = fopen(in_name, "r')) == NULL) {

fprintf(stderr, "open of %s for reading failed ', in_name);
perror(“'because™);
return 1;
}
while((ch = fgetc(in_stream)) !'= EOF)
putchar(ch);

fclose(in_stream);

return O;

\

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10 /

Displaying a File

Reading the
Pathname but
Avoiding
Overflow

The Program’s
Return Code

The array “in_name” being 80 characters in length gives the user room to specify
a reasonably lengthy path and filename. Don't think that all filenames should be
13 characters in length just because your operating system uses “eight dot three
format. The user will invariably need to specify a few directories too.. The
pathname that results'can be almost'any length.

scanf("'%79s"™, In_name);

uses %79s to prevent the user from corrupting memory if more than 79
characters are typed (space is left for the null terminator). Youwill also notice
this scant.is missing an “&”. Normally this is fatal, however here it is not a
mistake. An array name automatically yields the address of the zeroth character.
Thus we are providing the address that scanf needs, “&in_name” is redundant.

Once again perror-is-:used when something goes wrong.to-produce a
descriptive-explanation. Notice that for the first time we are using

return 1;
to indicate the “failure” of the program. When the file’has not been opened the

program cannot be said.to have succeeded. It thus indicates failure by returning
a non zero value. .In fact any value 1 up to and including.255 will do.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

C for Programmers

Handling Files in C

273

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

Example - Copying Files \

#include <stdio.h>

int main(void)

{
char in_name[80], out_name[80];
FILE *in_stream, *out_stream;
int ch;

printf('Source file: "); scanf("%79s", in_name);

if((in_stream = fopen(in_name, "r')) == NULL) {
fprintf(stderr, "open of %s for reading failed ', in_name);
perror(“'because™);
return 1;

}

printf('Destination file: "); scanf("%79s", out_name);
if((out_stream = fopen(out_name, "w'")) == NULL) {
fprintf(stderr, "open of %s for writing failed ", out_name);
perror(“'because™);
return 1;

}

while((ch = fgetc(in_stream)) != EOF)
fputc(ch, out_stream);

fclose(in_stream);
fclose(out_stream);

return 0;

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11 /

Example - Copying Files

Reading and
Writing Files

Closing files

Transferring the
data

Two arrays are needed for the input and output file names. The first file is, as
before, opened for reading by specifying “r’ to fopen. The second file is opened
for writing by specifying “w” to fopen. Characters are then transferred between
files until EOF is encountered within the source file.

Strictly speaking when we fail-to open:the destination file for writing, before the
return, we should fclose the source file. This is not actually necessary, since
on “normal” exit from a program, C closes all open files. This does not happen if
the program “crashes”.

Closing the.output file will cause any operating system dependent end of file
character(s) to be written.

The loop: while((chy= fgetc(in stream)) 1= EOF)
fputc(out_stream, ch);

uses the Standard Library routine fgetc to obtain'the next character in sequence
from the input file. Notice the call is NOT:

ch =, fgetc(in_name)

i.e. we use the stream associated with the file rather than the name of the file.
Any attempt'to pass“in_name” to fgetc would produce-compiler errors. The
character obtained from the file is checked against EOF to see if we have
processed all of the characters. If not, the character is written to the output file
(again via the stream associated with the file, “out_stream” and not via the name
of the file in “out_name”).

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

274

Handling Files in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

Example - Copying Files (Continued)

Blissful
Ignorance of
Hidden Buffers

Cleaning up

Program’s
Return Code

Notice that although both “in_stream” and “out_stream” have buffers associated
with them, we need to know nothing about these buffers. We are not required to
fill them, empty them, increment pointers, decrement pointers or even know the
buffers exist. The fgetc and fputc routines manage everything behind the
scenes.

Finally when end of file is encountered in the input file, the loop terminates and
the program calls fclose to close the input and output files. This is really
unnecessary since C will close files for us when the program finishes (which it is
about to do via return), however it is good practice. There are only so many
files you can open simultaneously (the limit usually defined by the operating
system). If you can open one file, close it, then open another and close that there
is no limit on the number of files your application could deal with.

There is, of course, always the danger of forgetting to close files and then turning
this code into a function which would be called repeatedly. On each call, one
precious file descriptor would be used up. Eventually fopen would fail with “too
many open files”.

Once again, fclose deals with the stream, “in_stream” and not the file name
“in_name”.

Finally the return 0O;

indicates the success.(i.e. successful-.copy) of-our program.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C

275

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

o

= Although our copy file program works, it is not as

Convenience Problem \

convenient as the “real thing”

C:> copyprog
Source file: \autoexec. bat
Destination file: \autoexec. bak
C:> dir C:\autoexec.*

Vol ume in drive Cis Ms-DOS_62
Directory of C\

aut oexec bak 805 31/12/99 12: 34
aut oexec bat 805 29/07/90 8:15
2 file(s) 1610 bytes

1, 264, 183, 003 bhytes free
C:> copyprog \autoexec.bat \autoexec.000
Source file:

program still prompts despite begin given file

names on the command line
© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

Convenience Problem

Typing
Pathnames

No Command
Line Interface

Here we can see our program working. Note that when prompted for the source
and destination files it is neither necessary nor correct to type:

\\autoexec.bat

It.is only the'compiler (actually it's the preprocessor) which converts “\a” from the
two character sequence into-the alert-.character.<Once the program has been
compiled, the preprocessor is “out of the picture”, thus typing the filename is
straightforward and we don't have to make a note that since the program was
written in € pathnames should be typed in a strange format.

The fact remains that although our program works, it fails to pick up file names
from the command line. It cannot be used as conveniently as the “real thing”.
Clearly we would like to emulate the behavior of “supplied programs” like the
“real” copy command.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

276 Handling Files in C

0 1994/1997 - Cheltenham Computer Training C for Programmers

/ Accessing the Command Line \

= The command line may be accessed via two
parameters to main, by convention these are
called “argc” and *“argv”

= The first is a count of the number of words -
including the program name itself

= The second is an array of pointers to the words

| int main(int argc, char *argv[]) |

argc argv —_— olply r|o exe\Ol
b alu ofe|x c alt|\o
—1»|\|aju|t|o]e|x]e|c]-]Oo]OJO|\O

K © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13 /

Accessing the Command Line

In environments which support C it is possible to access the command line in a
clean and portable way. To do this we must change the way main is defined. If
we use the header we have seen thus far during the course:

int.main(void)

our program will ignore all words-the-user typeson the command-line (“‘command
line parameters”). If on the other hand we use the header:

mt=mainCint arge, char*=argvf])

the program may pick up and process as many parameters (words) the user
provides. Since the two variables “arge”.and “argv”.are parameters they are ours
to name whatever we choose, for instance:

ntemainCint skys=char®, bluelil])

Providing we do:not change their types the-names we use-are largely our choice.
However, there.is a convention.that these parameters are always called “argc”
and “argv”. This maintains consistency across all applications, across all
countries, so when you see “argv” being manipulated, you know that command
line parameters are being accessed. The parameters are:

argc an integer containing a count of the number of words the user typed
argv an array of pointers to strings, these strings are the actual words the user typed
or an exact copy of them.

The pointers in the “argv” array are guaranteed to point to strings (i.e. null
terminated arrays of characters).

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C 277

C for Programmers O 1994/1997 - Cheltenham Computer Training

/ Example \

#include <stdio.h>

int main(int argc, char *argv[])
{
int j;
for(J = 0; j < argc; j++)
printf("argv[%i] = \"%s\'"\n", j, argv[jl):;

return O;

C:> argprog one two three
argv|[0] "C:\cct\course\cprog\files\slideprog\argprog.exe"

argv[1] = "one"
argv[2] = "two"
argv[3] = "three"

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Example

The program above shows a C program accessing its command line. Note that
element zero of the array contains a pointer to the program name, including its
full path (although a few operating systems provide only the program name).
This path may be used as the directory in which to find “.ini” and other data files.

Although “argc” provides a.convenient count.of the number of parameters the
argv array itself contains a NULL terminator (a NULL pointer, not a null terminator
\0’). The loop could have been written as:

for(J = 0; argv[j]l '= NULL; <=++)
printf(argv[%i] = \"%s\'"\n"", j, argv[jD);

In fact, “argc” isn't strictly necessary, its there to make our lives slightly easier.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

278 Handling Files in C

O 1994/1997 - Cheltenham Computer Training C for Programmers

/ Useful Routines \

= File reading routines:

int fscanf(FILE* stream, const char* format, ...);
int fgetc(FILE* stream);
char* fgets(char* buffer, int size, FILE* stream);

= File writing routines:

int fprintf(FILE* stream, const char* format, ...);
int fputc(int ch, FILE* stream);
i fputs(const char* buffer, FILE* stream);

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Useful Routines

fscanf The Tscanf routine is just like scanT, except for the first parameter which you
will see is of the stream type. To read an int, a float and a word of not more than
39 characters into an array from the keyboard:

scanf ("%l %F%39s",| &, &Flt, word);
to read these things from a file:
fscanf(in_stream, "%l %F %39s™, &j, &FIt, word);

The fgetc routine has already been'used.in the file copy program to read
individual characters from an input file.

fgets The fgets routine reads whole:lines as strings:” The only problem is fixing the
length of the'string. The-storage used must be allocated by.the user as an array
of characters. Doing this involves putting a figure on how long the longest line
will be. Lines longer than this magical figure will be truncated. For a “short” lines
fgets will append the newline character, “\n” (just before the null terminator).
Whena “long™line is encountered, fgets truncates it-and.does not append a
newline. Thus the presence or absence of the newline indicates whether the line
was longer than our buffer length.

char l1ine[100];

fgets(line, sizeof(line), iIn_stream);
if(strchr(line, "\n") == NULL)
printf("line \"%s\" truncated at %l characters\n", line,
sizeof(line));

The Standard Library routine strchr finds a character within a string and returns
a pointer to it, if present, or NULL if absent.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C

279

C for Programmers

0 1994/1997 - Cheltenham Computer Training

Useful Routines - (Continued)

fprintf

fputs

The Fprintf routine is just like printf, except for the first parameter which you
will see is of the stream type. To write an int, a float to one decimal place and a
word, left justified within a field of 39 characters:

printf(%i %.1Ff %-39s™, j, flt, word);
to write these things to a file:
fprintf(out_stream, "%i %.1Ff %-39s"™, j, flt, word);
in fact, printf(???) is the equivalent of fprintf(stdout, ???).

The Tputc routine can be seen in the file copy program a few pages ago and
writes single characters to a file.

The Tputs routine writes a string to a file, as follows:
char l1ine[100];

fgets(line, sizeof(line), iIn_stream);
fputs(line, out_stream);

All the characters in the character array are written, up until the null terminator
“\0”. If you have a newline character at the end of the buffer this will be written
out too, otherwise you will output “part of a line”. Presumably a newline character
must be appended by hand at some stage.

Although'fgets is.driven by a character count (in order not to overflow the
buffer), the Fputs routine is driven by the position of the null terminator and thus
does not need a count. Passing a non null terminated array of characters to
fputs would cause serious problems.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

280

Handling Files in C

O 1994/1997 - Cheltenham Computer Training

-

N

Example
long 11, 12;
int J. ch; example input
double d;
float f: 28.325]9000000:68000/13
char buf[200];
in = fopen("in_.txt", "r')

out = fopen(out._txt", "w'")

fscanf(in, "WIF|%Li:%li/%i", &, &11, &12, &j);
fprintfCout, "%liz%i:%.21R\n", 11, j, d);

9000000:13:28.33

ignore next character

fgetc(in); =

C for Programmers

fgets(buf, sizeof(buf), in);
fputs(buf, out);

\ © Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk

in input file (newline?)

read next line, or next
199 characters,
whichever is less

write that line to the output file (null terminator
provided by fgets tells fputs how long the line was)

Slide No. 15

Example

fgets Stop
Conditions

The example program above shows fscanT reading a double, two long ints
and an int from the file “in.txt”. The double is separated from the first long
int by a vertical bar “|”, the two long ints are separated from one another by a
7, while'the fong int is separated from the int by “/".

When output to the file “out:txt” viarthe Fpr intF routine, thefirsts-long int, int
and double are separated by “:” characters.

The next call is to fgetc which reads one single character from the input stream.
This'assumes there is a newline character immediately after the “.... 68000/13”
information'which we'have just read. This‘newline character.is-discarded.
Normally we would have said

ch = fgetc(in);

but here there seems no paint assigning the newline character to anything since
we're really not that interested in it.

Whyall this fuss over a simple newline character? The fgets routine reads
everything up.until the next newline character. " If we do not discard the one at the
end of the line, fgets will immediately find it and read an empty line.

fgets will stop reading characters if it encounters end of file, “\n” or it reads 199
characters (it is careful to leave room for the null terminator) from the file into the
buffer “buf’. A null terminator is placed immediately after the last character read.

These characters are then written to the output file via the fputs routine.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C

281

C for Programmers

0 1994/1997 - Cheltenham Computer Training

-

» The Standard Library also allows binary files to

Binary Files \

be manipulated

— “b” must be added into the fopen options
Character translation is disabled

Random access becomes easier
Finding the end of file can become more difficult
Data is read and written in blocks

siz
siz
int
Ion
voi
int
int

e_t fread(void* p, size_t size, size_t n, FILE* stream);
e_t fwrite(const void* p, size_t size, size_t n, FILE* stream);

fseek(FILE* stream, long offset, int whence);
g ftell (FILE* stream);
d rewind(FILE* stream);

fgetpos(FILE* stream, fpos_t* pos);
fsetpos(FILE* stream, const fpos_t* pos);

o

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17 /

Binary Files

Thus far we have examined text files, i.e. the characters contained within each file
consist entirely of ASCII (or EBCDIC) characters. Thus the file contents may be
examined, edited, printed etc.

Storing, say; a double'as ASCII text can be rather inefficient, consider storing the
characters “3.1415926535890" (that's. 15 characters) in a file. .Then some other
character, perhaps space or newline would be needed to separate this from the
next number. That pushes the total to 16 bytes. Storing the double itself would
only cost 8'bytes. Storing another double next to it would be another 8 bytes. No
separator is required since we know the exact size of-each double.

This would be called a “binary file” since on opening the file we would see not
recognizable characters but a collection of bits making up our double. In fact we
would see 8-characters corresponding to the'8 bytes.in the'double. These
characters would appear. almost random and would almost certainly not be
readable in.a “human” sense.

The double containing pi could be written to a binary file as follows:

double pi = 3.1415926535890;
FTLE* out_stream;

out_stream = fopen(Tout.bin™, “wb™);
fwrite(&pi, sizeof(double), 1, out_stream);

The normal checking of the return value from fopen, which is necessary with
binary files too, has been omitted for brevity.

SAMPLE ONLY NOT TO BE USED FOR TRAINING

O Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

282

Handling Files in C

0 1994/1997 - Cheltenham Computer Training

Binary Files (Continued)

fopen “wb”

The Control Z
Problem

The “wb” option to Fopen puts the stream into “binary” write mode. This is very
important, because there are a number of significant changes in the way the
various routines work with binary files. Fortunately these changes are subtle and
we just go ahead and write the program without needing to worry about them.
Well, mostly.

The first change in the behavior of the routines concerns the “Control Z problem”.
When MS-DOS was invented, someone decided to place a special marker at the
end of each file. The marker chosen was Control-Z (whose ASCII value is 26).
Writing a byte containing 26 to a file is no problem. Reading a byte containing 26
back again is a problem. If in text mode, the 26 will appear as end of file, fgetc
will return EOF and you will not be able to read any further. It is therefore very
important that you read binary files in binary mode. If you read a binary file in
text mode you will get some small percentage of the way through the file, find a
26, and inexplicably stop.

Since MS-DOS had an influence on the design of Windows 95, NT and OS/2 they
all share this problem, even though no one actuall