
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

The message immediately below only applies to people viewing this sample live from our Internet site

ARE YOU VIEWING THIS PAGE LIVE ON THE INTERNET?
If so you may want to cancel the current operation and download this file, then view it off-line.

If you have installed the Adobe Acrobat Reader this will install an Internet browser plug-in that allows you
to view Adobe Acrobat files on-line. To inhibit the Acrobat plug-in and download the file (as opposed to

viewing it), then click on the URL link again using the RIGHT mouse button, not the usual left hand button.
This will display a pop-up menu allowing you to download this file.

PREVIEW SAMPLE ONLY
NOT TO BE USED FOR TRAINING

 Cheltenham Computer Training 1997

PLEASE SHOW THIS SAMPLE TO
YOUR TRAINING DEPARTMENT

OUR COURSEWARE COULD SAVE THEM A LOT OF TIME AND EXPENSE!

 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

Courseware preview, terms and conditions
- Please read this first

• This freely available version of the training courseware is for preview/evaluation purposes only
and must NOT be used for training purposes. Viewing of this courseware indicates your
acceptance of these restrictions and any violation will be prosecuted to the full extent of local
law. All material contained on this site is copyrighted by Cheltenham Computer Training. This
material must not be altered or copied in any way.

Tel: +44 (0)1242 227200
Fax: +44 (0)1242 253200
Email sales@ccttrain.demon.co.uk
http://www.cctglobal.com/

 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

What sort of printer are you using?
This sample version contains a watermark which should print out in light grey behind the text and
graphics displayed.

For best results print this sample using a postscript printer. Some laser printers will print the
watermark as solid black which will make the sample hard to read. Consult your technical
department and you may find that you can adjust your printer driver so that it prints the
watermark correctly (i.e. as light grey). If your printer is unable to print the watermark correctly,
then be assured that the non-sample version of the course does not contain the watermark!

 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

ENJOY ...
After previewing this courseware, please let us know what you think!
(email to feedback@ccttrain.demon.co.uk). We value your feedback!

 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/ E&OE

For the latest pricing and discount information, please ring Cheltenham Computer
Training on +44 (0)1242 227200 or visit our Web site prices page at:
http://www.cctglobal.com/prices.html

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

C Programming

Cheltenham Computer Training
Crescent House
24 Lansdown Crescent Lane
Cheltenham
Gloucestershire
GL50 2LD
United Kingdom

Tel: +44 (0)1242 227200
Fax: +44 (0)1242 253200
Email: sales@ccttrain.demon.co.uk
http://www.cctglobal.com/

 Cheltenham Computer Training 1994/1997
 This print version  Aug-98

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

PLEASE NOTE:
All reasonable precautions have been taken in the preparation of this document, including both technical and non-technical
proofing. Cheltenham Computer Training and any staff delivering this course on their behalf assume no responsibility for any
errors or omissions. No warranties are made, expressed or implied with regard to these notes. Cheltenham Computer
Training shall not be responsible for any direct, incidental or consequential damages arising from the use of any material
contained in this document. E&OE. All trade marks acknowledged.

If you find any errors in these training modules, please alert your tutor. Whilst every effort is made to eradicate typing or
technical mistakes, we apologize for any errors you may detect. All courses are updated on a regular basis, so your feedback
is both valued by us and may well be of benefit to future delegates using this document.

No part of this document may be copied without written permission from Cheltenham Computer Training
 Cheltenham Computer Training 1994/1997 (This print version  Aug-98)

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

TO COMPLY WITH YOUR LICENSING AGREEMENT, PLEASE COMPLETE THE DETAILS BELOW

Name of organization using this site license _______________________

Site License Number ___
If no site license number appears, please ask your tutor to supply it and enter it above.

Site License Location/Address __________________________________

A site license number should appear above. If it does not, or to check licensing details, please contact Cheltenham Computer Training.

This training manual has been reproduced in accordance with the site license agreement between Cheltenham Computer Training and the
organization to whom the site license is issued. This training manual is provided to you as a delegate/student on a course for reference
purposes only. No part of this training manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, photocopying, mechanical, recording or otherwise, without the prior permission of the copyright owner.

 Cheltenham Computer Training 1997 Crescent House, 24 Lansdown Crescent Lane, Cheltenham, Gloucestershire, GL50 2LD, UK.
Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

CONTENTS

INTRODUCTION...1

WELCOME TO C ...2
Target Audience ..2
Expected Knowledge..2
Advantageous Knowledge ..2

COURSE OBJECTIVES ..3
PRACTICAL EXERCISES ...4
FEATURES OF C ..5

High Level Assembler ..5
(Processor) Speed Comes First! ...5
Systems Programming..5
Portability ...5
Write Only Reputation ...5

THE HISTORY OF C...6
Brian Kernighan, Dennis Ritchie ...6
Standardization ...7
ANSI..7
ISO..7

STANDARD C VS. K&R C...8
A C PROGRAM ...9

#include...9
Comments..9
main...9
Braces ...9
printf ..9
\n...9
return ..9

THE FORMAT OF C..10
Semicolons ..10
Free Format ..10
Case Sensitivity ...10
Random Behavior ..10

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

ANOTHER EXAMPLE ...11
int ...11
scanf...11
printf ..11
Expressions ...11

VARIABLES ..12
Declaring Variables...12
Valid Names ..12
Capital Letters...12

PRINTF AND SCANF ...13
printf ..13
scanf...13
&...13

INTEGER TYPES IN C...14
limits.h..14
Different Integers ..14
unsigned..14
%hi ...14

INTEGER EXAMPLE ...15
INT_MIN, INT_MAX ..15

CHARACTER EXAMPLE..16
char...16
CHAR_MIN, CHAR_MAX..16
Arithmetic With char ...16
%c vs %i..16

INTEGERS WITH DIFFERENT BASES ...17
Decimal, Octal and Hexadecimal ..17
%d ...17
%o ...17
%x ...17
%X ...17

REAL TYPES IN C ...18
float.h ..18
float...18
double ..18
long double ..18

REAL EXAMPLE ..19
%lf ...19
%le ...19
%lg ...19
%7.2lf ..19
%.2le...19
%.4lg...19

CONSTANTS ...20
Typed Constants ..20

WARNING! ...21
NAMED CONSTANTS ...22
const...22
Lvalues and Rvalues ..22

PREPROCESSOR CONSTANTS ...23
TAKE CARE WITH PRINTF AND SCANF!...24

Incorrect Format Specifiers ...24

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

INTRODUCTION PRACTICAL EXERCISES ...27

INTRODUCTION SOLUTIONS..29

OPERATORS IN C...33

OPERATORS IN C ..34
ARITHMETIC OPERATORS ...35
+, -, *, /...35
%..35

USING ARITHMETIC OPERATORS ...36
THE CAST OPERATOR ...37
INCREMENT AND DECREMENT...38
PREFIX AND POSTFIX ..39

Prefix ++, -- ..39
Postfix ++, --...39
Registers..39

TRUTH IN C..40
True...40
False ...40
Testing Truth ...40

COMPARISON OPERATORS...41
LOGICAL OPERATORS ...42

And, Or, Not ..42
LOGICAL OPERATOR GUARANTEES..43

C Guarantees...43
and Truth Table ...43
or Truth Table ...43

WARNING! ...44
Parentheses ...44

BITWISE OPERATORS ..45
& vs && ..45
| vs || ..45
^..45
Truth Tables For Bitwise Operators...45

BITWISE EXAMPLE..46
Arithmetic Results of Shifting...46
Use unsigned When Shifting Right...46

ASSIGNMENT ...47
Assignment Uses Registers...47

WARNING! ...48
Test for Equality vs. Assignment ..48

OTHER ASSIGNMENT OPERATORS ...49
+=, -=, *=, /=, %= etc..49

SIZEOF OPERATOR ...50
CONDITIONAL EXPRESSION OPERATOR..51

Conditional expression vs. if/then/else ...51
PRECEDENCE OF OPERATORS ..52
ASSOCIATIVITY OF OPERATORS...53

Left to Right Associativity..53
Right to Left Associativity..53

PRECEDENCE/ASSOCIATIVITY TABLE ..54

OPERATORS IN C PRACTICAL EXERCISES...57

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

OPERATORS IN C SOLUTIONS..59

CONTROL FLOW ...63

CONTROL FLOW ...64
DECISIONS IF THEN ..65
WARNING! ...66

Avoid Spurious Semicolons After if..66
IF THEN ELSE ...67
NESTING IFS ..68

Where Does else Belong? ...68
SWITCH ..69
switch vs. if/then/else..69

MORE ABOUT SWITCH...70
switch Less Flexible Than if/then/else...70

A SWITCH EXAMPLE..71
Twelve Days of Christmas..71

WHILE LOOP ...72
(ANOTHER) SEMICOLON WARNING!..73

Avoid Semicolons After while ...73
Flushing Input ...73

WHILE, NOT UNTIL! ..74
There Are Only “While” Conditions in C...74

DO WHILE ..75
FOR LOOP ...76
for And while Compared ..76

FOR IS NOT UNTIL EITHER! ...77
C Has While Conditions, Not Until Conditions ..77

STEPPING WITH FOR ...78
math.h ..78

EXTENDING THE FOR LOOP..79
Infinite Loops ..79

BREAK ..80
break is Really Goto! ..80
break, switch and Loops..80

CONTINUE ...81
continue is Really Goto...81
continue, switch and Loops ...81

SUMMARY..82

CONTROL FLOW PRACTICAL EXERCISES..83

CONTROL FLOW SOLUTIONS ..87

FUNCTIONS ...95

FUNCTIONS ..96
THE RULES ..97
WRITING A FUNCTION - EXAMPLE ...98

Return Type ...98
Function Name ..98
Parameters ..98
Return Value..98

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

CALLING A FUNCTION - EXAMPLE ...99
Prototype...99
Call ...99
Ignoring the Return ...99

CALLING A FUNCTION - DISASTER! ...100
Missing Prototypes ..100

PROTOTYPES..101
When a Prototype is Missing..101

PROTOTYPING IS NOT OPTIONAL...102
Calling Standard Library Functions ..102

WRITING PROTOTYPES ...103
Convert The Function Header Into The Prototype..103
Added Documentation ...103

TAKE CARE WITH SEMICOLONS ..104
Avoid Semicolons After The Function Header..104

EXAMPLE PROTOTYPES...105
EXAMPLE CALLS ..106
RULES OF VISIBILITY ..107

C is a Block Structured Language..107
CALL BY VALUE ...108
CALL BY VALUE - EXAMPLE ...109
C AND THE STACK..110
STACK EXAMPLE ..111
STORAGE ...112

Code Segment..112
Stack..112
Data Segment ..112
Heap..112

AUTO ..113
Stack Variables are “Automatic”...113
Stack Variables are Initially Random...113
Performance ..113

STATIC ..114
static Variables are Permanent...114
static Variables are Initialized..114
static Variables Have Local Scope ...114

REGISTER ...115
register Variables are Initially Random...115
Slowing Code Down...115

GLOBAL VARIABLES...116
Global Variables are Initialized...116

FUNCTIONS PRACTICAL EXERCISES ...119

FUNCTIONS SOLUTIONS..121

POINTERS..127

POINTERS...128
POINTERS - WHY?..129
DECLARING POINTERS ..130
EXAMPLE POINTER DECLARATIONS...131

Pointers Have Different Types ...131
Positioning the “*” ...131

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

THE “&” OPERATOR ...132
Pointers Are Really Just Numbers..132
Printing Pointers ...132

RULES..133
Assigning Addresses ..133

THE “*” OPERATOR ...134
WRITING DOWN POINTERS ...135
INITIALIZATION WARNING!...136

Always Initialize Pointers ..136
INITIALIZE POINTERS!...137

Understanding Initialization ..137
NULL ...138

NULL and Zero..138
A WORLD OF DIFFERENCE!...139

What is Pointed to vs the Pointer Itself ..139
FILL IN THE GAPS ...140
TYPE MISMATCH..141
CALL BY VALUE - REMINDER..142
CALL BY REFERENCE ..143
POINTERS TO POINTERS ..144

POINTERS PRACTICAL EXERCISES ..147

POINTERS SOLUTIONS...151

ARRAYS IN C...155

ARRAYS IN C..156
DECLARING ARRAYS ..157
EXAMPLES ...158

Initializing Arrays..158
ACCESSING ELEMENTS ...159

Numbering Starts at Zero...159
ARRAY NAMES...160

A Pointer to the Start ...160
Cannot Assign to an Array...160

PASSING ARRAYS TO FUNCTIONS ..161
Bounds Checking Within Functions ...161

EXAMPLE ...162
A Pointer is Passed..162
Bounds Checking...162

USING POINTERS ..163
Addition With Pointers...163

POINTERS GO BACKWARDS TOO ...164
Subtraction From Pointers...164

POINTERS MAY BE SUBTRACTED...165
USING POINTERS - EXAMPLE...166
* AND ++...167

In “*p++” Which Operator is Done First?..167
(*p)++...167
*++p ...167

WHICH NOTATION?..168
Use What is Easiest! ..168

STRINGS ..169

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Character Arrays vs. Strings..170
Null Added Automatically..170
Excluding Null...170

PRINTING STRINGS ...171
printf “%s” Format Specifier...171

NULL REALLY DOES MARK THE END! ...172
ASSIGNING TO STRINGS ..173
POINTING TO STRINGS ..174

Strings May be Stored in the Data Segment ...174
MULTIDIMENSIONAL ARRAYS ...177
REVIEW ...178

ARRAYS PRACTICAL EXERCISES..181

ARRAYS SOLUTIONS ..185

STRUCTURES IN C...197

STRUCTURES IN C...198
CONCEPTS ...199
SETTING UP THE TEMPLATE ..200

Structures vs. Arrays..200
CREATING INSTANCES ..201

Instance? ...201
INITIALIZING INSTANCES ..202
STRUCTURES WITHIN STRUCTURES ...203

Reminder - Avoid Leading Zeros..203
ACCESSING MEMBERS ..204

Accessing Members Which are Arrays ...204
Accessing Members Which are Structures..204

UNUSUAL PROPERTIES ..205
Common Features Between Arrays and Structures...205
Differences Between Arrays and Structures ...205

INSTANCES MAY BE ASSIGNED..206
Cannot Assign Arrays ..206
Can Assign Structures Containing Arrays ..206

PASSING INSTANCES TO FUNCTIONS ..207
Pass by Value or Pass by Reference?...207

POINTERS TO STRUCTURES ...208
WHY (*P).NAME?...209

A New Operator...209
USING P->NAME ...210
PASS BY REFERENCE - WARNING...211
const to the Rescue!..211

RETURNING STRUCTURE INSTANCES ...212
LINKED LISTS...213

A Recursive Template? ..213
EXAMPLE ...214

Creating a List...214
PRINTING THE LIST...215
SUMMARY..217

STRUCTURES PRACTICAL EXERCISES..219

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

STRUCTURES SOLUTIONS...223

READING C DECLARATIONS ..233

READING C DECLARATIONS..234
INTRODUCTION ..235
SOAC ...236
TYPEDEF...245
SUMMARY..252

READING C DECLARATIONS PRACTICAL EXERCISES ..253

READING C DECLARATIONS SOLUTIONS...255

HANDLING FILES IN C..261

HANDLING FILES IN C...262
INTRODUCTION ..263

The Standard Library...263
STREAMS ...264
stdin, stdout and stderr..264

WHAT IS A STREAM?...265
Fast Programs Deal with Slow Hardware ..265
Caches and Streams...265

WHY STDOUT AND STDERR?..266
STDIN IS LINE BUFFERED...268

Signaling End of File...268
int not char ...268

OPENING FILES...269
The Stream Type..269

DEALING WITH ERRORS ..270
What Went Wrong?..270

FILE ACCESS PROBLEM...271
DISPLAYING A FILE...272

Reading the Pathname but Avoiding Overflow ...272
The Program’s Return Code ..272

EXAMPLE - COPYING FILES ...273
Reading and Writing Files ...273
Closing files...273
Transferring the data...273
Blissful Ignorance of Hidden Buffers ...274
Cleaning up ...274
Program’s Return Code ...274

CONVENIENCE PROBLEM ..275
Typing Pathnames ...275
No Command Line Interface ..275

ACCESSING THE COMMAND LINE ..276
argc...276
argv...276

USEFUL ROUTINES..278
fscanf ..278
fgets...278
fprintf ..279
fputs...279

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

fgets Stop Conditions...280
BINARY FILES ..281
fopen “wb” ...282
The Control Z Problem ..282
The Newline Problem...283
The Movement Problem ...284
Moving Around Files ...284
fsetpos vs. fseek ..284

SUMMARY..286

HANDLING FILES IN C PRACTICAL EXERCISES..287

HANDLING FILES IN C SOLUTIONS ..289

MISCELLANEOUS THINGS ..301

MISCELLANEOUS THINGS..302
UNIONS..303

Size of struct vs. Size of union ..303
REMEMBERING...304

A Member to Record the Type..304
ENUMERATED TYPES ..306
USING DIFFERENT CONSTANTS ...307

Printing enums..307
THE PREPROCESSOR ...308
INCLUDING FILES ...309
PATHNAMES...310

Finding #include Files ..310
PREPROCESSOR CONSTANTS ...311
#if ...311
#endif ..311
#define ..311
#undef ..311

AVOID TEMPTATION! ...312
PREPROCESSOR MACROS ..313
A DEBUGGING AID...315
WORKING WITH LARGE PROJECTS ..316
DATA SHARING EXAMPLE ...317

Functions are Global and Sharable ...317
DATA HIDING EXAMPLE ...318
static Before Globals ..318
Errors at Link Time ...318

DISASTER! ...319
Inconsistencies Between Modules ..319

USE HEADER FILES ...320
GETTING IT RIGHT..321

Place Externs in the Header ..321
BE AS LAZY AS POSSIBLE ..322
SUMMARY..323

MISCELLANEOUS THINGS PRACTICAL EXERCISES ..325

MISCELLANEOUS THINGS SOLUTIONS...327

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

C AND THE HEAP...329

C AND THE HEAP..330
WHAT IS THE HEAP? ...331

The Parts of an Executing Program ...331
Stack..332
Heap and Stack “in Opposition” ...332

HOW MUCH MEMORY?...333
Simple Operating Systems..333
Advanced Operating Systems...333
Future Operating Systems..333

DYNAMIC ARRAYS ...334
USING DYNAMIC ARRAYS...335

One Pointer per Dynamic Array ..335
Calculating the Storage Requirement ..335

USING DYNAMIC ARRAYS (CONTINUED) ..336
Insufficient Storage..336
Changing the Array Size ..336
When realloc Succeeds ...336
Maintain as Few Pointers as Possible..337
Requests Potentially Ignored ...337
Releasing the Storage ..337

CALLOC/MALLOC EXAMPLE ...338
REALLOC EXAMPLE ...339
REALLOC CAN DO IT ALL ..340
realloc can Replace malloc ...340
realloc can Replace free ..340

ALLOCATING ARRAYS OF ARRAYS ..341
Pointers Access Fine with Dynamic Arrays..341
Pointers to Pointers are not Good with Arrays of Arrays ...342
Use Pointers to Arrays...342

DYNAMIC DATA STRUCTURES...343
LINKING THE LIST ..344
SUMMARY..345

C AND THE HEAP PRACTICAL EXERCISES...347

C AND THE HEAP SOLUTIONS..349

APPENDICES ...353

PRECEDENCE AND ASSOCIATIVITY OF C OPERATORS: ..354
SUMMARY OF C DATA TYPES..355
MAXIMA AND MINIMA FOR C TYPES ...356
PRINTF FORMAT SPECIFIERS..357
TABLE OF ESCAPE SEQUENCES ..358
ASCII TABLE ..359

BIBLIOGRAPHY ...361

The C Puzzle Book...361
The C Programming Language 2nd edition..361
The C Standard Library ...361
C Traps and Pitfalls...361

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 1
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

2 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

C Programming

Welcome to C!

Welcome to C

Target
Audience

This course is intended for people with previous programming experience with
another programming language. It does not matter what the programming
language is (or was). It could be a high level language like Pascal, FORTRAN,
BASIC, COBOL, etc. Alternatively it could be an assembler, 6502 assembler, Z80
assembler etc.

Expected
Knowledge

You are expected to understand the basics of programming:
• What a variable is
• The difference between a variable and a constant
• The idea of a decision (“if it is raining, then I need an umbrella, else I need

sunblock”)
• The concept of a loop

Advantageous
Knowledge

It would be an advantage to understand:
• Arrays, data structures which contain a number of slots of the same type. For

example an array of 100 exam marks, 1 each for 100 students.
• Records, data structures which contain a number of slots of different types.

For example a patient in database maintained by a local surgery.
It is not a problem if you do not understand these last two concepts since they are
covered in the course.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 3
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Course Objectives

§ Be able to read and write C programs

§ Understand all C language constructs

§ Be able to use pointers

§ Have a good overview of the Standard Library

§ Be aware of some of C’s traps and pitfalls

Course Objectives

Obviously in order to be a competent C programmer you must be able to write C
programs. There are many examples throughout the notes and there are
practical exercises for you to complete.

The course discusses all of the C language constructs. Since C is such a small
language there aren’t that many of them. There will be no dark or hidden corners
of the language left after you have completed the course.

Being able to use pointers is something that is absolutely essential for a C
programmer. You may not know what a pointer is now, but you will by the end of
the course.

Having an understanding of the Standard Library is also important to a C
programmer. The Standard Library is a toolkit of routines which if weren’t
provided, you’d have to invent. In order to use what is provided you need to know
its there - why spend a day inventing a screwdriver if there is one already in your
toolkit.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

4 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Practical Exercises

§ Practical exercises are a very important part of
the course

§ An opportunity to experience some of the traps
first hand!

§ Solutions are provided, discuss these amongst
yourselves and/or with the tutor

§ If you get stuck, ask

§ If you can’t understand one of the solutions, ask

§ If you have an alternative solution, say

Practical Exercises

Writing C is
Important!

There are a large number of practical exercises associated with this course. This
is because, as will become apparent, there are things that can go wrong when
you write code. The exercises provide you with an opportunity to “go wrong”. By
making mistakes first hand (and with an instructor never too far away) you can
avoid these mistakes in the future.

Solutions to the practical exercises are provided for you to refer to. It is not
considered “cheating” for you to use these solutions. They are provided for a
number of reasons:

• You may just be stuck and need a “kick start”. The first few lines of a solution
may give you the start you need.

• The solution may be radically different to your own, exposing you to
alternative coding styles and strategies.

You may think your own solution is better than the one provided. Occasionally
the solutions use one line of code where three would be clearer. This doesn’t
make the one line “better”, it just shows you how it can be done.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 5
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Features of C

§ C can be thought of as a “high level assembler”

§ Designed for maximum processor speed

§ Safety a definite second!

§ THE system programming language

§ (Reasonably) portable

§ Has a “write only” reputation

Features of C

High Level
Assembler

Programmers coming to C from high level languages like Pascal, BASIC etc. are
usually surprised by how “low level” C is. It does very little for you, if you want it
done, it expects you to write the code yourself. C is really little more than an
assembler with a few high level features. You will see this as we progress
through the course.

(Processor)
Speed Comes
First!

The reason C exists is to be fast! The execution speed of your program is
everything to C. Note that this does not mean the development speed is high. In
fact, almost the opposite is true. In order to run your program as quickly as
possible C throws away all the features that make your program “safe”. C is often
described as a “racing car without seat belts”. Built for ultimate speed, people are
badly hurt if there is a crash.

Systems
Programming

C is the systems programming language to use. Everything uses it, UNIX,
Windows 3.1, Windows 95, NT. Very often it is the first language to be
supported. When Microsoft first invented Windows years back, they produced a
C interface with a promise of a COBOL interface to follow. They did so much work
on the C interface that we’re still waiting for the COBOL version.

Portability One thing you are probably aware of is that assembler is not portable. Although
a Pascal program will run more or less the same anywhere, an assembler
program will not. If C is nothing more than an assembler, that must imply its
portability is just about zero. This depends entirely on how the C is written. It can
be written to work specifically on one processor and one machine. Alternatively,
providing a few rules are observed, a C program can be as portable as anything
written in any other language.

Write Only
Reputation

C has a fearsome reputation as a “write only” language. In other words it is
possible to write code that is impossible to read. Unfortunately some people take
this as a challenge.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

6 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

History of C

§ Developed by Brian Kernighan and Dennis
Ritchie of AT&T Bell Labs in 1972

§ In 1983 the American National Standards Institute
began the standardisation process

§ In 1989 the International Standards Organisation
continued the standardisation process

§ In 1990 a standard was finalised, known simply
as “Standard C”

§ Everything before this is known as “K&R C”

The History of C

Brian
Kernighan,
Dennis Ritchie

C was invented primarily by Brian Kernighan and Dennis Ritchie working at AT&T
Bell Labs in the United States. So the story goes, they used to play an “asteroids”
game on the company mainframe. Unfortunately the performance of the machine
left a lot to be desired. With the power of a 386 and around 100 users, they found
they did not have sufficient control over the “spaceship”. They were usually
destroyed quickly by passing asteroids.

Taking this rather personally, they decided to re-implement the game on a DEC
PDP-7 which was sitting idle in the office. Unfortunately this PDP-7 had no
operating system. Thus they set about writing one.

The operating system became a larger project than the asteroids game. Some
time later they decided to port it to a DEC PDP-11. This was a mammoth task,
since everything was hand-crafted in assembler.

The decision was made to re-code the operating system in a high level language,
so it would be more portable between different types of machines. All that would
be necessary would be to implement a compiler on each new machine, then
compile the operating system.

The language that was chosen was to be a variant of another language in use at
the time, called B. B is a word oriented language ideally suited to the PDP-7, but
its facilities were not powerful enough to take advantage of the PDP-11 instruction
set. Thus a new language, C, was invented.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 7
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

The History of C

Standardization C turned out to be very popular and by the early 1980s hundreds of
implementations were being used by a rapidly growing community of
programmers. It was time to standardize the language.

ANSI In America, the responsibility for standardizing languages is that of the American
National Standards Institute, or ANSI. The name of the ANSI authorized
committee that developed the standard for C was X3J11. The language is now
defined by ANSI Standard X3.159-1989.

ISO In the International arena, the International Standards Organization, or ISO, is
responsible for standardizing computer languages. ISO formed the technical
committee JTC1/SC22/WG14 to review the work of X3J11. Currently the ISO
standard for C, ISO 9889:1990, is essentially identical to X3.159. The Standards
differ only in format and in the numbering of the sections. The wording differs in
a few places, but there are no substantive changes to the language definition.

The ISO C Standard is thus the final authority on what constitutes the C
programming language. It is referred to from this point on as just “The Standard”.
What went before, i.e. C as defined by Brian Kernighan and Dennis Ritchie is
known as “K&R C”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

8 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Standard C vs K&R C

§ Parameter type checking added

§ Proper floating point support added

§ Standard Library covered too

§ Many “grey areas” addressed

§ New features added

§ Standard C is now the choice

§ All modern C compilers are Standard C

§ The course discusses Standard C

Standard C vs. K&R C

The C language has benefited enormously from the standardization processes.
As a result it is much more usable than what went before. In K&R C there was no
mechanism for checking parameters passed to functions. Neither the number,
nor the types of the parameters were checked. As a programmer, if you were
ever so reckless as to call any function anywhere you were totally responsible for
reading the manual and ensuring the call was correct. In fact a separate utility,
called lint, was written to do this.

Floating point calculations were always somewhat of a joke in K&R C. All
calculations were carried out using a data type called double. This is despite
there being provision for smaller floating point data type called float. Being
smaller, floats were supposed to offer faster processing, however, converting
them to double and back often took longer!

Although there had been an emerging Standard Library (a collection of routines
provided with C) there was nothing standard about what it contained. The same
routine would have different names. Sometimes the same routine worked in
different ways.

Since Standard C is many times more usable than its predecessor, Standard C
and not K&R C, is discussed on this course.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 9
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

A C Program

#include <stdio.h> /* comment */

int main(void)
{

printf("Hello\n");
printf("Welcome to the Course!\n");

return 0;
}

Hello
Welcome to the Course!

tells compiler about standard input and output functions (i.e. printf + others)

main function

“begin”

“end”

flag success
to operating
system

A C Program

#include The #include directive instructs the C Preprocessor (a non interactive editor
which will be discussed later) to find the text file “stdio.h”. The name itself
means “standard input and output” and the “.h” means it is a header file rather
than a C source file (which have the “.c” suffix). It is a text file and may be viewed
with any text editor.

Comments Comments are placed within /* and */ character sequences and may span any
number of lines.

main The main function is most important. This defines the point at which your
program starts to execute. If you do not write a main function your program will
not run (it will have no starting point). In fact, it won’t even compile.

Braces C uses the brace character “{” to mean “begin” and “}” to mean “end”. They are
much easier to type and, after a while, a lot easier to read.

printf The printf function is the standard way of producing output. The function is
defined within the Standard Library, thus it will always be there and always work
in the same way.

\n The sequence of two characters “\” followed by “n” is how C handles new lines.
When printed it causes the cursor to move to the start of the next line.

return return causes the value, here 0, to be passed back to the operating system.
How the operating system handles this information is up to it. MS-DOS, for
instance, stores it in the ERRORLEVEL variable. The UNIX Bourne and Korn
shells store it in a temporary variable, $?, which may be used within shell scripts.
“Tradition” says that 0 means success. A value of 1, 2, 3 etc. indicates failure.
All operating systems support values up to 255. Some support values up to
65535, although if portability is important to you, only values of 0 through 255
should be used.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

10 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

The Format of C

§ Statements are terminated with semicolons

§ Indentation is ignored by the compiler

§ C is case sensitive - all keywords and Standard
Library functions are lowercase

§ Strings are placed in double quotes

§ Newlines are handled via \n

§ Programs are capable of flagging success or
error, those forgetting to do so have one or other
chosen randomly!

The Format of C

Semicolons Semicolons are very important in C. They form a statement terminator - they tell
the compiler where one statement ends and the next one begins. If you fail to
place one after each statement, you will get compilation errors.

Free Format C is a free format language. This is the up-side of having to use semicolons
everywhere. There is no problem breaking a statement over two lines - all you
need do is not place a semicolon in the middle of it (where you wouldn’t have
anyway). The spaces and tabs that were so carefully placed in the example
program are ignored by the compiler. Indentation is entirely optional, but should
be used to make the program more readable.

Case Sensitivity C is a case sensitive language. Although int compiles, “Int”, “INT” or any other
variation will not. All of the 40 or so C keywords are lowercase. All of the several
hundred functions in the Standard Library are lowercase.

Random
Behavior

Having stated that main is to return an integer to the operating system, forgetting
to do so (either by saying return only or by omitting the return entirely) would
cause a random integer to be returned to the operating system. This random
value could be zero (success) in which case your program may randomly
succeed. More likely is a non zero value which would randomly indicate failure.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 11
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Another Example

#include <stdio.h>

int main(void)
{

int a, b;

printf("Enter two numbers: ");
scanf("%i %i", &a, &b);

printf("%i - %i = %i\n", a, b, a - b);

return 0;
}

create two integer
variables, “a” and “b”

read two integer
numbers into “a”

and “b”

write “a”, “b” and “a-b”
in the format specified

Enter two numbers: 21 17
21 - 17 = 4

Another Example

int The int keyword, seen before when defining the return type for main, is used to
create integer variables. Here two are created, the first “a”, the second called “b”.

scanf The scanf function is the “opposite” of printf. Whereas printf produces
output on the screen, scanf reads from the keyboard. The sequence “%i”
instructs scanf to read an integer from the keyboard. Because “%i %i” is used
two integers will be read. The first value typed placed into the variable “a”, the
second into the variable “b”.

The space between the two “%i”s in “%i %i” is important: it instructs scanf that
the two numbers typed at the keyboard may be separated by spaces. If “%i,%i”
had been used instead the user would have been forced to type a comma
between the two numbers.

printf This example shows that printf and scanf share the same format specifiers.
When presented with “%i” they both handle integers. scanf, because it is a
reading function, reads integers from the keyboard. printf, because it is a
writing function, writes integers to the screen.

Expressions Note that C is quite happy to calculate “a-b” and print it out as an integer value. It
would have been possible, but unnecessary, to create another variable “c”, assign
it the value of “a-b” and print out the value of “c”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

12 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Variables

§ Variables must be declared before use
immediately after “{”

§ Valid characters are letters, digits and “_”

§ First character cannot be a digit

§ 31 characters recognised for local variables
(more can be used, but are ignored)

§ Some implementations recognise only 6
characters in global variables (and function
names)!

§ Upper and lower case letters are distinct

Variables

Declaring
Variables

In C, all variables must be declared before use. This is not like FORTRAN, which
if it comes across a variable it has never encountered before, declares it and
gives it a type based on its name. In C, you the programmer must declare all
variables and give each one a type (and preferably an initializing value).

Valid Names Only letters, digits and the underscore character may be validly used in variable
names. The first character of a variable may be a letter or an underscore,
although The Standard says to avoid the use of underscores as the first letter.
Thus the variable names “temp_in_celsius”, “index32” and “sine_value” are all
valid, while “32index”, “temp-in-celsius” and “sine$value” are not. Using variable
name like “_sine” would be frowned upon, although not syntactically invalid.

Variable names may be quite long, with the compiler sorting through the first 31
characters. Names may be longer than this, but there must be a difference within
the first 31 characters.

A few implementations (fortunately) require distinctions in global variables (which
we haven’t seen how to declare yet) and function names to occur within the first 6
characters.

Capital Letters Capital letters may be used in variable names if desired. They are usually used
as an alternative to the underscore character, thus “temp_in_celcius” could be
written as “tempInCelsius”. This naming style has become quite popular in recent
years and the underscore has fallen into disuse.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 13
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

printf and scanf

§ printf writes integer values to screen when %i
is used

§ scanf reads integer values from the keyboard
when %i is used

§ “&” VERY important with scanf (required to
change the parameter, this will be investigated
later) - absence will make program very ill

§ “&” not necessary with printf because current
value of parameter is used

printf and scanf

printf The printf function writes output to the screen. When it meets the format
specifier %i, an integer is output.

scanf The scanf function reads input from the keyboard. When it meets the format
specifier %i the program waits for the user to type an integer.

& The “&” is very important with scanf. It allows it to change the variable in
question. Thus in:

scanf("%i", &j)

the “&” allows the variable “j” to be changed. Without this rather mysterious
character, C prevents scanf from altering “j” and it would retain the random
value it had previously (unless you’d remembered to initialize it).

Since printf does not need to change the value of any variable it prints, it does
not need any “&” signs. Thus if “j” contains 15, after executing the statement:

printf("%i", j);

we would confidently expect 15 in the variable because printf would have been
incapable of altering it.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

14 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

Integer Types in C

§ C supports different kinds of integers

§ maxima and minima defined in “limits.h”

type format bytes minimum maximum
char %c 1 CHAR_MIN CHAR_MAX

signed char %c 1 SCHAR_MIN SCHAR_MAX

unsigned char %c 1 0 UCHAR_MAX

short [int] %hi 2 SHRT_MIN SHRT_MAX

unsigned short %hu 2 0 USHRT_MAX

int %i 2 or 4 INT_MIN INT_MAX

unsigned int %u 2 or 4 0 UINT_MAX

long [int] %li 4 LONG_MIN LONG_MAX

unsigned long %lu 4 0 ULONG_MAX

Integer Types in C

limits.h This is the second standard header file we have met. This contains the definition
of a number of constants giving the maximum and minimum sizes of the various
kinds of integers. It is a text file and may be viewed with any text editor.

Different
Integers

C supports integers of different sizes. The words short and long reflect the
amount of memory allocated. A short integer theoretically occupies less
memory than a long integer.

If you have a requirement to store a “small” number you could declare a short
and sit back in the knowledge you were perhaps using less memory than for an
int. Conversely a “large” value would require a long. It uses more memory,
but your program could cope with very large values indeed.

The problem is that the terms “small number” and “large value” are rather
meaningless. Suffice to say that SHRT_MAX is very often around 32,767 and
LONG_MAX very often around 2,147,483,647. Obviously these aren’t the only
possible values, otherwise we wouldn’t need the constants.

The most important thing to notice is that the size of int is either 2 or 4 bytes.
Thus we cannot say, for a particular implementation, whether the largest value an
integer may hold will be 32 thousand or 2 thousand million. For this reason, truly
portable programs never use int, only short or long.

unsigned The unsigned keyword causes all the available bits to be used to store the
number - rather than setting aside the top bit for the sign. This means an
unsigned’s greatest value may be twice as large as that of an int. Once
unsigned is used, negative numbers cannot be stored, only zero and positive
ones.

%hi The “h” by the way is supposed to stand for “half” since a short is sometimes
half the size of an int (on machines with a 2 byte short and a 4 byte int).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 15
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Integer Example

#include <stdio.h>
#include <limits.h>

int main(void)
{

unsigned long big = ULONG_MAX;

printf("minimum int = %i, ", INT_MIN);
printf("maximum int = %i\n", INT_MAX);
printf("maximum unsigned = %u\n", UINT_MAX);
printf("maximum long int = %li\n", LONG_MAX);
printf("maximum unsigned long = %lu\n", big);

return 0;
} minimum int = -32768, maximum int = 32767

maximum unsigned = 65535
maximum long int = 2147483647
maximum unsigned long = 4294967295

Integer Example

INT_MIN,
INT_MAX

The output of the program shows the code was run on a machine where an int
was 16 bits, 2 bytes in size. Thus the largest value is 32767. It can also be seen
the maximum value of an unsigned int is exactly twice that, at 65535.

Similarly the maximum value of an unsigned long int is exactly twice that of
the maximum value of a signed long int.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

16 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Character Example

#include <stdio.h>
#include <limits.h>

int main(void)
{

char lower_a = 'a';
char lower_m = 'm';

printf("minimum char = %i, ", CHAR_MIN);
printf("maximum char = %i\n", CHAR_MAX);

printf("after '%c' comes '%c'\n", lower_a, lower_a + 1);
printf("uppercase is '%c'\n", lower_m - 'a' + 'A');

return 0;
} minimum char = 0, maximum char = 255

after 'a' comes 'b'
uppercase is 'M'

Note: print integer
value of character

Character Example

char C has the char data type for dealing with characters. Characters values are
formed by placing the required value in single quotes. Thus:

char lower_a = 'a';

places the ASCII value of lowercase “a”, 97, into the variable “lower_a”. When
this value of 97 is printed using %c, it is converted back into lowercase “a”. If this
were run on an EBCDIC machine the value stored would be different, but would
be converted so that “a” would appear on the output.

CHAR_MIN,
CHAR_MAX

These two constants give the maximum and minimum values of characters.
Since char is guaranteed to be 1 byte you may feel these values are always
predictable at 0 and 255. However, C does not define whether char is signed or
unsigned. Thus the minimum value of a char could be -128, the maximum value
+127.

Arithmetic With
char

The program shows the compiler is happy to do arithmetic with characters, for
instance:

lower_a + 1

which yields 97 + 1, i.e. 98. This prints out as the value of lowercase “b” (one
character immediately beyond lowercase “a”). The calculation:

lower_m - 'a' + 'A'

which gives rise to “M” would produce different (probably meaningless) results on
an EBCDIC machine.

%c vs %i Although you will notice here that char may be printed using %i, do not think this
works with other types. You could not print an int or a short using %li.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 17
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Integers With Different Bases

§ It is possible to work in octal (base 8) and
hexadecimal (base 16)

#include <stdio.h>

int main(void)
{

int dec = 20, oct = 020, hex = 0x20;

printf("dec=%d, oct=%d, hex=%d\n", dec, oct, hex);
printf("dec=%d, oct=%o, hex=%x\n", dec, oct, hex);

return 0;
}

dec=20, oct=16, hex=32
dec=20, oct=20, hex=20

zero puts compiler
into octal mode!

zero “x” puts
compiler into
hexadecimal

mode

Integers With Different Bases

Decimal, Octal
and
Hexadecimal

C does not require you to work in decimal (base 10) all the time. If it is more
convenient you may use octal or hexadecimal numbers. You may even mix them
together in the same calculation.

Specifying octal constants is done by placing a leading zero before a number. So
although 8 is a perfectly valid decimal eight, 08 is an invalid sequence. The
leading zero places the compiler in octal mode but 8 is not a valid octal digit.
This causes confusion (but only momentary) especially when programming with
dates.

Specifying zero followed by “x” places the compiler into hexadecimal mode. Now
the letters “a”, “b”, “c”, “d”, “e” and “f” may be used to represent the numbers 10
though 15. The case is unimportant, so 0x15AE, 0x15aE and 0x15ae represent
the same number as does 0X15AE.

%d Causes an integer to be printed in decimal notation, this is effectively equivalent to
%i

%o Causes an integer to be printed in octal notation.

%x Causes an integer to be printed in hexadecimal notation, “abcdef” are used.

%X Causes an integer to be printed in hexadecimal notation, “ABCDEF” are used.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

18 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Real Types In C

§ C supports different kinds of reals

§ maxima and minima are defined in “float.h”

type format bytes minimum maximum
float %f %e %g 4 FLT_MIN FLT_MAX
double %lf %le %lg 8 DBL_MIN DBL_MAX
long double %Lf %Le %Lg 10 LDBL_MIN LDBL_MAX

Real Types In C

float.h This is the third standard header file seen and contains only constants relating to
C’s floating point types. As can be seen here, maximum and minimum values are
defined, but there are other useful things too. There are constants representing
the accuracy of each of the three types.

float This is the smallest and least accurate of C’s floating point data types.
Nonetheless it is still good for around 6 decimal places of accuracy. Calculations
using float are faster, but less accurate. It is relatively easy to overflow or
underflow a float since there is comparatively little storage available. A typical
minimum value is 10-38, a typical maximum value 10+38.

double This is C’s mid-sized floating point data type. Calculations using double are
slower than those using float, but more accurate. A double is good for around
12 decimal places. Because there is more storage available (twice as much as
for a float) the maximum and minimum values are larger. Typically 10+308 or
even 10+1000.

long double This is C’s largest floating point data type. Calculations using long double are
the slowest of all floating point types but are the most accurate. A long double
can be good for around 18 decimal places. Without employing mathematical
“tricks” a long double stores the largest physical value C can handle. Some
implementations allow numbers up to 10+4000.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 19
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Real Example

#include <stdio.h>
#include <float.h>

int main(void)
{

double f = 3.1416, g = 1.2e-5, h = 5000000000.0;

printf("f=%lf\tg=%lf\th=%lf\n", f, g, h);
printf("f=%le\tg=%le\th=%le\n", f, g, h);
printf("f=%lg\tg=%lg\th=%lg\n", f, g, h);

printf("f=%7.2lf\tg=%.2le\th=%.4lg\n", f, g, h);

return 0;
} f=3.141600 g=0.000012 h=5000000000.000000

f=3.141600e+00 g=1.200000e-05 h=5.000000e+09
f=3.1416 g=1.2e-05 h=5e+09
f= 3.14 g=1.20e-05 h=5e+09

Real Example

%lf This format specifier causes printf to display 6 decimal places, regardless of
the magnitude of the number.

%le This format specifier still causes printf to display 6 decimal places, however,
the number is displayed in “exponential” notation. For instance 1.200000e-05
indicates that 1.2 must be multiplied by 10-5.

%lg As can be seen here, the “g” format specifier is probably the most useful. Only
“interesting” data is printed - excess unnecessary zeroes are dropped. Also the
number is printed in the shortest format possible. Thus rather than 0.000012 we
get the slightly more concise 1.2e-05.

%7.2lf The 7 indicates the total width of the number, the 2 indicates the desired number
of decimal places. Since “3.14” is only 4 characters wide and 7 was specified, 3
leading spaces are printed. Although it cannot be seen here, rounding is being
done. The value 3.148 would have appeared as 3.15.

%.2le This indicates 2 decimal places and exponential format.

%.4lg Indicates 4 decimal places (none are printed because they are all zero) and
shortest possible format.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

20 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Constants

§ Constants have types in C

§ Numbers containing “.” or “e” are double: 3.5,
1e-7, -1.29e15

§ For float constants append “F”: 3.5F, 1e-7F

§ For long double constants append “L”: -
1.29e15L, 1e-7L

§ Numbers without “.”, “e” or “F” are int, e.g.
10000, -35 (some compilers switch to long int if
the constant would overflow int)

§ For long int constants append “L”, e.g.
9000000L

Constants

Typed
Constants

When a variable is declared it is given a type. This type defines its size and how
it may be used. Similarly when a constant is specified the compiler gives it a
type. With variables the type is obvious from their declaration. Constants,
however, are not declared. Determining their type is not as straightforward.

The rules the compiler uses are outlined above. The constant “12”, for instance,
would be integer since it does not contain a “.”, “e” or an “F” to make it a floating
point type. The constant “12.” on the other hand would have type double.
“12.L” would have type long double whereas “12.F” would have type float.

Although “12.L” has type long double, “12L” has type long int.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 21
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Warning!

#include <stdio.h>

int main(void)
{

double f = 5000000000.0;
double g = 5000000000;

printf("f=%lf\n", f);
printf("g=%lf\n", g);

return 0;
}

f=5000000000.000000
g=705032704.000000

double precision constant
created because of “.”

constant is integer or long
integer but 2,147,483,647 is

the maximum!

OVERFLOW

Warning!

The program above shows one of the problems of not understanding the nature of
constants in C. Although the “.0” at the end of the 5000000000 would appear to
make little difference, its absence makes 5000000000 an integral type (as in the
case of the value which is assigned to “g”). Its presence (as in the case of the
value which is assigned to “f”) makes it a double.

The problem is that the largest value representable by most integers is around 2
thousand million, but this value is around 2½ times as large! The integer value
overflows and the overflowed value is assigned to g.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

22 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20

Named Constants

§ Named constants may be created using const

#include <stdio.h>

int main(void)
{

const long double pi = 3.141592653590L;
const int days_in_week = 7;
const sunday = 0;

days_in_week = 5;

return 0;
}

creates an
integer

constant

error!

Named Constants

const If the idea of full stops, “e”s, “F”s and “L”s making a difference to the type of your
constants is all a bit too arbitrary for you, C supports a const keyword which can
be used to create constants with types.

Using const the type is explicitly stated, except with const sunday where the
integer type is the default. This is consistent with existing rules, for instance
short really means short int, long really means long int.

Lvalues and
Rvalues

Once a constant has been created, it becomes an rvalue, i.e. it can only appear
on the right of “=”. Ordinary variables are lvalues, i.e. they can appear on the left
of “=”. The statement:

days_in_week = 5;

produces the rather unfriendly compiler message “invalid lvalue”. In other words
the value on the left hand side of the “=” is not an lvalue it is an rvalue.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 23
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21

Preprocessor Constants

§ Named constants may also be created using the
Preprocessor
– Needs to be in “search and replace” mode

– Historically these constants consist of capital letters

#include <stdio.h>

#define PI 3.141592653590L
#define DAYS_IN_WEEK 7
#define SUNDAY 0

int day = SUNDAY;
long flag = USE_API;

search for “PI”, replace with 3.1415....

“PI” is NOT substituted here

Note: no “=”
and no “;”

Preprocessor Constants

The preprocessor is a rather strange feature of C. It is a non interactive editor,
which has been placed on the “front” of the compiler. Thus the compiler never
sees the code you type, only the output of the preprocessor. This handles the
#include directives by physically inserting the named file into what the compiler
will eventually see.

As the preprocessor is an editor, it can perform search and replace. To put it in
this mode the #define command is used. The syntax is simply:

#define search_text replace_text

Only whole words are replaced (the preprocessor knows enough C syntax to
figure word boundaries). Quoted strings (i.e. everything within quotation marks)
are left alone.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

24 Introduction
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 22

Take Care With printf And scanf!

#include <stdio.h>

int main(void)
{

short a = 256, b = 10;

printf("Type a number: ");
scanf("%c", &a);

printf("a = %hi, b = %f\n", a, b);

return 0;
}

“%c” fills one byte
of “a” which is two

bytes in size

“%f” expects 4 byte
float in IEEE format,
“b” is 2 bytes and

NOT in IEEE format

Type a number: 1
a = 305 b = Floating support not loaded

Take Care With printf and scanf!

Incorrect
Format
Specifiers

One of the most common mistakes for newcomers to C is to use the wrong
format specifiers to printf and scanf. Unfortunately the compiler does not
usually check to see if these are correct (as far as the compiler is concerned, the
formatting string is just a string - as long as there are double quotes at the start
and end, the compiler is happy).

It is vitally important to match the correct format specifier with the type of the
item. The program above attempts to manipulate a 2 byte short by using %c
(which manipulates 1 byte chars).

The output, a=305 can just about be explained. The initial value of “a” is 256, in
bit terms this is:

0000 0001 0000 0000

When prompted, the user types 1. As printf is in character mode, it uses the
ASCII value of 1 i.e. 49. The bit pattern for this is:

0011 0001

This bit pattern is written into the first byte of a, but because the program was run
on a byte swapped machine the value appears to be written into the bottom 8 bits,
resulting in:

0000 0001 0011 0001

which is the bit pattern corresponding to 305.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction 25
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 23

Summary

§ K&R C vs Standard C

§ main, printf

§ Variables

§ Integer types

§ Real types

§ Constants

§ Named constants

§ Preprocessor constants

§ Take care with printf and scanf

Review Questions

1. What are the integer types?

2. What are the floating point types?

3. What format specifier would you use to read or write an unsigned long int?

4. If you made the assignment
char c = 'a';

then printed “c” as an integer value, what value would you see (providing the
program was running on an ASCII machine).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction - Exercises 27
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

28 Introduction - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: INTRO

1. Write a program in a file called “MAX.C” which prints the maximum and minimum values of an integer.
Use this to determine whether your compiler uses 16 or 32 bit integers.

2. Write a program in a file called “AREA.C” which reads a real number (you can choose between float,
double or long double) representing the radius of a circle. The program will then print out the area of
the circle using the formula: area = π r2

π to 13 decimal places is 3.1415926535890. The number of decimal places you use will depend upon
the use of float, double or long double in your program.

3. Cut and paste your area code into “CIRCUMF.C” and modify it to print the circumference using the
formula: circum = 2πr

4. When both of these programs are working try giving either one invalid input. What answers do you
see, “sensible” zeroes or random values?
What would you deduce scanf does when given invalid input?

5. Write a program “CASE” which reads an upper case character from the keyboard and prints it out in
lower case.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction - Solutions 29
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Introduction Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

30 Introduction - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. Write a program in a file called “MAX.C” which prints the maximum and minimum values of an integer.
Use this to determine whether your compiler uses 16 or 32 bit integers.

This task is made very easy by the constants defined in the header file “limits.h” discussed in the
chapter notes. If the output of the program is in the region of ±32 thousand then the compiler uses 16
bit integers. If the output is in the region of ±2 thousand million the compiler uses 32 bit integers.

#include <stdio.h>
#include <limits.h>

int main(void)
{

printf("minimum int = %i, ", INT_MIN);
printf("maximum int = %i\n", INT_MAX);

return 0;
}

2. Write a program in a file called “AREA.C” which reads a real number representing the radius of a circle.
The program will then print out the area of the circle using the formula: area = π r2

In the following code note:
• Long doubles are used for maximum accuracy
• Everything is initialized. This slows the program down slightly but does solve the problem of the user

typing invalid input (scanf bombs out, but the variable radius is left unchanged at 0.0)
• There is no C operator which will easily square the radius, leaving us to multiply the radius by itself
• The %.nLf in the printf allows the number of decimal places output to be specified

#include <stdio.h>

int main(void)
{

long double radius = 0.0L;
long double area = 0.0L;
const long double pi = 3.1415926353890L;

printf("please give the radius ");
scanf("%Lf", &radius);

area = pi * radius * radius;

printf("Area of circle with radius %.3Lf is %.12Lf\n", radius, area);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Introduction - Solutions 31
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

3. Cut and paste your area code into “CIRCUMF.C” and modify it to print the circumference using the
formula: circum = 2πr

The changes to the code above are trivial.

#include <stdio.h>

int main(void)
{

long double radius = 0.0L;
long double circumf = 0.0L;
const long double pi = 3.1415926353890L;

printf("please give the radius ");
scanf("%Lf", &radius);

circumf = 2.0L * pi * radius;

printf("Circumference of circle with radius %.3Lf is %.12Lf\n",
radius, circumf);

return 0;
}

4. When both of these programs are working try giving either one invalid input. What answers do you
see, “sensible” zeroes or random values?
What would you deduce scanf does when given invalid input?

When scanf fails to read input in the specified format it abandons processing leaving the variable
unchanged. Thus the output you see is entirely dependent upon how you have initialized the variable
“radius”. If it is not initialized its value is random, thus “area” and “circumf” will also be random.

5. Write a program “CASE” which reads an upper case character from the keyboard and prints it out in
lower case.

Rather than coding in the difference between 97 and 65 and subtracting this from the uppercase
character, get the compiler to do the hard work. Note that the only thing which causes printf to output a
character is %c, if %i had been used the output would have been the ASCII value of the character.

#include <stdio.h>

int main(void)
{

char ch;

printf("Please input a lowercase character ");
scanf("%c", &ch);
printf("the uppercase equivalent is '%c'\n", ch - 'a' + 'A');

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 33
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

34 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Operators in C

§ Arithmetic operators

§ Cast operator

§ Increment and Decrement

§ Bitwise operators

§ Comparison operators

§ Assignment operators

§ sizeof operator

§ Conditional expression operator

Operators in C

The aim of this chapter is to cover the full range of diverse operators available in
C. Operators dealing with pointers, arrays and structures will be left to later
chapters.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 35
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Arithmetic Operators

§ C supports the arithmetic operators:

+ addition

- subtraction
* multiplication
/ division
% modulo (remainder)

§ “%” may not be used with reals

Arithmetic Operators

+, -, *, / C provides the expected mathematical operators. There are no nasty surprises.
As might be expected, “+” and “-” may be used in a unary sense as follows:

x = +y;
or x = -y;

The first is rather a waste of time and is exactly equivalent to “x = y” The second
multiplies the value of “y” by -1 before assigning it to “x”.

% C provides a modulo, or “remainder after dividing by” operator. Thus 25/4 is 6,
25%4 is 1. This calculation only really makes sense with integer numbers where
there can be a remainder. When dividing floating point numbers there isn’t a
remainder, just a fraction. Hence this operator cannot be applied to reals.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

36 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Using Arithmetic Operators

§ The compiler uses the types of the operands to
determine how the calculation should be done

int main(void)
{

int i = 5, j = 4, k;
double f = 5.0, g = 4.0, h;

k = i / j;
h = f / g;
h = i / j;

return 0;
}

“i” and “j” are ints, integer
division is done, 1 is

assigned to “k”

“f” and “g” are double,
double division is done, 1.25

is assigned to “h”

integer division is still done,
despite “h” being double.
Value assigned is 1.00000

Using Arithmetic Operators

One operator “+” must add integers together and add reals together. It might
almost have been easier to provide two, then the programmer could carefully
choose whenever addition was performed. But why stop with two versions?
There are, after all, different kinds of integer and different kinds of real. Suddenly
we can see the need for many different “+” variations. Then there are the
numerous combinations of int and double, short and float etc. etc.

C gets around the problem of having many variations, by getting the “+” operator
to choose itself what sort of addition to perform. If “+” sees an integer on its left
and its right, integer addition is performed. With a real on the left and right, real
addition is performed instead.

This is also true for the other operators, “-”, “*” and “/”. The compiler examines
the types on either side of each operator and does whatever is appropriate. Note
that this is literally true: the compiler is only concerned with the types of the
operands. No account whatever is taken of the type being assigned to. Thus in
the example above:

h = i / j;

It is the types of “i” and “j” (int) cause integer division to be performed. The fact
that the result is being assigned to “h”, a double, has no influence at all.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 37
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

The Cast Operator

§ The cast operator temporarily changes the type
of a variable

int main(void)
{

int i = 5, j = 4;
double f;

f = (double)i / j;
f = i / (double)j;
f = (double)i / (double)j;
f = (double)(i / j);

return 0;
}

integer division is done here,
the result, 1, is changed to a

double, 1.00000

if either operand is a double,
the other is automatically

promoted

The Cast Operator

Clearly we face problems with assignments like:

f = i / j;

if the compiler is just going to proceed with integer division we would be forced to
declare some real variables, assign the integer values and divide the reals.

However, the compiler allows us to “change our mind” about the type of a variable
or expression. This is done with the cast operator. The cast operator temporarily
changes the type of the variable/expression it is applied to. Thus in:

f = i / j;

Integer division would normally be performed (since both “i” and “j” are integer).
However the cast:

f = (double)i / j;

causes the type of “i” to be temporarily changed to double. In effect 5 becomes
5.0. Now the compiler is faced with dividing a double by an integer. It
automatically promotes the integer “j” to a double (making it 4.0) and performs
division using double precision maths, yielding the answer 1.25.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

38 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Increment and Decrement

§ C has two special operators for adding and
subtracting one from a variable

++ increment

- - decrement

§ These may be either prefix (before the variable) or
postfix (after the variable):

int i = 5, j = 4;

i++;
--j;
++i;

“i” becomes 6

“j” becomes 3

“i” becomes 7

Increment and Decrement

C has two special, dedicated, operators which add one to and subtract one from a
variable. How is it a minimal language like C would bother with these operators?
They map directly into assembler. All machines support some form of “inc”
instruction which increments a location in memory by one. Similarly all machines
support some form of “dec” instruction which decrements a location in memory by
one. All that C is doing is mapping these instructions directly.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 39
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Prefix and Postfix

§ The prefix and postfix versions are different

#include <stdio.h>

int main(void)
{

int i, j = 5;

i = ++j;
printf("i=%d, j=%d\n", i, j);

j = 5;
i = j++;
printf("i=%d, j=%d\n", i, j);

return 0;
} i=6, j=6

i=5, j=6

equivalent to:
 1. j++;
 2. i = j;

equivalent to:
 1. i = j;
 2. j++;

Prefix and Postfix

The two versions of the ++ and -- operators, the prefix and postfix versions, are
different. Both will add one or subtract one regardless of how they are used, the
difference is in the assigned value.

Prefix ++, -- When the prefix operators are used, the increment or decrement happens first,
the changed value is then assigned. Thus with:

i = ++j;

The current value of “j”, i.e. 5 is changed and becomes 6. The 6 is copied across
the “=” into the variable “i”.

Postfix ++, -- With the postfix operators, the increment or decrement happens second. The
unchanged value is assigned, then the value changed. Thus with:

i = j++;

The current value of “j”, i.e. 5 is copied across the “=” into “i”. Then the value of
“j” is incremented becoming 6.

Registers What is actually happening here is that C is either using, or not using, a
temporary register to save the value. In the prefix case, “i = ++j”, the increment
is done and the value transferred. In the postfix case, “i = j++”, C loads the
current value (here “5”) into a handy register. The increment takes place (yielding
6), then C takes the value stored in the register, 5, and copies that into “i”. Thus
the increment does take place before the assignment.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

40 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

Truth in C

§ To understand C’s comparison operators (less
than, greater than, etc.) and the logical operators
(and, or, not) it is important to understand how C
regards truth

§ There is no boolean data type in C, integers are
used instead

§ The value of 0 (or 0.0) is false

§ Any other value, 1, -1, 0.3, -20.8, is true

if(32)
printf("this will always be printed\n");

if(0)
printf("this will never be printed\n");

Truth in C

C has a very straightforward approach to what is true and what is false.

True Any non zero value is true. Thus, 1 and -5 are both true, because both are non
zero. Similarly 0.01 is true because it, too, is non zero.

False Any zero value is false. Thus 0, +0, -0, 0.0 and 0.00 are all false.

Testing Truth Thus you can imagine that testing for truth is a very straightforward operation in
C. Load the value to be tested into a register and see if any of its bits are set. If
even a single bit is set, the value is immediately identified as true. If no bit is set
anywhere, the value is identified as false.

The example above does cheat a little by introducing the if statement before we
have seen it formally. However, you can see how simple the construct is:

if(condition)
statement-to-be-executed-if-condition-was-true ;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 41
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

Comparison Operators

§ C supports the comparison operators:

< less than

<= less than or equal to
> greater than
>= greater than or equal to
== is equal to
!= is not equal to

§ These all give 1 (non zero value, i.e. true) when
the comparison succeeds and 0 (i.e. false) when
the comparison fails

Comparison Operators

C supports a full set of comparison operators. Each one gives one of two values
to indicate success or failure. For instance in the following:

int i = 10, j, k;

j = i > 5;
k = i <= 1000;

The value 1, i.e. true, would be assigned to “j”. The value 0, i.e. false, would be
assigned to “k”.

Theoretically any arbitrary non zero integer value could be used to indicate
success. 27 for instance is non zero and would therefore “do”. However C
guarantees that 1 and only 1 will be used to indicate truth.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

42 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Logical Operators

§ C supports the logical operators:

&& and

|| or
! not

§ These also give 1 (non zero value, i.e. true) when
the condition succeeds and 0 (i.e. false) when the
condition fails

int i, j = 10, k = 28;

i = ((j > 5) && (k < 100)) || (k > 24);

Logical Operators

And, Or, Not C supports the expected logical operators “and”, “or” and “not”. Unfortunately
although the use of the words themselves might have been more preferable,
symbols “&&”, “||” and “!” are used instead.

C makes the same guarantees about these operators as it does for the
comparison operators, i.e. the result will only ever be 1 or 0.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 43
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Logical Operator Guarantees

§ C makes two important guarantees about the
evaluation of conditions

§ Evaluation is left to right

§ Evaluation is “short circuit”

if(i < 10 && a[i] > 0)
printf("%i\n", a[i]);

“i < 10” is evaluated first, if false the whole statement is
false (because false AND anything is false) thus “a[i] > 0”

would not be evaluated

Logical Operator Guarantees

C Guarantees C makes further guarantees about the logical operators. Not only will they
produce 1 or 0, they are will be evaluated in a well defined order. The left-most
condition is always evaluated first, even if the condition is more complicated, like:

if(a && b && c && d || e)

Here “a” will be evaluated first. If true, “b” will be evaluated. It true, “c” will be
evaluated and so on.

The next guarantee C makes is that as soon as it is decided whether a condition
is true or false, no further evaluation is done. Thus if “b” turned out to be false,
“c” and “d” would not be evaluated. The next thing evaluated would be “e”.

This is probably a good time to remind you about truth tables:

and Truth Table && false true or Truth Table || false true
false false false false false true
true false true true true true

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

44 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Warning!

§ Remember to use parentheses with conditions,
otherwise your program may not mean what you
think

int i = 10;

if(!i == 5)
printf("i is not equal to five\n");

else
printf("i is equal to five\n");

in this attempt to say “i not equal to five”, “!i”
is evaluated first. As “i” is 10, i.e. non zero,
i.e. true, “!i” must be false, i.e. zero. Zero is

compared with five

i is equal to five

Warning!

Parentheses An extra set of parentheses (round brackets) will always help to make code easier
to read and easier to understand. Remember that code is written once and
maintained thereafter. It will take only a couple of seconds to add in extra
parentheses, it may save several minutes (or perhaps even hours) of debugging
time.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 45
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

Bitwise Operators

§ C has the following bit operators which may only
be applied to integer types:

& bitwise and

| bitwise inclusive or
^ bitwise exclusive or
~ one’s compliment
>> right shift
<< left shift

Bitwise Operators

As Brian Kernighan and Dennis Ritchie needed to manipulate hardware registers
in their PDP-11, they needed the proper tools (i.e. bit manipulation operators) to
do it.

& vs && You will notice that the bitwise and, &, is related to the logical and, &&. As Brian
and Dennis were doing more bitwise manipulation than logical condition testing,
they reserved the single character for bitwise operation.

| vs || Again the bitwise (inclusive) or, |, is related to the logical or, ||.

^ A bitwise exclusive or is also provided.

Truth Tables
For Bitwise
Operators

or 0 1 and 0 1 xor 0 1
0 0 1 0 0 0 0 0 1
1 1 1 1 0 1 1 1 0

The ones compliment operator “~” flips all the bits in a value, so all 1s are turned
to 0s, while all 0s are turned to 1s.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

46 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Bitwise Example

#include <stdio.h>

int main(void)
{

short a = 0x6eb9;
short b = 0x5d27;
unsigned short c = 7097;

printf("0x%x, ", a & b);
printf("0x%x, ", a | b);
printf("0x%x\n", a ^ b);

printf("%u, ", c << 2);
printf("%u\n", c >> 1);

return 0;
}

0x4c21, 0x7fbf, 0x339e
28388, 3548

0x6eb9 0110 1110 1011 1001
0x5d27 0101 1101 0010 0111
0x4c21 0100 1100 0010 0001

0x6eb9 0110 1110 1011 1001
0x5d27 0101 1101 0010 0111
0x7fbf 0111 1111 1011 1111

0x6eb9 0110 1110 1011 1001
0x5d27 0101 1101 0010 0111
0x339e 0011 0011 1001 1110

 7097 0001 1011 1011 1001
28388 0110 1110 1110 0100

 7097 0001 1011 1011 1001
 3548 0000 1101 1101 1100

Bitwise Example

This example shows bitwise manipulation. short integers are used, because
these can be relied upon to be 16 bits in length. If int had been used, we may
have been manipulating 16 or 32 bits depending on machine and compiler.

Arithmetic
Results of
Shifting

Working in hexadecimal makes the first 3 examples somewhat easier to
understand. The reason why the 7097 is in decimal is to show that “c<<2”
multiplies the number by 4 (shifting one place left multiplies by 2, shifting two
places multiplies by 4), giving 28388. Shifting right by one divides the number by
2. Notice that the right-most bit is lost in this process. The bit cannot be
recovered, once gone it is gone forever (there is no access to the carry flag from
C). The missing bit represents the fraction (a half) truncated when integer
division is performed.

Use unsigned
When Shifting
Right

One important aspect of right shifting to understand is that if a signed type is right
shifted, the most significant bit is inserted. If an unsigned type is right shifted, 0s
are inserted. If you do the maths you’ll find this is correct. If you’re not expecting
it, however, it can be a bit of a surprise.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 47
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Assignment

§ Assignment is more flexible than might first
appear

§ An assigned value is always made available for
subsequent use

int i, j, k, l, m, n;

i = j = k = l = m = n = 22;

printf("%i\n", j = 93);

“n = 22” happens first, this
makes 22 available for
assignment to “m”. Assigning
22 to “m” makes 22 available
for assignment to “l” etc.

“j” is assigned 93, the 93 is then
made available to printf for
printing

Assignment

Assignment
Uses Registers

Here is another example of C using registers. Whenever a value is assigned in C,
the assigned value is left lying around in a handy register. This value in the
register may then be referred to subsequently, or merely overwritten by the next
statement.

Thus in the assignment above, 22 is placed both into “n” and into a machine
register. The value in the register is then assigned into “m”, and again into “l” etc.

With: printf("%i\n", j = 93);

93 is assigned to “j”, the value of 93 is placed in a register. The value saved in
the register is then printed via the “%i”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

48 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Warning!

§ One of the most frequent mistakes is to confuse
test for equality, “==”, with assignment, “=”

#include <stdio.h>

int main(void)
{

int i = 0;

if(i = 0)
printf("i is equal to zero\n");

else
printf("somehow i is not zero\n");

return 0;
}

somehow i is not zero

Warning!

Test for
Equality vs.
Assignment

A frequent mistake made by newcomers to C is to use assignment when test for
equality was intended. The example above shows this. Unfortunately it uses the
if then else construct to illustrate the point, something we haven’t formally covered
yet. However the construct is very straightforward, as can be seen.

Here “i” is initialized with the value of zero. The test isn’t really a test because it is
an assignment. The compiler overwrites the value stored in “i” with zero, this zero
is then saved in a handy machine register. It is this value, saved in the register,
that is tested. Since zero is always false, the else part of the construct is
executed. The program would have worked differently if the test had been written
“i == 0”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 49
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Other Assignment Operators

§ There is a family of assignment operators:

+= -= *= /= %=

&= |= ^=

<<= >>=

§ In each of these:

expression1 op= expression2

is equivalent to:

(expression1) = (expression1) op (expression2)

a += 27;

a = a + 27;

f /= 9.2;

f = f / 9.2;

i *= j + 2;

i = i * (j + 2);

Other Assignment Operators

+=, -=, *=, /=,
%= etc.

There is a whole family of assignment operators in C, not just “=”. They all look
rather unfamiliar and therefore rather frightening at first, but they really are very
straightforward. Take, for instance, the statement “a -= b”. All this means is “a
= a - b”. The only other thing to remember is that C evaluates the right hand
expression first, thus “a *= b + 7” definitely means “a = a * (b + 7)” and NOT “a
= a * b + 7”.

If they appear rather strange for a minimalist language like C, they used to make
a difference in the K&R days before compiler optimizers were written.

If you imagine the assembler statements produced by “a = a + 7”, these could be
as involved as “take value in ‘a’ and load into register”, “take value in register and
add 7”, “take value in register and load into ‘a’”. Whereas the statement “a += 7”
could just involve “take value in ‘a’ and add 7”.

Although there was a difference in the K&R days (otherwise these operators
would never have been invented) a modern optimizing compiler should produce
exactly the same code. Really these operators are maintained for backwards
compatibility.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

50 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

sizeof Operator

§ C has a mechanism for determining how many
bytes a variable occupies

#include <stdio.h>

int main(void)
{

long big;

printf("\"big\" is %u bytes\n", sizeof(big));
printf("a short is %u bytes\n", sizeof(short));
printf("a double is %u bytes\n", sizeof double);

return 0;
}

"big" is 4 bytes
a short is 2 bytes
a double is 8 bytes

sizeof Operator

The C Standard does not fix the size of its data types between implementations.
Thus it is possible to find one implementation using 16 bit ints and another
using 32 bit ints. It is also, theoretically, possible to find an implementation
using 64 bit long integers. Nothing in the language, or Standard, prevents this.

Since C makes it so difficult to know the size of things in advance, it compensates
by providing a built in operator sizeof which returns (usually as an unsigned
int) the number of bytes occupied by a data type or a variable.

You will notice from the example above that the parentheses are optional:

sizeof(double)
and

sizeof double
are equivalent.

Because sizeof is a keyword the parentheses are optional. sizeof is NOT a
Standard Library function.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 51
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Conditional Expression Operator

§ The conditional expression operator provides an
in-line if/then/else

§ If the first expression is true, the second is
evaluated

§ If the first expression is false, the third is
evaluated

int i, j = 100, k = -1;

i = (j > k) ? j : k;

int i, j = 100, k = -1;

i = (j < k) ? j : k;

if(j > k)
i = j;

else
i = k;

if(j < k)
i = j;

else
i = k;

Conditional Expression Operator

C provides a rather terse, ternary operator (i.e. one which takes 3 operands) as
an alternative to the if then else construct. It is rather like:

condition ? value-when-true : value-when-false

The condition is evaluated (same rules as before, zero false, everything else true).
If the condition were found to be true the value immediately after the “?” is used.
If the condition were false the value immediately after the “:” is used.

The types of the two expressions must be the same. It wouldn’t make much
sense to have one expression evaluating to a double while the other evaluates to
an unsigned char (though most compilers would do their best to cope).

Conditional expression vs. if/then/else
This is another of those C operators that you must take at face value and decide
whether to ever use it. If you feel if then else is clearer and more maintainable,
use it. One place where this operator is useful is with pluralisation, for example:

if(dir == 1)
printf("1 directory\n");

else
printf("%i directories\n", dir);

may be expressed as:

printf("%i director%s\n", (dir == 1) ? "y" : "ies");

It is a matter of personal choice as to whether you find this second form more
acceptable. Strings, printed with “%s”, will be covered later in the course.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

52 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Precedence of Operators

§ C treats operators with different importance,
known as precedence

§ There are 15 levels

§ In general, the unary operators have higher
precedence than binary operators

§ Parentheses can always be used to improve
clarity #include <stdio.h>

int main(void)
{

int j = 3 * 4 + 48 / 7;

printf("j = %i\n", j);

return 0;
} j = 18

Precedence of Operators

C assigns different “degrees of importance” or “precedence” to its 40 (or so)
operators. For instance the statement

3 * 4 + 48 / 7

could mean: ((3 * 4) + 48) / 7

or maybe: (3 * 4) + (48 / 7)

or maybe even: 3 * ((4 + 48) / 7)

In fact it means the second, “(3 * 4) + (48 / 7)” because C attaches more
importance to “*” and “/” than it does to “+”. Thus the multiplication and the
divide are done before the addition.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 53
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20

Associativity of Operators

§ For two operators of equal precedence (i.e. same
importance) a second rule, “associativity”, is
used

§ Associativity is either “left to right” (left operator
first) or “right to left” (right operator first)

#include <stdio.h>

int main(void)
{

int i = 6 * 4 / 7;

printf("i = %d\n", i);

return 0;
}

i = 3

Associativity of Operators

Precedence does not tell us all we need to know. Although “*” is more important
than “+”, what happens when two operators of equal precedence are used, like “*”
and “/” or “+” and “-”? In this case C resorts to a second rule, associativity.

Associativity is either “left to right” or “right to left”.

Left to Right
Associativity

This means the left most operator is done first, then the right.

Right to Left
Associativity

The right most operator is done first, then the left.

Thus, although “*” and “/” are of equal precedence in “6 * 4 / 7”, their
associativity is left to right. Thus “*” is done first. Hence “6 * 4” first giving 24,
next “24 / 7” = 3.

If you are wondering about an example of right to left associativity, consider:

a = b += c;

Here both “=” and “+=” have the same precedence but their associativity is right
to left. The right hand operator “+=” is done first. The value of “c” modifies “b”,
the modified value is then assigned to “a”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

54 Operators in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21

Precedence/Associativity Table

Operator Associativity
() [] -> . left to right

! ~ ++ -- - + (cast) * & sizeof right to left

* / % left to right

+ - left to right

<< >> left to right

< <= >= > left to right

== != left to right

& left to right

| left to right

^ left to right

&& left to right

|| left to right

?: right to left

= += -= *= /= %= etc right to left

, left to right

Precedence/Associativity Table

The table above shows the precedence and associativity of C’s operators. This
chapter has covered around 37 operators, the small percentage of remaining
ones are concerned with pointers, arrays, structures and calling functions.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C 55
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 22

Review

#include <stdio.h>

int main(void)
{

int i = 0, j, k = 7, m = 5, n;

j = m += 2;
printf("j = %d\n", j);

j = k++ > 7;
printf("j = %d\n", j);

j = i == 0 & k;
printf("j = %d\n", j);

n = !i > k >> 2;
printf("n = %d\n", n);

return 0;
}

Review

Consider what the output of the program would be if run? Check with your
colleagues and the instructor to see if you agree.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C - Exercises 57
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

58 Operators in C - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: OPERS

1. Write a program in “SUM.C” which reads two integers and prints out the sum, the difference and the
product. Divide them too, printing your answer to two decimal places. Also print the remainder after
the two numbers are divided.

Introduce a test to ensure that when dividing the numbers, the second number is not zero.

What happens when you add two numbers and the sum is too large to fit into the data type you are
using? Are there friendly error messages?

2. Cut and paste your “SUM.C” code into “BITOP.C”. This should also read two integers, but print the
result of bitwise anding, bitwise oring and bitwise exclusive oring. Then either use these two integers or
prompt for two more and print the first left-shifted by the second and the first right-shifted by the
second. You can choose whether to output any of these results as decimal, hexadecimal or octal.

What happens when a number is left shifted by zero? If a number is left shifted by -1, does that mean it
is right shifted by 1?

3. Write a program in a file called “VOL.C” which uses the area code from “AREA.C”. In addition to the
radius, it prompts for a height with which it calculates the volume of a cylinder. The formula is volume
= area * height.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C - Solutions 59
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Operators in C Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

60 Operators in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. Write a program in “SUM.C” which reads two integers and prints out the sum, the difference and the
product. Divide them too, printing your answer to two decimal places. Also print the remainder after
the two numbers are divided.

Introduce a test to ensure that when dividing the numbers, the second number is not zero.

A problem occurs when dividing the two integers since an answer to two decimal places is required, but
dividing two integers yields an integer. The solution is to cast one or other (or both) of the integers to a
double, so that double precision division is performed. The minor problem of how to print "%" is
overcome by placing “%%” within the string.

#include <stdio.h>

int main(void)
{

int first, second;

printf("enter two integers ");
scanf("%i %i", &first, &second);

printf("%i + %i = %i\n", first, second, first + second);
printf("%i - %i = %i\n", first, second, first - second);
printf("%i * %i = %i\n", first, second, first * second);

if(second != 0) {
printf("%i / %i = %.2lf\n", first, second,

(double)first / second);
printf("%i %% %i = %i\n", first, second,

first % second);
}

return 0;
}

What happens when you add two numbers and the sum is too large to fit into the data type you are
using? Are there friendly error messages?

C is particularly bad at detecting overflow or underflow. When two large numbers are entered the
addition and multiplication yield garbage.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Operators in C - Solutions 61
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

2. Cut and paste your “SUM.C” code into “BITOP.C”. This should also read two integers, but print the
result of bitwise anding, bitwise oring and bitwise exclusive oring. Then either use these two integers or
prompt for two more and print the first left-shifted by the second and the first right-shifted by the
second. You can choose whether to output the results as decimal, hexadecimal or octal.

#include <stdio.h>

int main(void)
{

int first, second;

printf("enter two integers ");
scanf("%i %i", &first, &second);

printf("%x & %x = %x\n", first, second, first & second);
printf("%x | %x = %x\n", first, second, first | second);
printf("%x ^ %x = %x\n", first, second, first ^ second);

printf("enter two more integers ");
scanf("%i %i", &first, &second);

printf("%i << %i = %i\n", first, second, first << second);
printf("%i >> %i = %i\n", first, second, first >> second);

return 0;
}

What happens when a number is left shifted by zero? If a number is left shifted by -1, does that mean it
is right shifted by 1?

When a number is shifted by zero, it should remain unchanged. The effects of shifting by negative
amounts are undefined.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

62 Operators in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

3. Write a program in a file called “VOL.C” which uses the area code from “AREA.C”. In addition to the
radius, it prompts for a height with which it calculates the volume of a cylinder. The formula is volume
= area * height.

Here notice how an especially long string may be broken over two lines, providing double quotes are
placed around each part of the string.

#include <stdio.h>

int main(void)
{

long double radius = 0.0L;
long double height = 0.0L;
long double volume = 0.0L;
const long double pi = 3.1415926353890L;

printf("please give the radius and height ");
scanf("%Lf %Lf", &radius, &height);

volume = pi * radius * radius * height;

printf("Volume of cylinder with radius %.3Lf "
"and height %.3Lf is %.12Lf\n",

radius, height, volume);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 63
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

64 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Control Flow

§ Decisions - if then else

§ More decisions - switch

§ Loops - while, do while, for
§ Keyword break
§ Keyword continue

Control Flow

This chapter covers all the decision making and looping constructs in C.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 65
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Decisions - if then

§ Parentheses surround the test

§ One statement becomes the “then part”

§ If more are required, braces must be used

scanf("%i", &i);

if(i > 0)
printf("a positive number was entered\n");

if(i < 0) {
printf("a negative number was entered\n");
i = -i;

}

Decisions if then

This formally introduces C’s if then construct which was seen a few times in the
previous chapter. The most important thing to remember is to surround the
condition with parentheses. These are mandatory rather than optional. Notice
there is no keyword then. It is implied by the sense of the statement.

If only one statement is to be executed, just write the statement, if many
statements are to be executed, use the begin and end braces “{” and “}” to group
the statements into a block.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

66 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Warning!

§ A semicolon after the condition forms a “do
nothing” statement

printf("input an integer: ");
scanf("%i", &j);

if(j > 0);
printf("a positive number was entered\n");

input an integer: -6

a positive number was entered

Warning!

Avoid Spurious
Semicolons
After if

Having become used to the idea of placing semicolon characters after each and
every statement in C, we start to see that the word “statement” is not as
straightforward as might appear.

A semicolon has been placed after the condition in the code above. The compiler
considers this placed for a reason and makes the semicolon the then part of the
construct. A “do nothing” or a “no op” statement is created (each machine has an
instruction causing it to wait for a machine cycle). Literally if “j” is greater than
zero, nothing will be done. After the machine cycle, the next statement is always
arrived at, regardless of the no op execution.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 67
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

if then else

§ An optional else may be added

§ One statement by default, if more are required,
braces must be used

if(i > 0)
printf("i is positive\n");

else
printf("i is negative\n");

if(i > 0)
printf("i is positive\n");

else {
printf("i is negative\n");
i = -i;

}

if then else

Optionally an else statement, which is executed if the condition is false, may be
added. Again, begin and end braces should be used to block together a more than
one statement.

You may wish to always use braces as in:

if(i > 0) {
printf("i is positive\n");

} else {
printf("i is negative\n");

}

This is perhaps a suitable point to mention the braces have no clear, fixed position in
C. Being a free format language you may feel happier with:

if(i > 0)
{

printf("i is positive\n");
}
else
{

printf("i is negative\n");
}

or:
if(i > 0)

{
printf("i is positive\n");
}

else
{
printf("i is negative\n");
}

All are acceptable to the compiler, i.e. the positioning of the braces makes no
difference at all.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

68 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Nesting ifs

§ else associates with the nearest if

int i = 100;

if(i > 0)
if(i > 1000)

printf("i is big\n");
else

printf("i is reasonable\n"); i is reasonable

int i = -20;

if(i > 0) {
if(i > 1000)

printf("i is big\n");
} else

printf("i is negative\n");
i is negative

Nesting ifs

Where Does
else Belong?

C, along with other high level languages, has a potential ambiguity with nested if
then else statements. This arises in trying to determine where an else clause
belongs. For instance, consider:

if it is a weekday
if it is raining catch the bus to work
else walk to work

Does this mean “if it is a weekday and it is not raining” walk to work, or does it
mean “if it is not a weekday” then walk to work. If the latter, we could end up
walking to work at weekends, whether or not it is raining.

C resolves this ambiguity by saying that all elses belong to the nearest if.
Applying these rules to the above would mean “if it is a weekday and it is not
raining” walk to work. Fortunately we will not end up walking to work at
weekends.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 69
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

switch

§ C supports a switch for multi-way decision
making

switch(c) {
 case 'a': case 'A':

printf("area = %.2f\n", r * r * pi);
break;

 case 'c': case 'C':
printf("circumference = %.2f\n", 2 * r * pi);
break;

 case 'q':
printf("quit option chosen\n");
break;

 default:
printf("unknown option chosen\n");
break;

}

switch

switch vs.
if/then/else

C supports a multi-way decision making construct called switch. The code
above is an alternative to the nested if then else construct:

if(c == 'a' || c == 'A')
printf("area = %.2f\n", r * r * pi);

else if(c == 'c' || c == 'C')
printf("circumference = %.2f\n", 2 * r * pi);

else if(c == 'q')
printf("quit option chosen\n");

else
printf("unknown option chosen\n");

The conditions may be placed in any order:

switch(c) {
 default:

printf("unknown option chosen\n");
break;

 case 'q':
printf("quit option chosen\n");
break;

 case 'c': case 'C':
printf("circumference = %.2f\n", 2 * r * pi);
break;

 case 'a': case 'A':
printf("area = %.2f\n", r * r * pi);
break;

}

Placing default first does not alter the behavior in any way.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

70 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

More About switch

§ Only integral constants may be tested

§ If no condition matches, the default is executed

§ If no default, nothing is done (not an error)

§ The break is important

float f;

switch(f) {
 case 2:

....

switch(i) {
 case 2 * j:

....

i = 3;

switch(i) {
 case 3: printf("i = 3\n");
 case 2: printf("i = 2\n");
 case 1: printf("i = 1\n");
}

i = 3
i = 2
i = 1

More About switch

switch Less
Flexible Than
if/then/else

The switch is actually a little less flexible than an if then else construct.
switch may only test integer types and not any of the reals, whereas

if(f == 0.0)
printf("f is zero\n");

is quite valid,

switch(f) {
 case 0.0:

printf("f is zero\n");
break;

}

will not compile. Also, the switch can test only against constants, not against
the values of other variables. Whereas

if(i == j)
printf("equal\n");

is valid:

switch(i) {
 case j:

printf("equal\n");
break;

}

is not.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 71
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

A switch Example

printf("On the ");
switch(i) {
 case 1: printf("1st"); break;
 case 2: printf("2nd"); break;
 case 3: printf("3rd"); break;
 default: printf("%ith", i); break;
}
printf(" day of Christmas my true love sent to me ");
switch(i) {
 case 12: printf("twelve lords a leaping, ");
 case 11: printf("eleven ladies dancing, ");
 case 10: printf("ten pipers piping, ");
 case 9: printf("nine drummers drumming, ");
 case 8: printf("eight maids a milking, ");
 case 7: printf("seven swans a swimming, ");
 case 6: printf("six geese a laying, ");
 case 5: printf("five gold rings, ");
 case 4: printf("four calling birds, ");
 case 3: printf("three French hens, ");
 case 2: printf("two turtle doves and ");
 case 1: printf("a partridge in a pear tree\n");
}

A switch Example

Twelve Days of
Christmas

This example shows the effects of the presence or absence of the break keyword
on two switch statements. With the first, only one statement in the switch will
be executed. For example, say “i” is set to 2, the first switch calls printf to
print “2nd”. The break is encountered causing the switch to finish and control
be transferred to the line:

printf("day of Christmas my true love sent to me");

Then the second switch is entered, with “i” still set to 2. The printf
corresponding to the “two turtle doves” is executed, but since there is no break,
the printf corresponding to the “partridge in the pear tree” is executed. The
absence of breaks in the second switch statement means that if “i” were, say,
10 then 10 printf statements would be executed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

72 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

while Loop

§ The simplest C loop is the while

§ Parentheses must surround the condition

§ One statement forms the body of the loop

§ Braces must be added if more statements are to
be executed

int j = 5;

while(j > 0)
printf("j = %i\n", j--);

j = 5
j = 4
j = 3
j = 2
j = 1

while(j > 0) {
printf("j = %i\n", j);
j--;

}

while Loop

C has three loops, while is the simplest of them all. It is given a condition (in
parentheses, just like with the if statement) which it evaluates. If the condition
evaluates to true (non zero, as seen before) the body of the loop is executed. The
condition is evaluated again, if still true, the body of the loop is executed again.
This continues until the condition finally evaluates to false. Then execution jumps
to the first statement that follows on after the loop.

Once again if more than one statement is required in the body of the loop, begin
and end braces must be used.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 73
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

(Another) Semicolon Warning!

§ A semicolon placed after the condition forms a
body that does nothing

int j = 5;

while(j > 0);
printf("j = %i\n", j--);

program disappears
into an infinite loop

• Sometimes an empty loop body is required

int c, j;

while(scanf("%i", &j) != 1)
while((c = getchar()) != '\n')

;

placing semicolon
on the line below

makes the
intention obvious

(Another) Semicolon Warning!

Avoid
Semicolons
After while

We have already seen that problems can arise if a semicolon is placed after an
if statement. A similar problem exists with loops, although it is more serious.
With if the no op statement is potentially executed only once. With a loop it
may be executed an infinite number of times. In the example above, instead of
the loop body being:

printf("j = %i\n", j--);

causing “j” to be decremented each time around the loop, the body becomes “do
nothing”. Thus “j” remains at 5. The program loops infinitely doing nothing. No
output is seen because the program is so busily “doing nothing” the printf
statement is never reached.

Flushing Input Occasionally doing nothing is exactly what we want. The practical exercises have
already illustrated that there is a problem with scanf buffering characters. These
characters may be thrown away with the while loop shown above. This employs
some of the features we investigated in the last chapter. When the value is
assigned to “c”, that value (saved in a register) may be tested against “\n”.

To be honest this scanf loop above leaves something to be desired. While
scanf is failing there is no indication that the user should type anything else (the
terminal seems to hang), scanf just waits for the next thing to be typed.
Perhaps a better construction would be:

printf("enter an integer: ");
while(scanf("%i", &j) != 1) {

while((ch = getchar()) != '\n')
;

printf("enter an integer: ");
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

74 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

while, Not Until!

§ Remember to get the condition the right way
around!

int j = 5;

printf("start\n");
while(j == 0)

printf("j = %i\n", j--);
printf("end\n");

user probably
intends “until j is

equal to zero”,
however this is NOT

the way to write it
start
end

while, Not Until!

There Are Only
“While”
Conditions in C

One important thing to realize is that all of C’s conditions are while conditions.
The loops are executed while the condition is true.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 75
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

do while

§ do while guarantees execution at least once

int j = 5;

printf("start\n");
do

printf("j = %i\n", j--);
while(j > 0);
printf("stop\n");

start
j = 5
j = 4
j = 3
j = 2
j = 1
stop

int j = -10;

printf("start\n");
do {

printf("j = %i\n", j);
j--;

} while(j > 0);
printf("stop\n");

start
j = -10
stop

do while

The do while loop in C is an “upside down” version of the while loop.
Whereas while has the condition followed by the body, do while has the body
followed by the condition. This means the body must be executed before the
condition is reached. Thus the body is guaranteed to be executed at least once.
If the condition is false the loop body is never executed again.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

76 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

for Loop

§ for encapsulates the essential elements of a
loop into one statement

for(initial-part; while-condition; update-part)
body;

int j;

for(j = 5; j > 0; j--)
printf("j = %i\n", j);

j = 5
j = 4
j = 3
j = 2
j = 1

for(j = 5; j > 0; j--) {
printf("j = %i ", j);
printf("%s\n", ((j%2)==0)?"even":"odd");

}

j = 5 odd
j = 4 even
j = 3 odd
j = 2 even
j = 1 odd

for Loop

The for loop is syntactically the most complicated of C’s 3 loops. Essentially
though, it is similar to the while loop, it even has a while type condition. The C
for loop is one of the most concise expressions of a loop available in any
language. It brings together the starting conditions, the loop condition and all
update statements that must be completed before the loop can be executed
again.

for And while
Compared

The construct:

for(initial-part; while-condition; update-part)
body;

is equivalent to:

initial-part;
while(while-condition) {

body;
update-part;

}

Essentially all you need is to remember the two semicolon characters that must
separate the three parts of the construct.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 77
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

for Is Not Until Either!

§ Remember to get the for condition the right way
around (it is really a while condition)

int j;

printf("start\n");
for(j = 5; j == 0; j--)

printf("j = %i\n", j);
printf("end\n");

user probably
intends “until j is

equal to zero”,
however this is NOT

the way to write it
either!

start
end

for Is Not Until Either!

C Has While
Conditions, Not
Until Conditions

This slide is here to remind you once again there are no “until” conditions in C.
Even though there are 3 kinds of loop, they all depend on while conditions - the
loops continue while the conditions are true NOT until they become false.

The loop in the program above never really gets started. “j” is initialized with 5,
then “j” is tested against zero. Since “j” is not zero, C jumps over the loop and
lands on the printf("end\n") statement.

One point worth making is that the for is a cousin of the while not a cousin of
the do while. Here we see, just like the while loop, the for loop body can
execute zero times. With the do while loop the body is guaranteed to execute
once.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

78 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Stepping With for

§ Unlike some languages, the for loop is not
restricted to stepping up or down by 1

#include <math.h>

int main(void)
{

double angle;

for(angle = 0.0; angle < 3.14159; angle += 0.2)
printf("sine of %.1lf is %.2lf\n",

angle, sin(angle));

return 0;
}

Stepping With for

Some languages, like Pascal and Ada, only allow for loops to step up or down by
one. If you want to step by 2 you end up having to use a while construct. There
is no similar restriction in C. It is possible to step up or down in whole or
fractional steps.

Here the use of += is illustrated to increment the variable “angle” by 0.2 each time
around the loop.

math.h This is the fourth Standard header file we have met. It contains declarations of
various mathematical functions, particularly the sine (sin) function which is used
in the loop.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 79
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Extending the for Loop

§ The initial and update parts may contain multiple
comma separated statements

int i, j, k;

for(i = 0, j = 5, k = -1; i < 10; i++, j++, k--)

§ The initial, condition and update parts may
contain no statements at all!

for(; i < 10; i++, j++, k--)

for(;i < 10;)

for(;;)

use of a while loop
would be clearer here!

creates an infinite loop

Extending the for Loop

The for loop would seem ideal only so long as one initial statement and one loop
update statement are required. If two or more should need executing it would
seem as though an alternative construct would be needed. However this is not
the case, using the special comma operator, several statements may be executed
in the initial and/or update parts of the loop.

The comma operator guarantees sequential execution of statements, thus “i = 0”
is guaranteed to be executed before “j = 5” which is guaranteed to be executed
before “k = -1”.

If you have no need for an initial or an update condition, leave the corresponding
part of the loop empty, but remember the semicolon. In the example above:

for(; i < 10;)

would probably be better replaced with:

while(i < 10)

Infinite Loops The strange looking construct:
for(;;)

creates an infinite loop and is read as “for ever”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

80 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

break

§ The break keyword forces immediate exit from
the nearest enclosing loop

§ Use in moderation!

for(;;) {
printf("type an int: ");
if(scanf("%i", &j) == 1)

break;
while((c = getchar()) != '\n')

;
}
printf("j = %i\n", j); type an int: an int

type an int: no
type an int: 16
j = 16

if scanf returns 1, jump
out of the loop

break

It must seem strange that C has a construct to deliberately create an infinite loop.
Such a loop would seem something to avoid at all costs! Nonetheless it is
possible to put infinite loops to work in C by jumping out of them. Any loop, no
matter what the condition, can be jumped out of using the C keyword break.

We saw the loop below earlier:

printf("enter an integer: ");
while(scanf("%i", &j) != 1) {

while((ch = getchar()) != '\n')
;

printf("enter an integer: ");
}

This loop has the printf repeated. If the printf were a more complicated
statement, prone to frequent change and the loop many hundreds of lines long, it
may be a problem keeping the two lines in step. The for(;;) loop addresses
this problem by having only one printf.

break is Really
Goto!

It doesn’t necessarily address the problem very well because it now uses the
equivalent of a goto statement!

The goto is the scourge of modern programming, because of its close relationship
some companies ban the use of break. If it is to be used at all, it should be used
in moderation, overuse is liable to create spaghetti.

break, switch
and Loops

This is exactly the same break keyword as used in the switch statement. If a
break is placed within a switch within a loop, the break forces an exit from the
switch and NOT the loop. There is no way to change this.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow 81
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

continue

§ The continue keyword forces the next iteration
of the nearest enclosing loop

§ Use in moderation!

for(j = 1; j <= 10; j++) {
if(j % 3 == 0)

continue;
printf("j = %i\n", j);

}

j = 1
j = 2
j = 4
j = 5
j = 7
j = 8
j = 10

if j is exactly divisible
by 3, skip

continue

Whereas break forces an immediate exit from the nearest enclosing loop the
continue keyword causes the next iteration of the loop. In the case of while
and do while loops, it jumps straight to the condition and re-evaluates it. In the
case of the for loop, it jumps onto the update part of the loop, executes that,
then re-evaluates the condition.

continue is
Really Goto

Statements applying to the use of break similarly apply to continue. It is just
another form of goto and should be used with care. Excessive use of continue
can lead to spaghetti instead of code. In fact the loop above could just as easily
be written as:

for(j = 1; j <= 10; j++)
if(j % 3 != 0)

printf("j = %i\n", j);

continue,
switch and
Loops

Whereas break has an effect on the switch statement, continue has no such
effect. Thus a continue placed within a switch within a loop would effect the
loop.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

82 Control Flow
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Summary

§ if (then) else - watch the semicolons

§ switch can test integer values

§ while, do while, for - watch the semicolons
again

§ break

§ continue

Summary

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow - Exercises 83
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

84 Control Flow - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: FLOW

1. Write a program in “QUANT.C” which “quantifies” numbers. Read an integer “x” and test it, producing
the following output:

x greater than or equal to 1000 print “hugely positive”
x from 999 to 100 (including 100) print “very positive”
x between 100 and 0 print “positive”
x exactly 0 print “zero”
x between 0 and -100 print “negative”
x from -100 to -999 (including -100) print “very negative”
x less than or equal to -1000 print “hugely negative”

Thus -10 would print “negative”, -100 “very negative” and 458 “very positive”.

2. Cut and paste your AREA, RADIUS and VOL programs into a file called “CIRC.C” which accepts four
options. The option ‘A’ calculates the area of a circle (prompting for the radius), the option ‘C’
calculates the circumference of a circle (prompting for the radius), the option ‘V’ calculates the volume
of a cylinder (prompting for the radius and height), while the option ‘Q’ quits the program.

The program should loop until the quit option is chosen.

3. Improve the error checking of your “CIRC” program such that the program will loop until the user enters
a valid real number.

4. Write a program in “POW.C” which reads two numbers, the first a real, the second an integer. The
program then outputs the first number raised to the power of the second.

Before you check, there is no C operator to raise one number to the power of another. You will have to
use a loop.

5. Write a program in “DRAWX.C” which draws an “x” of user specified height. If the user typed 7, the
following series of ‘*’ characters would be drawn (without the column and line numbers):

1 2 3 4 5 6 7
1 * *
2 * *
3 * *
4 *
5 * *
6 * *
7 * *

and if the user typed 6 would draw ‘*’ characters as follows:

1 2 3 4 5 6
1 * *
2 * *
3 * *
4 * *
5 * *
6 * *

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow - Exercises 85
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

6. Write a program in “BASES.C” which offers the user a choice of converting integers between octal,
decimal and hexadecimal. Prompt the user for either ‘o’, ‘d’ or ‘h’ and read the number in the chosen
format. Then prompt the user for the output format (again ‘o’, ‘d’ or ‘h’) and print the number out
accordingly.

A nice enhancement would be to offer the user only the different output formats, i.e. if ‘o’ is chosen and
an octal number read, the user is offered only ‘d’ and ‘h’ as output format.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow - Solutions 87
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Control Flow Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

88 Control Flow - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. Write a program in “QUANT.C” which “quantifies” numbers. Read an integer “x” and test it, producing
the following output:

x greater than or equal to 1000 print “hugely positive”
x from 999 to 100 (including 100) print “very positive”
x between 100 and 0 print “positive”
x exactly 0 print “zero”
x between 0 and -100 print “negative”
x from -100 to -999 (including -100) print “very negative”
x less than or equal to -1000 print “hugely negative”

Thus -10 would print “negative”, -100 “very negative” and 458 “very positive”.

In the following solution the words “very” and “hugely” are printed separately from “positive” and
“negative”.

#include <stdio.h>

int main(void)
{

int i;

printf("Enter an integer ");
scanf("%i", &i);

if(i >= 1000 || i <= -1000)
printf("hugely ");

else if(i >= 100 || i <= -100)
printf("very ");

if(i > 0)
printf("positive\n");

else if(i == 0)
printf("zero\n");

else if(i < 0)
printf("negative\n");

return 0;
}

2. Cut and paste your AREA, RADIUS and VOL programs into a file called “CIRC.C” which accepts four
options. The program should loop until the quit option is chosen.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow - Solutions 89
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

3. Improve the error checking of your “CIRC” program such that the program will loop until the user enters
a valid real number.

Notice the getchar loop to discard unread input. When the character is entered via getchar, or the real
number read via scanf, the return key is saved (it is buffered as we shall see in a later chapter).
Although this doesn’t cause a problem the first time through the loop, it does cause a problem the
second and subsequent times.

The value returned by scanf is important. When told to read one thing (as with “%Lf”) scanf returns one
on success, if the input is not in the correct format zero is returned. If this is the case, the getchar loop
is entered to discard this unwanted input.

#include <stdio.h>

int main(void)
{

int ch;
int still_going = 1;
long double radius = 0.0L;
long double answer = 0.0L;
long double height = 0.0L;
const long double pi = 3.1415926353890L;

while(still_going) {

printf("Area A\n"
 "Circumference C\n"
 "Volume V\n"
 "Quit Q\n\n"
 "Please choose ");

ch = getchar();

if(ch == 'A' || ch == 'C' || ch == 'V') {
do {

printf("please give the radius ");
while(getchar() != '\n')

;
}
while(scanf("%Lf", &radius) != 1);

}
if(ch == 'V') {

do {
printf("please give the height ");
while(getchar() != '\n')

;
}
while(scanf("%Lf", &height) != 1);

}
if(ch != 'A' && ch != 'C' && ch != 'V')

while(getchar() != '\n')
;

if(ch == 'A') {
answer = pi * radius * radius;
printf("Area of circle with radius %.3Lf is %.12Lf\n",

radius, answer);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

90 Control Flow - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

} else if(ch == 'C') {
answer = 2.0 * pi * radius;
printf("Circumference of circle with radius "

"%.3Lf is %.12Lf\n",
radius, answer);

} else if(ch == 'V') {
answer = pi * radius * radius * height;
printf("Volume of cylinder with radius "

"%.3Lf and height %.3Lf is %.12Lf\n",
radius, height, answer);

} else if(ch == 'Q')
still_going = 0;

else
printf("Unknown option '%c' ignored\n\n", ch);

}
return 0;

}

4. Write a program in “POW.C” which reads two numbers, the first a real, the second an integer. The
program then outputs the first number raised to the power of the second.

Careful consideration must be given to the initialization of “answer” and the loop condition “count < p” in
the program below. Initializing “answer” with zero and or a loop condition of “count <= p” would have
yielded very different (i.e. wrong) results.

#include <stdio.h>

int main(void)
{

int count = 1;
int p = 0;
double n = 0.0L;
long double answer = 0.0L;

printf("enter the number ");
scanf("%lf", &n);

printf("enter the power ");
scanf("%d", &p);

for(answer = n; count < p; count++)
answer = answer * n;

printf("%.3lf to the power of %d is %.9Lf\n", n, p, answer);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow - Solutions 91
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

5. Write a program in “DRAWX.C” which draws an “x” of user specified height.

Drawing the top left/bottom right diagonal is easy since ‘*’ occurs when the row and column numbers
are equal. For the other diagonal, ‘*’ occurs when the column number is equal to the height less the
row number plus one.

#include <stdio.h>

int main(void)
{

int height;
int row;
int column;

printf("Enter height of 'x' ");
scanf("%i", &height);

for(row = 1; row <= height; row++) {
for(column = 1; column <= height; column++) {

if(row == column || column == height - row + 1)
printf("*");

else
printf(" ");

}
printf("\n");

}

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

92 Control Flow - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

6. Write a program in “BASES.C” which offers the user a choice of converting integers between octal,
decimal and hexadecimal. Prompt the user for either ‘o’, ‘d’ or ‘h’ and read the number in the chosen
format. Then prompt the user for the output format (again ‘o’, ‘d’ or ‘h’) and print the number out
accordingly.

A nice enhancement would be to offer the user only the different output formats, i.e. if ‘o’ is chosen and
an octal number read, the user is offered only ‘d’ and ‘h’ as output format.

#include <stdio.h>

int main(void)
{

int input;
int i_option;
int o_option;
int keep_going;

do {
printf("Input options:\n"

"Octal input o\n"
"Decimal input d\n"
"Hexadecimal input x ");

i_option = getchar();

keep_going = 0;

switch(i_option) {
 case 'o':

printf("enter octal number ");
scanf("%o", &input);
break;

 case 'd':
printf("enter decimal number ");
scanf("%d", &input);
break;

 case 'x':
printf("enter hexadecimal number ");
scanf("%x", &input);
break;

 default:
 keep_going = 1;

break;
}
while(getchar() != '\n')

;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Control Flow - Solutions 93
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

} while(keep_going);

do {
if(i_option != 'o')

printf("\nOctal output o");

if(i_option != 'd')
printf("\nDecimal output d");

if(i_option != 'x')
printf("\nHexadecimal output x");

printf(" ");

o_option = getchar();
while(getchar() != '\n')

;

keep_going = 0;

switch(o_option) {
 case 'o':

printf("%o\n", input);
break;

 case 'd':
printf("%d\n", input);
break;

 case 'x':
printf("%x\n", input);
break;

 default:
 keep_going = 1;

break;
}

} while(keep_going);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 95
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

96 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Functions

§ Rules of functions

§ Examples - writing a function, calling a function

§ Function prototypes

§ Visibility

§ Call by value

§ The stack

§ auto, static and register

Functions

This chapter examines functions in C.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 97
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

The Rules

§ A function may accept as many parameters as it
needs, or no parameters (like main)

§ A function may return either one or no values

§ Variables declared inside a function are only
available to that function, unless explicitly
passed to another function

The Rules

Functions in C may take as many parameters as they need. An example of this is
printf which may take an arbitrary number of parameters, here 7:

printf("%i %.2lf %.2lg %c %u %o\n", j, f, g, c, pos, oct);

Alternatively functions may take no parameters at all, like main

int main(void)

A function may either return a value or not. In particular it may return ONE value
or not.

C is a block structured language and variables declared within a function block
may only be used within that block.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

98 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Writing a Function - Example

int print_table(double start, double end, double step)
{

double d;
int lines = 1;

printf("Celsius\tFarenheit\n");
for(d = start; d <= end; d += step, lines++)

printf("%.1lf\t%.1lf\n", d, d * 1.8 + 32);

return lines;
}

accept 3 doubles when called

this is the TYPE of the value handed back

this is the ACTUAL value handed back

Writing a Function - Example

There are a number of essential elements involved in writing functions:

Return Type If a function is to return a value, the value must have a type. The type of the
return value must be specified first.

Function Name Obviously each function must have a unique name to distinguish it from the other
functions in the program.

Parameters A type and a name must be given to each parameter.

Return Value If the function is to return a value, the actual value (corresponding to the type
already specified) must be passed back using the return keyword.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 99
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Calling a Function - Example

#include <stdio.h>

int print_table(double, double, double);

int main(void)
{

int how_many;
double end = 100.0;

how_many = print_table(1.0, end, 3);
print_table(end, 200, 15);

return 0;
}

IMPORTANT: this tells the compiler how print_table works

the compiler knows these
should be doubles and

converts them automatically

here the function’s return value is ignored - this
is ok, if you don’t want it, you don’t have to use it

Calling a Function - Example

There are a number of essential elements when calling functions:

Prototype A prototype informs the compiler how a function works. In this case:

int print_table(double, double, double);

tells the compiler that the print_table function accepts three doubles and returns
an integer.

Call The function is called (executed, run) by sending three parameters, as in:

print_table(1.0, end, 3);

even though the third parameter “3” is not of the correct type it is automatically
converted by the compiler. If necessary the returned value may be assigned to a
variable as in:

how_many = print_table(1.0, end, 3);

Ignoring the
Return

It is not necessary to use the returned value as in:

print_table(end, 200, 15);

any return value that is not used is discarded. Note that here the 200 and the 15
are automatically converted from int to double.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

100 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Calling a Function - Disaster!

#include <stdio.h>

int main(void)
{

int how_many;
double end = 100.0;

how_many = print_table(1.0, end, 3);
print_table(end, 200, 15);

return 0;
}

now the compiler does not know how the function works

the compiler does NOT
convert these ints to

doubles. The function
picks up doubles

anyway!

Calling a Function - Disaster!

Missing
Prototypes

The only difference between this and the previous example is the lack of the
prototype:

int print_table(double, double, double);

This missing line causes serious problems. Now the compiler does not have the
information it needs at the two points of call:

how_many = print_table(1.0, end, 3);
and

print_table(end, 200, 15);

The compiler assumes that all the parameters are correct. Thus the third
parameter “3” is NOT converted from an integer to a double. Neither are the
“200” or the “15”. This is a major problem since integers and doubles are not the
same size and not the same format.

When the function picks up the parameters they are not what was intended and
the function behaves strangely.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 101
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Prototypes

§ The (optional) line

int print_table(double, double, double);

is known as a prototype
§ If the compiler meets a call to an unknown

function it “guesses”
– Guess 1: the function returns an int, even if it doesn’t
– Guess 2: you have passed the correct number of parameters

and made sure they are all of the correct type, even if you
haven’t

§ The prototype provides the compiler with
important information about the return type and
parameters

Prototypes

The all important missing line is called the function “prototype”. The compiler
needs one of these for every single function called from your program. If you
forget to provide a prototype and go ahead and call a function anyway, the
compiler will assume some defaults.

When a
Prototype is
Missing

First: the compiler will assume the function returns an integer. This is rather
curious. A safer assumption might be that the function returns nothing, that way
any attempt to use the returned value would generate an error. However, int it
is. This is a special problem with the mathematical functions, sin, cos, tan,
etc. which return double. By not prototyping these functions the compiler
incorrectly truncates the doubles, using only 2 or 4 bytes of the 8 bytes that are
returned.

Second: the compiler assumes that the correct number of parameters have been
passed and that the type of each one is correct. This was clearly not the case in
the previous program, whereas the number of parameters was correct, although
the types were not.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

102 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

Prototyping is Not Optional

§ To achieve working programs the compiler is
best given a prototype for each function called

§ When calling a Standard Library function,
#include the file specified in the help page(s) -
this file will contain the prototype

§ When calling one of your own functions, write a
prototype by hand

Prototyping is Not Optional

Since prototypes can make such a difference to whether a program works, it is
curious C regards them as optional. Even though this is the case, we should
regard them as compulsory.

We must ensure that each function called is properly prototyped. This is more
straightforward than it sounds since most C compilers come equipped with a
“warning level”. Although the compiler will not complain if a call is made to an
unprototyped function at a low warning level, turning the warning level up does
cause a message to appear. Various programming standards employed by large
software houses state that programs should compile without a single warning at
the highest warning level.

Calling
Standard
Library
Functions

If we wish to call a Standard Library function, a prototype for it will already have
been written and made available in one of the Standard header files. All we need
to do is #include the relevant header file - its name will be given us by the on-
line help or text manual.

If we wish to call one of our own functions, we must write a prototype by hand.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 103
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

Writing Prototypes

§ Prototype:

int print_table(double, double, double);

int print_table(double start, double end, double step)
{

§ Function header:

§ The function prototype may optionally include
variable names (which are ignored)

int print_table(double start, double end, double step);

int print_table(double x, double y, double z);

Writing Prototypes

Convert The
Function
Header Into The
Prototype

Writing a function involves writing the function header. Once that’s been done
only a quick “cut and paste” is necessary to create the function prototype. You
can either slice out the whole header, including the names of the parameters, or
edit them out.

Parameter
Names Ignored

In fact the compiler completely ignores parameter names in function prototypes, if
provided, the names don’t have to relate to the ones used in the function itself.
The example above shows the print_table prototype using the name “start” or “x”
for its first parameter. Either of these are ok, even if the name of the first
parameter in fact turns out to be “artichoke”.

Added
Documentation

In fact this begs the question as to why parameter names should be put in at all,
if the compiler is just going to ignore them. The answer is that a function
prototype which includes meaningful names is far more helpful than one which
does not. The names “start”, “stop” and “end” provide meaning and save us
having to find either the code for print_table or the manual which describes it.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

104 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Take Care With Semicolons

§ The prototype has a semicolon

§ The function header has an open brace

§ Don’t confuse the compiler by adding a
semicolon into the function header!

int print_table(double start, double end, double step)
{

int print_table(double start, double end, double step);
{

int print_table(double start, double end, double step);

Take Care With Semicolons

Avoid
Semicolons
After The
Function
Header

We have seen that the prototype can be an almost exact copy of the function
header. If they are so similar, how exactly does the compiler tell them apart? It is
all done by the character that follows the closing parenthesis. If that character is
an opening brace, the compiler knows the text forms the function header, if the
character is a semicolon, the compiler knows the text forms the function
prototype.

Adding a semicolon into the function header is particularly fatal. Meeting the
semicolon first, the compiler assumes it has met the function prototype. After the
prototype comes the beginning of a block, but what block?

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 105
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Example Prototypes
/* no parameters, int return value */
int get_integer(void);

/* no parameters, double return value */
double get_double(void);

/* no parameters, no return value */
void clear_screen(void);

/* three int parameters, int return value */
int day_of_year(int day, int month, int year);

/* three int parameters, long int return value */
long day_since_1_jan_1970(int, int, int);

/* parameter checking DISABLED, double return value */
double k_and_r_function();

/* short int parameter, (default) int return value */
transfer(short int s);

Example Prototypes
Above are examples of function prototypes. Notice that void must be used to
indicate the absence of a type. Thus in:

int get_integer(void);

void for the parameter list indicates there are no parameters. This is NOT the
same as saying:

int get_integer();

which would have the effect of disabling parameter checking to the get_integer
function. With this done, far from passing no parameters into the function, any
user could pass two, fourteen or fifty parameters with impunity!

C makes no distinction between functions (lumps of code that return a value) and
procedures (lumps of code that execute, but return no value) as do languages like
Pascal. In C there are just functions, functions which return things and functions
which don’t return anything. An example of a prototype for a function which does
not return anything is:

void clear_screen(void);

The first void indicates no return value, the second indicates (as before) no
parameters.

The day_of_year and day_since_1_jan_1970 function prototypes indicate
the difference between naming parameters and not. With the day_of_year
function it is obvious that the day, month and year must be provided in that order
without resorting to any additional documentation. If day_since_1_jan_1970
were written by an American, the month might be required as the first parameter.
It is impossible to tell without further recourse to documentation.

The prototype for the transfer function demonstrates a rather curious C rule. If
the return type is omitted, int is assumed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

106 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Example Calls
int i;
double d;
long l;
short int s = 5;

i = get_integer();

d = get_double();

clear_screen();

i = day_of_year(16, 7, 1969);

l = day_since_1_jan_1970(1, 4, 1983);

d = k_and_r_function();
d = k_and_r_function(19.7);
d = k_and_r_function("hello world");

i = transfer(s);

the compiler cannot tell
which of these (if any) is
correct - neither can we

without resorting to
documentation!

no mention of “void”
when calling these

functions

Example Calls

The most important thing to realize is that when calling a function with a prototype
like

int get_integer(void);

it is NOT correct to say: i = get_integer(void);

whereas it IS correct to say: i = get_integer();

The compiler just doesn’t expect void at the point of call.

The examples above also illustrate a call to clear_screen. If you thought it
would be pointless to call a function which takes no parameters and returns no
value, here is an example. The clear_screen function does not need to be
passed a parameter to tell it how many times to clear the screen, just once is
enough. Similarly it does not need to return an integer to say whether it
succeeded or failed. We assume it succeeds.

It is difficult to say what date day_since_1_jan_1970 is dealing with in the
code above, it could be the 1st of April, or just as easily the 4th of January.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 107
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

Rules of Visibility

§ C is a block structured language, variables may
only be used in functions declaring them

int main(void)
{

int i = 5, j, k = 2;
float f = 2.8F, g;

d = 3.7;
}

void func(int v)
{

double d, e = 0.0, f;

i++; g--;
f = 0.0;

}
func’s “f” is used,

not main’s

compiler does not
know about “d”

“i” and “g” not
available here

Rules of Visibility

C is a Block
Structured
Language

Variables allocated within each function block may only be used within that
function block. In fact C allows variables to be allocated wherever an opening
brace is used, for instance:

void func(int v)
{

double d, e = 0.0, f;

if(e == 0.0) {
int i, j = 5;

i = j - 1;
printf("i=%i, e=%lg\n", i, e);

}
d = 0.1;

}

The two variables “i” and “j” are created only in the then part of the if statement.
If the variable “e” didn’t compare with zero, these variables would never be
created. The variables are only available up until the “}” which closes the block
they are allocated in. An attempt to access “i” or “j” on or after the line “d =
0.1” would cause an error.

The variables “d”, “e” and “f” are all available within this “if” block since the block
lives inside the function block.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

108 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Call by Value

§ When a function is called the parameters are
copied - “call by value”

§ The function is unable to change any variable
passed as a parameter

§ In the next chapter pointers are discussed which
allow “call by reference”

§ We have already had a sneak preview of this
mechanism with scanf

Call by Value

C is a “call by value” language. Whenever a parameter is passed to a function a
copy of the parameter is made. The function sees this copy and the original is
protected from change.

This can be a advantage and a disadvantage. If we wanted a
get_current_date function, for instance, we would want three “returns”, the
day, month and year, but functions may only return one value. Three functions
get_current_day, get_current_month and get_current_year would be
needed. Clearly this is inconvenient!

In fact, C supports “call by reference” too. This is a mechanism by which the
parameter becomes not a copy of the variable but its address. We have already
seen this mechanism with scanf, which is able to alter its parameters easily.
This is all tied up with the use of the mysterious “&” operator which will be
explained in the next chapter.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 109
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Call by Value - Example

#include <stdio.h>

void change(int v);

int main(void)
{

int var = 5;

change(var);

printf("main: var = %i\n", var);

return 0;
}

void change(int v)
{

v *= 100;
printf("change: v = %i\n", v);

} change: v = 500
main: var = 5

the function
was not able
to alter “var”

the function is
able to alter “v”

Call by Value - Example

This program shows an example of call by value. The main function allocates a
variable “var” of type int and value 5. When this variable is passed to the
change function a copy is made. This copy is picked up in the parameter “v”.
“v” is then changed to 500 (to prove this, it is printed out). On leaving the
change function the parameter “v” is thrown away. The variable “var” still
contains 5.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

110 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

C and the Stack

§ C uses a stack to store local variables (i.e. those
declared in functions), it is also used when
passing parameters to functions

� The calling function pushes the parameters

� The function is called

� The called function picks up the parameters

� The called function pushes its local variables

� When finished, the called function pops its local
variables and jumps back to the calling function

� The calling function pops the parameters

� The return value is handled

C and the Stack

C is a stack-based language. Conceptually a stack is like a pile of books. New
books must be added to the pile only at the top. If an attempt is made to add a
new book to the middle of the pile, the whole thing will collapse. Similarly when
books are removed from the pile, they must only be removed from the top since
removing one from the middle or bottom of the pile would cause a collapse.

Thus: a stack may only have a new item added to the top
a stack may only have an existing item removed from the top

You can imagine that while the books are in the pile, the spines of the books (i.e.
the title and author) could be easily read. Thus there is no problem accessing
items on the stack, it is only the addition and removal of items which is rigorously
controlled.

The list above shows the rules that C employs when calling functions. When a
variable is passed as a parameter to a function a copy of the variable is placed on
the stack. The function picks up this copy as the parameter. Since the function
may only access the parameter (because the original variable was allocated in
another function block) the original variable cannot be changed.

If a function allocates any of its own variables, these too are placed on the stack.
When the function finishes it is responsible for destroying these variables.

When the function returns to the point of call, the calling function destroys the
parameters that it copied onto the stack.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 111
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Stack Example

#include <stdio.h>

double power(int, int);

int main(void)
{

int x = 2;
double d;

d = power(x, 5);
printf("%lf\n", d);

return 0;
}

double power(int n, int p)
{

double result = n;

while(--p > 0)
result *= n;

return result;
}

main: x2

main: d?

power: p5

power: n2

power: result32.0

Stack Example

When the main function starts, it allocates storage for two variables “x” and “d”.
These are placed on the bottom of the otherwise empty stack. When main calls
the power function as in

d = power(x, 5);

“5” is copied onto the stack, then the value of “x”, which is “2”. The power
function is called. It immediately picks up two parameters “n” and “p”. The “n”
happens to be where the “2” was copied, the “p” where the “5” was copied.

The function requires its own local variable “result” which is placed on the stack
above “n” and is initialized with the value “2.0”. The loop executes 4 times,
multiplying result by 2 each time. The value of “p” is now zero. The value stored
in “result” by this stage is “32.0”. This value is returned. Different compilers have
different strategies for returning values from functions. Some compilers return
values on the stack, others return values in registers. Some do both depending
on wind direction and phase of the moon. Let us say here that the return value is
copied into a handy register.

The return keyword causes the power function to finish. Before it can truly
finish, however, it is responsible for the destruction of the variable “result” which it
created. This is removed (popped) from the stack.

On return to the main function, the two parameters “n” and “p” are destroyed.
The return value, saved in a handy register is transferred into the variable “d”
(which is then printed on the next line).

The return 0 causes main to finish. Now “0” is stored in a handy register,
ready for the operating system to pick it up. Before things can truly finish, main
must destroy its own variables “x” and “d”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

112 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Storage

§ C stores local variables on the stack

§ Global variables may be declared. These are not
stack based, but are placed in the data segment

§ Special keywords exist to specify where local
variables are stored:

auto - place on the stack (default)

static - place in the data segment

register - place in a CPU register

§ Data may also be placed on the heap, this will be
discussed in a later chapter

Storage

When a program is running in memory it consists of a number of different parts:

Code Segment This is where all the code lives, main, printf, scanf etc. etc. This segment is
definitely read only (otherwise you could write self-modifying code!).

Stack This is where all the local variables are stored. We have seen how it becomes
deeper as functions are called and shallower as those functions return. The stack
alters size continuously during the execution of a program and is definitely NOT
read only.

Data Segment This is a fixed sized area of the program where global variables are stored. Since
global variables in a program are always there (not like local variables which are
created and destroyed) there are always a fixed number of fixed sized variables -
thus the data segment is fixed size.

Heap The last and strangest part of the executing program, the heap, can vary in size
during execution. Its size is controlled by calls to the four dynamic memory
allocation routines that C defines: malloc, calloc, realloc and free. The
heap, and these routines, are discussed later in the course.

Local variables which have been seen thus far have been stack based. Global
variables may also be created (though we have not yet seen how this is done).
Mixed in with locals and globals these notes have also hinted at the occasional
use of registers.

In fact keywords exist in C which allow us to control where local variables are
placed - on the stack (which they are by default), in the data segment along with
the global variables, or in registers.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 113
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

auto

§ Local variables are automatically allocated on
entry into, and automatically deallocated on exit
from, a function

§ These variables are therefore called “automatic”

§ Initial value: random

§ Initialisation: recommended

int table(void)
{

int lines = 13;
auto int columns;

auto keyword
redundant

auto

Stack Variables
are “Automatic”

To be honest, C’s auto keyword is a complete waste of space. Local variables
are, by default, placed on the stack. When a function starts, stack storage is
allocated. When the function ends, the stack storage is reclaimed. Since this
happens totally automatically, stack based variables are called “automatic”
variables.

“int columns” and “auto int columns” are exactly identical. In other words
the auto keyword does nothing, it makes the automatic variable automatic
(which it is anyway).

Stack Variables
are Initially
Random

An important thing to understand about automatic variables is although the
compiler is happy to allocate storage from the stack it will NOT initialize the
storage (unless explicitly instructed to do so). Thus automatic variables initially
contain whatever that piece of stack last contained. You may see a quarter of a
double, half of a return address, literally anything. Certainly whatever it is will
make little sense. The upshot is that if you need a value in an automatic variable
(including zero) it is vital to put that value in there by assignment.

Performance It is possible to imagine a scenario where a function is called, say one thousand
times. The function allocates one stack based variable. Thus one thousand
times the variable must be created, one thousand times the variable must be
destroyed. If you are worried about the last nanosecond of performance, that
may be something you might want to worry about.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

114 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

static

§ The static keyword instructs the compiler to
place a variable into the data segment

§ The data segment is permanent (static)

§ A value left in a static in one call to a function
will still be there at the next call

§ Initial value: 0

§ Initialisation: unnecessary if you like zeros

int running_total(void)
{

static int rows;

rows++;

permanently allocated,
but local to this

function

static
static
Variables are
Permanent

By default, a variable is stack based, random and continually goes through an
automatic creation and destruction process whenever the function declaring it is
called. Adding static into a variable declaration causes the variable to be
stored in the data segment. This is the same part of the program where the
global variables are stored. Thus the variable is permanently allocated.

static
Variables are
Initialized

This means the first time running_total is called, the storage for the variable
“rows” has already been allocated. It has also already been initialized (to zero). If
a value of 1 is left in the variable and the function returns, the next time the
function is called the 1 will be seen. If 2 is left in the variable, the next time the 2
will be seen, etc. Since there is no creation and destruction a function containing
one static variable should execute faster than one having to allocate and
deallocate a stack based one.

static
Variables Have
Local Scope

Although the variable is permanently allocated, its scope is local. The “rows”
variable cannot be seen outside the running_total function. It is perfectly
possible to have two static variables of the same name within two different
functions:

int func1(void) int func2(void)
{ {

static int i = 30; static int i = -30;

i++; i--;
} }

The variable “i” in the function func1 will steadily increase every time the
function is called. The variable “i” in the function func2 will steadily decrease.
These two variables are permanent, separate and inaccessible by the other
function.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 115
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20

register

§ The register keyword tells the compiler to place
a variable into a CPU register (you cannot specify
which)

§ If a register is unavailable the request will be
ignored

§ Largely redundant with optimising compilers

§ Initial value: random

§ Initialisation: recommended

void speedy_function(void)
{

register int i;

for(i = 0; i < 10000; i++)

register

The register keyword requests a variable be placed in a CPU register. The
compiler is under no obligation to satisfy this request. The keyword goes back to
K&R C, when there were no optimizers. Thus various optimization features were
added to the language itself.

register
Variables are
Initially Random

If a register is available, it will be allocated. However, C will not clear it out, thus
it will contain whatever value happened to be in there previously.

Slowing Code
Down

Optimizers for C have now been written and these are best left to decide which
variables should be placed in registers. In fact is it possible to imagine a scenario
where code actually runs slower as a result of the use of this keyword.

Imagine the best strategy for optimizing a function is to place the first declared
variable “i” into a CPU register. This is done for the first 10 lines of the function,
then the variable “j” becomes the one most frequently used and thus “i” is
swapped out of the register and “j” swapped in. The programmer tries to optimize
and places “i” into a register. If only one register is available and the optimizer
feels obliged to satisfy the request the second part of the function will run more
slowly (since “j” needs to be placed in a register, but cannot).

The optimizer is almost certainly better at making these decisions (unless you
have written the optimizer and you know how it works) and should be left to its
own devices.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

116 Functions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21

Global Variables

§ Global variables are created by placing the
declaration outside all functions

§ They are placed in the data segment

§ Initial value: 0

§ Initialisation: unnecessary if you like zeros

#include <stdio.h>

double d;

int main(void)
{

int i;

return 0;
}

variable “d” is global
and available to all
functions defined

below it

Global Variables

You should be aware that many programming standards for C ban the use of
global variables. Since access to a global variable is universal and cannot be
controlled or restricted it becomes difficult to keep track of who is modifying it and
why.

Nonetheless global variables may be easily created, by placing the variable
declaration outside any function. This places the variable in the data segment
(along with all the static local variables) where it is permanently allocated
throughout the execution of the program.

Global
Variables are
Initialized

Just as with static local variables, initialization to zero is performed by the
operating system when the program is first loaded into memory.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions 117
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 22

Review

§ Writing and calling functions

§ The need for function prototypes

§ Visibility

§ C is “call by value”

§ Local variables are stack based, this can be
changed with the static and register
keywords

§ Global variables may be created, they are stored
in the data segment

Review Questions

1. Which two characters help the compiler determine the difference between the
function prototype and the function header?

2. What is automatic about an automatic variable?
3. What is the initial value of a register variable?
4. What are the names of the four parts of an executing program?

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions - Exercises 119
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

120 Functions - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: FUNCS

1. By now you have probably experienced problems with scanf insofar as when an invalid character is
typed things go drastically wrong. In “GETVAL.C” write and test two functions:

double get_double(void);
int get_int(void);

which loop, prompting the user, until a valid double/valid integer are entered.

2. Copy “POW.C” from the FLOW directory. Turn your power calculation into a function with the following
prototype:

long double power(double first, int second);

Use your get_double and get_int functions from part 1 to read the double and integer from the
user.

3. Copy “CIRC.C” from the FLOW directory. Write functions with the following prototypes:

double volume(double radius, double height);
double area(double radius);
double circumf(double radius);
char get_option(void);

Use the get_double function written in part 1 to read the radius (and height if necessary). The
get_option function should accept only ‘a’, ‘A’, ‘c’, ‘C’, ‘v’, ‘V’, ‘q’ or ‘Q’ where the lowercase letters
are the same as their uppercase equivalents.

If you #include <ctype.h>, you will be able to use the tolower function which converts uppercase
letters to their lowercase equivalent. This should make things a little easier. Look up tolower in the
help.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions - Solutions 121
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Functions Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

122 Functions - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. In “GETVAL.C” write and test two functions:

double get_double(void);
int get_int(void);

which loop, prompting the user, until a valid double/valid integer are entered.

#include <stdio.h>

int get_int(void);
double get_double(void);

int main(void)
{

int i;
double d;

printf("type an integer ");
i = get_int();
printf("the integer was %i\n", i);

printf("type an double ");
d = get_double();
printf("the double was %lg\n", d);

return 0;
}

int get_int(void)
{

int result;

printf("> ");
while(scanf("%i", &result) != 1) {

while(getchar() != '\n')
;

printf("> ");
}

return result;
}

double get_double(void)
{

double result;

printf("> ");
while(scanf("%lf", &result) != 1) {

while(getchar() != '\n')
;

printf("> ");
}

return result;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions - Solutions 123
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

2. Copy “POW.C” from the FLOW directory. Turn your power calculation into a function. Use your
get_double and get_int functions from part 1.

In the function “power” the parameter may be treated “destructively” since call by value is used, and
altering the parameter will have no effect on the main program.

#include <stdio.h>

int get_int();
double get_double();
long double power(double, int);

int main(void)
{

int p = 0;
double n = 0.0;

printf("enter the number ");
n = get_double();

printf("enter the power ");
p = get_int();

printf("%.3lf to the power of %d is %.9Lf\n", n, p, power(n, p));

return 0;
}

long double power(double n, int p)
{

long double answer = n;

for(--p; p > 0; p--)
answer *= n;

return answer;
}

int get_int(void)
{

int result;

printf("> ");
while(scanf("%i", &result) != 1) {

while(getchar() != '\n')
;

printf("> ");
}

return result;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

124 Functions - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

double get_double(void)
{

double result;

printf("> ");
while(scanf("%lf", &result) != 1) {

while(getchar() != '\n')
;

printf("> ");
}

return result;
}

3. Copy “CIRC.C” from the FLOW directory. Write functions with the following prototypes....

Use the get_double function written in part 1 to read the radius (and height if necessary). The
get_option function should accept only ‘a’, ‘A’, ‘c’, ‘C’, ‘v’, ‘V’, ‘q’ or ‘Q’ where the lowercase letters
are the same as their uppercase equivalents.

Using tolower should make things a little easier.
The version of get_double used here differs slightly from previous ones. Previously, if a double was
entered correctly the input buffer was not emptied. This causes scanf(“%c”) in the get_option function
to read the newline left behind in the input buffer (getchar would do exactly the same). Thus whatever
the user types is ignored. This version always flushes the input buffer, regardless of whether the
double was successfully read.

#include <stdio.h>
#include <ctype.h>

double get_double(void);
double area(double radius);
double circumf(double radius);
double volume(double radius, double height);
char get_option(void);

const double pi = 3.1415926353890;

int main(void)
{

int ch;
int still_going = 1;
double radius = 0.0;
double height = 0.0;

while(still_going) {

ch = get_option();

if(ch == 'a' || ch == 'c' || ch == 'v') {
printf("enter the radius ");
radius = get_double();

}
if(ch == 'v') {

printf("enter the height ");
height = get_double();

}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Functions - Solutions 125
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

if(ch == 'a')
printf("Area of circle with radius %.3lf is %.12lf\n",

radius, area(radius));
else if(ch == 'c')

printf("Circumference of circle with radius "
"%.3lf is %.12lf\n", radius, circumf(radius));

else if(ch == 'v')
printf("Volume of cylinder radius %.3lf, height %.3lf "

"is %.12lf\n", radius, height,
volume(radius, height));

else if(ch == 'q')
still_going = 0;

else
printf("Unknown option '%c'\n\n", ch);

}
return 0;

}

double get_double(void)
{

int got;
double result;

do {
printf("> ");
got = scanf("%lf", &result);
while(getchar() != '\n')

;
}
while(got != 1);

return result;
}

double area(double radius)
{

return pi * radius * radius;
}

double circumf(double radius)
{

return 2.0 * pi * radius;
}

double volume(double radius, double height)
{

return area(radius) * height;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

126 Functions - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

char get_option(void)
{

char ch;

do {
printf("Area A\n"
 "Circumference C\n"
 "Volume V\n"
 "Quit Q\n\n"
 "Please choose ");

scanf("%c", &ch);
ch = tolower(ch);
while(getchar() != '\n')

;
}
while(ch != 'a' && ch != 'c' && ch != 'v' && ch != 'q');

return ch;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 127
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

128 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Pointers

§ Declaring pointers

§ The “&” operator

§ The “*” operator

§ Initialising pointers

§ Type mismatches

§ Call by reference

§ Pointers to pointers

Pointers

This chapter deals with the concepts and some of the many uses of pointers in
the C language.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 129
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Pointers - Why?

§ Using pointers allows us to:
– Achieve call by reference (i.e. write functions which change

their parameters)
– Handle arrays efficiently

– Handle structures (records) efficiently
– Create linked lists, trees, graphs etc.
– Put data onto the heap

– Create tables of functions for handling Windows events,
signals etc.

§ Already been using pointers with scanf

§ Care must be taken when using pointers since
there are no safety features

Pointers - Why?

As C is such a low level language it is difficult to do anything without pointers.
We have already seen that it is impossible to write a function which alters any of
its parameters.

The next two chapters, dealing with arrays and dealing with structures, would be
very difficult indeed without pointers.

Pointers can also enable the writing of linked lists and other such data structures
(we look into linked lists at the end of the structures chapter).

Writing into the heap, which we will do towards the end of the course, would be
impossible without pointers.

The Standard Library, together with the Windows, Windows 95 and NT
programming environments use pointers to functions quite extensively.

One problem is that pointers have a bad reputation. They are supposed to be
difficult to use and difficult to understand. This is, however, not the case, pointers
are quite straightforward.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

130 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Declaring Pointers

§ Pointers are declared by using “*”

§ Declare an integer:

int i;

§ Declare a pointer to an integer:

int *p;

§ There is some debate as to the best position of
the “*”

int* p;

Declaring Pointers

The first step is to know how to declare a pointer. This is done by using C’s
multiply character “*” (which obviously doesn’t perform a multiplication). The “*”
is placed at some point between the keyword int and the variable name. Instead
of creating an integer, a pointer to an integer is created.

There has been, and continues to be, a long running debate amongst C
programmers regarding the best position for the “*”. Should it be placed next to
the type or next to the variable?

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 131
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Example Pointer Declarations

int *pi; /* pi is a pointer to an int */

long int *p; /* p is a pointer to a long int */

float* pf; /* pf is a pointer to a float */

char c, d, *pc; /* c and d are a char
 pc is a pointer to char */

double* pd, e, f; /* pd is pointer to a double
 e and f are double */

char* start; /* start is a pointer to a char */

char* end; /* end is a pointer to a char */

Example Pointer Declarations

Pointers Have
Different Types

The first thing to notice about the examples above is that C has different kinds of
pointer. It has pointers which point to ints and pointers which point to long
ints. There are also pointers which point at floats and pointers to chars.

This concept is rather strange to programmers with assembler backgrounds. In
assembler there are just pointers. In C this is not possible, only pointers to
certain types exist. This is so the compiler can keep track of how much valid data
exists on the end of a pointer. For instance, when looking down the pointer “start”
only 1 byte would be valid, but looking down the pointer “pd” 8 bytes would be
valid and the data would be expected to be in IEEE format.

Positioning the
“*”

Notice that in: char c, d, *pc;

it seems reasonable that “c” and “d” are of type char, and “pc” is of type pointer
to char. However it may seem less reasonable that in:

double* pd, e, f;

the type of “e” and “f” is double and NOT pointer to double. This illustrates the
case for placing the “*” next to the variable and not next to the type.

The last two examples show how supporters of the “place the * next to the type”
school of thought would declare two pointers. One is declared on each line.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

132 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

The “&” Operator

§ The “&”, “address of” operator, generates the
address of a variable

§ All variables have addresses except register
variables

char g = 'z';

int main(void)
{

char c = 'a';
char *p;

p = &c;
p = &g;

return 0;
}

p c

'a'0x1132
0x1132

p g

'z'0x91A2
0x91A2

The “&” Operator

The “&” operator, which we have been using all along with scanf, generates the
address of a variable. You can take the address of any variable which is stack
based or data segment based. In the example above the variable “c” is stack
based. Because the variable “g” is global, it is placed in the data segment. It is
not possible to take the address of any register variable, because CPU
registers do not have addresses. Even if the request was ignored by the
compiler, and the variable is stack based anyway, its address still cannot be
taken.

Pointers Are
Really Just
Numbers

You see from the program above that pointers are really just numbers, although
we cannot say or rely upon the number of bits required to hold the number (there
will be as many bits as required by the hardware). The variable “p” contains not a
character, but the address of a character. Firstly it contains the address of “c”,
then it contains the address of “g”. The pointer “p” may only point to one variable
at a time and when pointing to “c” it is not pointing anywhere else.

By “tradition” addresses are written in hexadecimal notation. This helps to
distinguish them from “ordinary” values.

Printing
Pointers

The value of a pointer may be seen by calling printf with the %p format
specifier.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 133
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Rules

§ Pointers may only point to variables of the same
type as the pointer has been declared to point to

§ A pointer to an int may only point to an int
– not to char, short int or long int, certainly not to float,

double or long double

§ A pointer to a double may only point to a double
– not to float or long double, certainly not to char or any of

the integers

§ Etc......
int *p; /* p is a pointer to an int */
long large = 27L; /* large is a long int,

 initialised with 27 */

p = &large; /* ERROR */

Rules

Assigning
Addresses

The compiler is very firm with regard to the rule that a pointer can only point at
the type it is declared to point to.

Let us imagine a machine where an int and a short int are the same size,
(presumably 2 bytes). It would seem safe to assume that if we declared a pointer
to an int the compiler would allow us to point it at an int and a short int with
impunity. This is definitely not the case. The compiler disallows such behavior
because of the possibility that the next machine the code is ported to has a 2 byte
short int and a 4 byte int.

How about the case where we are guaranteed two things will be the same size?
Can a pointer to an int be used to point to an unsigned int? Again the answer
is no. Here the compiler would disallow the behavior because using the
unsigned int directly and in an expression versus the value at the end of the
pointer (which would be expected to be int) could give very different results!

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

134 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

The “*” Operator

§ The “*”, “points to” operator, finds the value at
the end of a pointer

#include <stdio.h>

char g = 'z';

int main(void)
{

char c = 'a';
char *p;

p = &c;
printf("%c\n", *p);

p = &g;
printf("%c\n", *p);

return 0;
}

a
z

p c

'a'0x1132
0x1132

p g

'z'0x91A2
0x91A2

print “what p points to”

The “*” Operator

The “*” operator is in a sense the opposite of the “&” operator. “&” generates the
address of a variable, the “*” uses the address that is stored in a variable and
finds what is at that location in memory.

Thus, in the example above, the pointer “p” is set to point to the variable “c”. The
variable “p” contains the number 0x1132 (that’s 4402 in case you’re interested).
“*p” causes the program to find what is stored at location 0x1132 in memory.
Sure enough stored in location 0x1132 is the value 97. This 97 is converted by
“%c” format specifier and ‘a’ is printed.

When the pointer is set to point to “g”, the pointer contains 0x91A2 (that is 37282
in decimal). Now the pointer points to the other end of memory into the data
segment. Again when “*p” is used, the machine finds out what is stored in
location 0x91A2 and finds 122. This is converted by the “%c” format specifier,
printing ‘z’.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 135
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

Writing Down Pointers

§ It is not only possible to read the values at the
end of a pointer as with:

char c = 'a';
char *p;

p = &c;
printf("%c\n", *p);

§ It is possible to write over the value at the end of a
pointer:

char c = 'a';
char *p;

p = &c;
*p = 'b';
printf("%c\n", *p);

p c

'a'0x1132
0x1132

'b'

make what p points to
equal to ‘b’

Writing Down Pointers

We have just seen an example of reading the value at the end of a pointer. But it
is possible not only to read a value, but to write over and thus change it. This is
done in a very natural way, we change variables by using the assignment
operator, “=”. Similarly the value at the end of a pointer may be changed by
placing “*pointer” (where “pointer” is the variable containing the address) on the
left hand side of an assignment.

In the example above: *p = 'b';

literally says, take the value of 98 and write it into wherever “p” points (in other
words write into memory location 0x1132, or the variable “c”).

Now you’re probably looking at this and thinking, why do it that way, since

c = 'b';

would achieve the same result and be a lot easier to understand. Consider that
the variables “p” and “c” may live in different blocks and you start to see how a
function could alter a parameter passed down to it.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

136 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Initialisation Warning!

§ The following code contains a horrible error:

#include <stdio.h>

int main(void)
{

short i = 13;
short *p;

*p = 23;
printf("%hi\n", *p);

return 0;
}

p i

13?
0x1212

Initialization Warning!

Always Initialize
Pointers

The code above contains an all too common example of a pointer bug. The user
presumably expects the statement:

*p = 23;

to overwrite the variable “i”. If this is what is desired it would help if the pointer “p”
were first set to point to “i”. This could be easily done by the single statement:

p = &i;

which is so sadly missing from this program. “p” is an automatic variable, stack
based and initialized with a random value. All automatic variables are initialized
with random values, pointers are no exception. Thus when the statement:

*p = 23;

is executed we take 23 and randomly overwrite the two bytes of memory whose
address appears in “p”. These two random bytes are very unlikely to be the
variable “i”, although it is theoretically possible. We could write anywhere in the
program. Writing into the code segment would cause us to crash immediately
(because the code segment is read only). Writing into the data segment, the
stack or the heap would “work” because we are allowed to write there (though
some machines make parts of the data segment read only).

General
Protection Fault

There is also a possibility that this random address lies outside the bounds of our
program. If this is the case and we are running under a protect mode operating
system (like Unix and NT) our program will be killed before it does any real
damage. If not (say we were running under MS DOS) we would corrupt not our
own program, but another one running in memory. This could produce
unexpected results in another program. Under Windows this error produces the
famous “GPF” or General Protection Fault.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 137
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Initialise Pointers!

§ Pointers are best initialised!

§ A pointer may be declared and initialised in a
single step

short i = 13;
short *p = &i;

§ This does NOT mean “make what p points to
equal to the address of i”

§ It DOES mean “declare p as a pointer to a short
int, make p equal to the address of i”

short *p = &i;
short *p = &i;

short *p = &i;

Initialize Pointers!

Hours of grief may be saved by ensuring that all pointers are initialized before
use. Three extra characters stop the program on the previous page from
destroying the machine and transforms it into a well behaved program.

Understanding
Initialization

In the line: short *p = &i;

it is very important to understand that the “*” is not the “find what is pointed to”
operator. Instead it ensures we do not declare a short int, but a pointer to a
short int instead.

This is the case for placing the “*” next to the type, if we had written

short* p = &i;

It would have been somewhat more obvious that we were declaring “p” to be a
pointer to a short int and that we were initializing “p” to point to “i”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

138 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

NULL

§ A special invalid pointer value exists #defined in
various header files, called NULL

§ When assigned to a pointer, or when found in a
pointer, it indicates the pointer is invalid

#include <stdio.h>

int main(void)
{

short i = 13;
short *p = NULL;

if(p == NULL)
printf("the pointer is invalid!\n");

else
printf("the pointer points to %hi\n", *p);

return 0;
}

NULL

We have already seen the concept of preprocessor constants, and how they are
#defined into existence. A special define exists in the “stdio.h” header file (and
a few other of the Standard headers just in case), called NULL. It is a special
invalid value of a pointer.

The value may be placed in any kind of pointer, regardless of whether it points to
int, long, float or double.

NULL and Zero You shouldn’t enquire too closely into what the value of NULL actually is. Mostly
it is defined as zero, but you should never assume this. On some machines zero
is a legal pointer and so NULL will be defined as something else.

Never write code assuming NULL and zero are the same thing, otherwise it will be
non portable.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 139
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

A World of Difference!

§ There is a great deal of difference between:

int i = 10, j = 14;
int *p = &i;
int *q = &j;

*p = *q;

int i = 10, j = 14;
int *p = &i;
int *q = &j;

p = q;

and:

p i

100x15A0
0x15A0

14

q j

0x15A4
0x15A4

14

p i

100x15A0
0x15A0

q j

0x15A4
0x15A4

14

0x15A4

A World of Difference!

What is Pointed
to vs the
Pointer Itself

It is important to understand the difference between:

*p = *q;

and p = q;

In the first, “*p = *q”, what is pointed to by “p” is overwritten with what is pointed
to by “q”. Since “p” points to “i”, and “q” points to “j”, “i” is overwritten by the value
stored in “j”. Thus “i” becomes 14.

In the second statement, “p = q” there are no “*”s. Thus the value contained in
“p” itself is overwritten by the value in “q”. The value in q is 0x15A4 (which is
5540 in decimal) which is written into “p”. If “p” and “q” contain the same
address, 0x15A4, they must point to the same place in memory, i.e. the variable
“j”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

140 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Fill in the Gaps

int main(void)
{

int i = 10, j = 14, k;
int *p = &i;
int *q = &j;

*p += 1;

p = &k;

*p = *q;

p = q;

*p = *q;

return 0;
}

i

0x2100

j

0x2104

k

0x1208

p

0x120B

q

0x1210

Fill in the Gaps

Using the variables and addresses provided, complete the picture. Do not attach
any significance to the addresses given to the variables, just treat them as
random numbers.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 141
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Type Mismatch

§ The compiler will not allow type mismatches
when assigning to pointers, or to where pointers
point

int i = 10, j = 14;
int *p = &i;
int *q = &j;

p = *q;
*p = q;

p i

100x15A0
0x15A0

q j

0x15A4
0x15A4

14

cannot write
0x15A4 into i cannot write

14 into p

Type Mismatch

The compiler checks very carefully the syntactic correctness of the pointer code
you write. It will make sure when you assign to a pointer, an address is assigned.
Similarly if you assign to what is at the end of a pointer, the compiler will check
you assign the “pointed to” type.

There are some programming errors in the program above. The statement:

p = *q;

would assign what is pointed to by “q” (i.e. 14), into “p”. Although this would
seem to make sense (because “p” just contains a number anyway) the compiler
will not allow it because the types are wrong. We are assigning an int into an
int*. The valid pointer 0x15A0 (5536 in decimal) is corrupted with 14. There is
no guarantee that there is an integer at address 14, or even that 14 is a valid
address.

Alternatively the statement: *p = q;

takes the value stored in “q”, 0x15A4 (5540 in decimal) and writes it into what “p”
points to, i.e. the variable “i”. This might seem to make sense, since 5540 is a
valid number. However the address in “q” may be a different size to what can be
stored in “i”. There are no guarantees in C that pointers and integers are the
same size.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

142 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Call by Value - Reminder

#include <stdio.h>

void change(int v);

int main(void)
{

int var = 5;

change(var);

printf("main: var = %i\n", var);

return 0;
}

void change(int v)
{

v *= 100;
printf("change: v = %i\n", v);

} change: v = 500
main: var = 5

the function
was not able
to alter “var”

the function is
able to alter “v”

Call by Value - Reminder

This is a reminder of the call by value program.

The main function allocates a variable “var” of type int and value 5. When this
variable is passed to the change function a copy is made. This copy is picked up
in the parameter “v”. “v” is then changed to 500 (to prove this, it is printed out).
On leaving the change function the parameter “v” is thrown away. The variable
“var” still contains 5.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 143
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Call by Reference

#include <stdio.h>

void change(int* p);

int main(void)
{

int var = 5;

change(&var);

printf("main: var = %i\n", var);

return 0;
}

void change(int* p)
{

*p *= 100;
printf("change: *p = %i\n", *p);

}
change: *p = 500
main: var = 500

change: p

main: var

5

0x1120

0x1120

0x1124

prototype “forces” us to pass a pointer

Call by Reference

This program demonstrates call by reference in C. Notice the prototype which
requires a single pointer to int to be passed as a parameter.

When the change function is invoked, the address of “var” is passed across:

change(&var);

The variable “p”, declared as the parameter to function change, thus points to the
variable “var” within main. This takes some thinking about since “var” is not
directly accessible to main (because it is declared in another function block)
however “p” is and so is wherever it points.

By using the “*p” notation the change function writes down the pointer over “var”
which is changed to 500.

When the change function returns, “var” retains its value of 500.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

144 Pointers
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Pointers to Pointers

§ C allows pointers to any type

§ It is possible to declare a pointer to a pointer

#include <stdio.h>

int main(void)
{

int i = 16;
int *p = &i;
int **pp;

pp = &p;
printf("%i\n", **pp);

return 0;
}

p

i
16

0x2320

0x2320

0x2324

pp
0x2324

0x2328

pp is a “pointer to” a
“pointer to an int”

Pointers to Pointers

The declaration: int i;

declares “i” to be of type int: int *p;

declares “p” to be of type pointer to int. One “*” means one “pointer to”. Thus in
the declaration:

int **pp;

two *s must therefore declare “pp” to be of type a pointer to a pointer to int.

Just as “p” must point to ints, so “pp” must point to pointers to int. This is
indeed the case, since “pp” is made to point to “p”. “*p” causes 16 to be printed

printf("%p", pp);

would print 0x2324 whereas

printf("%p", *pp);

would print 0x2320 (what “pp” points to).

printf("%i", **pp);

would cause what “0x2320 points to” to be printed, i.e. the value stored in
location 0x2320 which is 16.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers 145
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Review

int main(void)
{

int i = 10, j = 7, k;
int *p = &i;
int *q = &j;
int *pp = &p;

**pp += 1;

*pp = &k;

**pp = *q;

i = *q***pp;

i = *q/**pp; /* headache? */;

return 0;
}

p

i

pp

j k

q

Review Questions

What values should be placed in the boxes?

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers - Exercises 147
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

148 Pointers - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: POINT

1. Work your way through the following code fragments. What would be printed? When you have
decided, compile and run the program “POINTEX.C” to check your answers. You will find it helpful,
especially with some of the later exercises, to draw boxes representing the variables and arrows
representing the pointers.

a) int i = -23;
int * p = &i;

printf("*p = %i\n", *p);

b) int i;
int * p = &i;

printf("*p = %i\n", *p);

c) int i = 48;
int * p;

printf("*p = %i\n", *p);

d) int i = 10;
int * p = &i;
int j;

j = ++*p;

printf("j = %i\n", j);
printf("i = %i\n", i);

e) int i = 10, j = 20;
int * p = &i;
int * q = &j;

*p = *q;
printf("i = %i, j = %i\n", i, j);
printf("*p = %i, *q = %i\n", *p, *q);

i = 10; j = 20;

p = q;
printf("i = %i, j = %i\n", i, j);
printf("*p = %i, *q = %i\n", *p, *q);

f) int i = 10, j = 0;
int * p = &i;
int * q = &j;

p = q;
printf("i = %i, j = %i\n", i, j);
printf("*p = %i, *q = %i\n", *p, *q);

*p = *q;
printf("i = %i, j = %i\n", i, j);
printf("*p = %i, *q = %i\n", *p, *q);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers - Exercises 149
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

g) float ten = 10.0F;
float hundred = 100.0F;
float * fp0 = &ten, * fp1 = &hundred;

fp1 = fp0;
fp0 = &hundred;
*fp1 = *fp0;

printf("ten/hundred = %f\n", ten/hundred);

h) char a = 'b', b = 'c', c, d = 'e';
char *l = &c, *m = &b, *n, *o = &a;

n = &b; *m = ++*o; m = n; *l = 'a';

printf("a = %c, b = %c, c = %c, d = %c\n", a, b, c, d);
printf("*l = %c, *m = %c, *n = %c, *o = %c\n", *l, *m, *n, *o);

i) int i = 2, j = 3, k;
int * p = &i, *q = &j;
int ** r;

r = &p;
printf("**r = %i\n", **r);
k = *p**q;
printf("k = %i\n", k);
*p = *q;
printf("**r = %i\n", **r);
k = **r**q;
printf("k = %i\n", k);
k = *p/ *q;
printf("k = %i\n", k);

2. Open the file “SWAP.C”. You will see the program reads two integers, then calls the swap function to
swap them. The program doesn’t work because it uses call by value. Alter the function to use call by
reference and confirm it works.

3. In the file “BIGGEST.C” two functions are called:

int *biggest_of_two(int*, int*);
and

int *biggest_of_three(int*, int*, int*);

The first function is passed pointers to two integers. The function should return whichever pointer
points to the larger integer. The second function should return whichever pointer points to the largest
of the three integers whose addresses are provided.

4. Open the file “DIV.C”. You will see the program reads two integers. Then a function with the following
prototype is called:

void div_rem(int a, int b, int *divides, int *remains);

This function is passed the two integers. It divides them (using integer division), and writes the answer
over wherever “divides” points. Then it finds the remainder and writes it into where “remains” points.
Thus for 20 and 3, 20 divided by 3 is 6, remainder 2. Implement the div_rem function.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

150 Pointers - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

5. The program in “CHOP.C” reads a double before calling the chop function, which has the following
prototype:

void chop(double d, long *whole_part, double *fraction_part);

This function chops the double into two parts, the whole part and the fraction. So “365.25” would be
chopped into “365” and “.25”. Implement and test the function.

6. The floor function returns, as a double, the “whole part” of its parameter (the fractional part is
truncated). By checking this returned value against the maximum value of a long (found in
limits.h) print an error message if the chop function would overflow the long whose address is
passed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers - Solutions 151
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Pointers Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

152 Pointers - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

2. Open the file “SWAP.C”. You will see the program reads two integers, then calls the function swap to
swap them. Alter the function to use call by reference and confirm it works.

#include <stdio.h>

void swap(int*, int*);

int main(void)
{

int a = 100;
int b = -5;

printf("the initial value of a is %i\n", a);
printf("the initial value of b is %i\n", b);

swap(&a, &b);

printf("after swap, the value of a is %i\n", a);
printf("and the value of b is %i\n", b);

return 0;
}

void swap(int *i, int *j)
{

int temp = *i;
*i = *j;
*j = temp;

}

3. In the file “BIGGEST.C” implement the two functions called:

int *biggest_of_two(int*, int*);
and

int *biggest_of_three(int*, int*, int*);

The biggest_of_three function could have been implemented with a complex series of if/then/else
constructs, however since the biggest_of_two function was already implemented, it seemed reasonable
to get it to do most of the work.

#include <stdio.h>

int* biggest_of_two(int*, int*);
int* biggest_of_three(int*, int*, int*);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Pointers - Solutions 153
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int main(void)
{

int a = 100;
int b = -5;
int c = 200;
int *p;

p = biggest_of_two(&a, &b);
printf("the biggest of %i and %i is %i\n", a, b, *p);

p = biggest_of_three(&a, &b, &c);
printf("the biggest of %i %i and %i is %i\n", a, b, c, *p);

return 0;
}

int* biggest_of_two(int * p, int * q)
{

return (*p > *q) ? p : q;
}

int* biggest_of_three(int * p, int * q, int * r)
{

int *first = biggest_of_two(p, q);
int *second = biggest_of_two(q, r);

return biggest_of_two(first, second);
}

4. In “DIV.C” implement

void div_rem(int a, int b, int *divides, int *remains);

#include <stdio.h>

void div_rem(int a, int b, int *divides, int *remains);

int main(void)
{

int a, b;
int div = 0;
int rem = 0;

printf("enter two integers ");
scanf("%i %i", &a, &b);

div_rem(a, b, &div, &rem);

printf("%i divided by %i = %i "
"remainder %i\n", a, b, div, rem);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

154 Pointers - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

void div_rem(int a, int b, int *divides, int *remains)
{

*divides = a / b;
*remains = a % b;

}

5. The program in “CHOP.C” reads a double before calling the chop function, which has the following
prototype:

void chop(double d, long *whole_part, double *fraction_part);

6. By checking the floor function returned value against the maximum value of a long print an error
message if the chop function would overflow the long whose address is passed.

One of the most important things in the following program is to include “math.h”. Without this header
file, the compiler assumes floor returns an integer. Thus the truncated double actually returned is
corrupted. Since it is the cornerstone of all calculations in chop, it is important this value be intact. Use
of the floor function is important, since if the user types 32767.9 and the maximum value of a long were
32767, testing the double directly against LONG_MAX would cause our overflow message to appear,
despite the whole value being able to fit into a long int.

#include <stdio.h>
#include <math.h>
#include <limits.h>

void chop(double d, long *whole_part, double *fraction_part);

int main(void)
{

double d = 0.0;
long whole = 0;
double fraction = 0.0;

printf("enter a double ");
scanf("%lf", &d);

chop(d, &whole, &fraction);

printf("%lf chopped is %ld and %.5lg\n",
d, whole, fraction);

return 0;
}

void chop(double d, long *whole_part, double *fraction_part)
{

double truncated = floor(d);

if(truncated > LONG_MAX) {
printf("assigning %.0lf to a long int would overflow "

"(maximum %ld)\n", truncated, LONG_MAX);

*whole_part = LONG_MAX;
} else

*whole_part = (long)truncated;

*fraction_part = d - truncated;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 155
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays in C

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

156 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Arrays in C

§ Declaring arrays

§ Accessing elements

§ Passing arrays into functions

§ Using pointers to access arrays

§ Strings

§ The null terminator

Arrays in C

This chapter discusses all aspects of arrays in C.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 157
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Declaring Arrays

§ An array is a collection of data items (called
elements) all of the same type

§ It is declared using a type, a variable name and a
CONSTANT placed in square brackets

§ C always allocates the array in a single block of
memory

§ The size of the array, once declared, is fixed
forever - there is no equivalent of, for instance,
the “redim” command in BASIC

Declaring Arrays

An important fact to understand about arrays is that they consist of the same type
all the way through. For instance, an array of 10 int is a group of 10 integers all
bunched together. The array doesn’t change type half way through so there are 5
int and 5 float, or 1 int, 1 float followed by 1 int and 1 float five times.
Data structures like these could be created in C, but an array isn’t the way to do
it.

Thus to create an array we merely need a type for the elements and a count. For
instance:

long a[5];

creates an array called “a” which consists of 5 long ints. It is a rule of C that
the storage for an array is physically contiguous in memory. Thus wherever, say,
the second element sits in memory, the third element will be adjacent to it, the
fourth next to that and so on.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

158 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Examples

#define SIZE 10
int a[5]; /* a is an array of 5 ints */
long int big[100]; /* big is 400 bytes! */
double d[100]; /* but d is 800 bytes! */
long double v[SIZE]; /* 10 long doubles, 100 bytes */

int a[5] = { 10, 20, 30, 40, 50 };
double d[100] = { 1.5, 2.7 };
short primes[] = { 1, 2, 3, 5, 7, 11, 13 };
long n[50] = { 0 };

int i = 7;
const int c = 5;

int a[i];
double d[c];
short primes[];

all five
elements
initialised

first two elements
initialised,

remaining ones
set to zero

compiler fixes
size at 7
elements

quickest way of setting
ALL elements to zero

Examples
Above are examples of declaring and initializing arrays. Notice that C can
support arrays of any type, including structures (which will be covered the next
chapter), except void (which isn’t a type so much as the absence of a type). You
will notice that a constant must appear within the brackets so:

long int a[10];

is fine, as is: #define SIZE 10
long int a[SIZE];

But: int size = 10;
long int a[size];

and const int a_size = 10;
long int a[a_size];

will NOT compile. The last is rather curious since “a_size” is obviously constant,
however, the compiler will not accept it. Another thing to point out is that the
number provided must be an integral type, “int a[5.3]” is obviously nonsense.

Initializing
Arrays

1. The number of initializing values is exactly the same as the number of
elements in the array. In this case the values are assigned one to one, e.g.
int a[5] = { 1, 2, 3, 4, 5 };

2. The number of initializing values is less than the number of elements in the
array. Here the values are assigned “one to one” until they run out. The
remaining array elements are initialized to zero, e.g.
int a[5] = { 1, 2 };

3. The number of elements in the array has not been specified, but a number of
initializing values has. Here the compiler fixes the size of the array to the
number of initializing values and they are assigned one to one, e.g.
int a[] = { 1, 2, 3, 4, 5 };

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 159
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Accessing Elements

§ The elements are accessed via an integer which
ranges from 0..size-1

§ There is no bounds checking

int main(void)
{

int a[6];
int i = 7;

a[0] = 59;
a[5] = -10;
a[i/2] = 2;

a[6] = 0;
a[-1] = 5;

return 0;
}

0
a

1

2

3

4

5

Accessing Elements

Numbering
Starts at Zero

THE most important thing to remember about arrays in C is the scheme by which
the elements are numbered. The FIRST element in the array is element number
ZERO, the second element is number one and so on. The LAST element in the
array “a” above is element number FIVE, i.e. the total number of elements less
one.

This scheme, together with the fact that there is no bounds checking in C
accounts for a great deal of errors where array bounds accessing is concerned. It
is all too easy to write “a[6] = 0” and index one beyond the end of the array. In
this case whatever variable were located in the piece of memory (maybe the
variable “i”) would be corrupted.

Notice that the array access a[i/2] is fine, since “i” is an integer and thus i/2
causes integer division.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

160 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Array Names

§ There is a special and unusual property of array
names in C

§ The name of an array is a pointer to the start of
the array, i.e. the zeroth element, thus

a == &a[0]

int a[10];
int *p;

float f[5]
float *fp;

p = a; /* p = &a[0] */

fp = f; /* fp = &f[0] */

ap

ffp

Array Names

A Pointer to the
Start

In C, array names have a rather unusual property. The compiler treats the name
of an array as an address which may be used to initialize a pointer without error.
The address is that of the first element (i.e. the element with index 0).

Cannot Assign
to an Array

Note that the address is a constant. If you are wondering what would happen
with the following:

int a[10];
int b[10];

a = b;

the answer is that you’d get a compiler error. The address that “a” yields is a
constant and thus it cannot be assigned to. This makes sense. If it were possible
to assign to the name of an array, the compiler might “forget” the address at
which the array lived in memory.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 161
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Passing Arrays to Functions

§ When an array is passed to a function a pointer to
the zeroth element is passed across

§ The function may alter any element

§ The corresponding parameter may be declared as
a pointer, or by using the following special syntax

int add_elements(int a[], int size)
{

int add_elements(int *p, int size)
{

Passing Arrays to Functions

If we declare an array:
int a[60];

and then pass this array to a function:

function(a);

the compiler treats the name of the array “a” in exactly the same way it did before,
i.e. as a pointer to the zeroth element of the array. This means that a pointer is
passed to the function, i.e. the array is NOT passed by value.

Bounds
Checking
Within
Functions

One problem with this strategy is that there is no way for the function to know
how many elements are in the array (all the function gets is a pointer to one
integer, this could be one lone integer or there could be one hundred other
integers immediately after it). This accounts for the second parameter in the two
versions of the add_elements function above. This parameter must be
provided by us as the valid number of elements in the array.

Note that there is some special syntax which makes the parameter a pointer.
This is:

int a[]

This is one of very few places this syntax may be used. Try to use it to declare an
array and the compiler will complain because it cannot determine how much
storage to allocate for the array. All it is doing here is the same as:

int * a;

Since pointers are being used here and we can write down pointers, any element
of the array may be changed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

162 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

Example

#include <stdio.h>

void sum(long [], int);

int main(void)
{

long primes[6] = { 1, 2,
3, 5, 7, 11 };

sum(primes, 6);

printf("%li\n", primes[0]);

return 0;
}

void sum(long a[], int sz)
{

int i;
long total = 0;

for(i = 0; i < sz; i++)
total += a[i];

a[0] = total;
}

1

2

3

5

7

11

primes

a

sz 6

the total is written over
element zero

provides bounds checking

Example

A Pointer is
Passed

In the example above the array “primes” is passed down to the function “sum” by
way of a pointer. “a” is initialized to point to primes[0], which contains the value
1.

Within the function the array access a[i] is quite valid. When “i” is zero, a[0] gives
access to the value 1. When “i” is one, a[1] gives access to the value 2 and so
on. Think of “i” as an offset of the number of long ints beyond where “a”
points.

Bounds
Checking

The second parameter, “sz” is 6 and provides bounds checking. You will see the
for loop:

for(i = 0; i < sz; i++)

is ideally suited for accessing the array elements. a[0] gives access to the first
element, containing 1. The last element to be accessed will be a[5] (because “i”
being equal to 6 causes the loop to exit) which contains the 11.

Notice that because call by reference is used, the sum function is able to alter any
element of the array. In this example, element a[0], in other words prime[0] is
altered to contain the sum.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 163
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

Using Pointers

§ Pointers may be used to access array elements
rather than using constructs involving “[]”

§ Pointers in C are automatically scaled by the size
of the object pointed to when involved in
arithmetic

long v[6] = { 1,2,
 3,4,5,6 };

long *p;

p = v;
printf("%ld\n", *p);
p++;
printf("%ld\n", *p);
p += 4;
printf("%ld\n", *p);

v

p

p++
p += 4

1000 1 2 3 4 5 6
1
2
6

1000
1004

1008
1012

1016
1020

Using Pointers

Pointers in C are ideally suited for accessing the elements of an array. We have
already seen how the name of an array acts like a pointer.

In the example above the array “v” starts at address 1000 in memory, i.e. the
address of element zero is 1000. Since the elements are long ints and hence 4
bytes in size, the next element, v[1] sits at address 1004 in memory.

Addition With
Pointers

If a pointer to a long int is initialised with “v” it will contain 1000. The printf
prints what is pointed to by “p”, i.e. 1. The most important thing to realize is that
on the next line “p++” the value contained by “p” does NOT become 1001. The
compiler, realizing that “p” is a pointer to a long int, and knowing that longs
are 4 bytes in size makes the value 1004. Addition to pointers is scaled by the
size of the object pointed to. printf now prints 2 at the end of the pointer
1004.

With the next statement “p += 4”, the 4 is scaled by 4, thus 16 is added to the
pointer. 1004 + 16 = 1020. This is the address of the sixth element, v[5]. Now
the printf prints 6.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

164 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Pointers Go Backwards Too

§ Scaling not only happens when addition is done,
it happens with subtraction too

long v[6] = { 1,2,
 3,4,5,6 };

long *p;

p = v + 5;
printf("%ld\n", *p);
p--;
printf("%ld\n", *p);
p -= 2;
printf("%ld\n", *p);

v

p

p--

1020 1 2 3 4 5 6
6
5
3

1000
1004

1008
1012

1016
1020

p-=2

Pointers Go Backwards Too

This scaling of pointers by the size of the object pointed to not only occurs with
addition. Whenever subtraction is done on a pointer, the scaling occurs too.

So, in the assignment: p = v + 5;

as we have already seen, v gives rise to the address 1000 and the 5 is scaled by
the size of a long int, 4 bytes to give 1000 + 5 * 4, i.e. 1020. Thus the pointer
“p” points to the last of the long integers within the array, element v[5], containing
6.

Subtraction
From Pointers

When the statement: p--;

is executed the pointer does NOT become 1019. Instead the compiler subtracts
one times the size of a long int. Thus 4 bytes are subtracted and the pointer
goes from 1020 to 1016. Thus the pointer now points to the element v[4]
containing 5.

With the statement: p -= 2;

the 2 is scaled by 4, giving 8. 1016 - 8 gives 1008, this being the address of the
element “v[2]”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 165
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Pointers May be Subtracted

§ When two pointers into the same array are
subtracted C scales again, giving the number of
array elements separating them

double d[7] = { 1.1, 2.2,
3.3, 4.4, 5.5, 6.6, 7.7 };

double *p1;
double *p2;

p1 = d + 1;
p2 = d + 6;

printf("%i\n", p2 - p1);
5

1.1 2.2 3.3 4.4 5.5 6.6 7.7

p1 p2

d

2000
2008

2016 2032 2048
2024 2040

20482008

Pointers May be Subtracted

We have discussed adding and subtracting integers from pointers. When this
occurs the compiler scales the integer by the size of the thing pointed to and adds
or subtracts the scaled amount. When two pointers are subtracted (note: two
pointers may NOT be added) the compiler scales the distance between them. In
the example above we are using an array of double, each double being 8 bytes
in size. If the address of the first is 2000, the address of the second is 2008, the
third is 2016 etc.

In the statement: p1 = d + 1;

“d” yields the address 2000, 1 is scaled by 8 giving 2000 + 8, i.e. 2008.

In: p2 = d + 6;

“d” yields the address 2000, 6 is scaled by 8 giving 2000 + 48, i.e. 2048.

When these two pointers are subtracted in:

p2 - p1

the apparent answer is 2048 - 2008 = 40. However, the compiler scales the 40 by
the size of the object pointed to. Since these are pointers to double, it scales by
8 bytes, thus 40 / 8 = 5;

Notice there are some rules here. The first pointer “p2” must point “higher” into
memory than the second pointer “p1”. If the subtraction had been written as

p1 - p2

the result would not have been meaningful. Also, the two pointers must point into
the same array. If you subtract two pointers into different arrays this only gives
information on where in memory the compiler has placed the arrays.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

166 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Using Pointers - Example

1

2

3

5

7

11

primes

p

end 1024

1000

1004

#include <stdio.h>

long sum(long*, int);

int main(void)
{

long primes[6] = { 1, 2,
3, 5, 7, 11 };

printf("%li\n", sum(primes, 6));

return 0;
}

long sum(long *p, int sz)
{

long *end = p + sz;
long total = 0;

while(p < end)
total += *p++;

return total;
}

1000

1008

1012

1016

1020

1024

Using Pointers - Example

Above is an example of using pointers to handle an array. In the statement:

sum(primes, 6)

the use of the name of the array “primes” causes the address of the zeroth
element, 1000, to be copied into “p”. The 6 is copied into “sz” and provides
bounds checking.

The initialization: long *end = p + sz;

sets the pointer “end” to be 1000 + 6 * 4 (since long int is 4 bytes in size), i.e.
1024. The location with address 1024 lies one beyond the end of the array,
hence

while(p < end)

and NOT: while(p <= end)

The statement: total += *p++;

adds into “total” (initially zero) the value at the end of the pointer “p”, i.e. 1. The
pointer is then incremented, 4 is added, “p” becoming 1004. Since 1004 is less
than the 1024 stored in “end”, the loop continues and the value at location 1004,
i.e. 2 is added in to total. The pointer increases to 1008, still less than 1024. It is
only when all the values in the array have been added, i.e. 1, 2, 3, 5, 7 and 11
that the pointer “p” points one beyond the 11 to the location whose address is
1024. Since the pointer “p” now contains 1024 and the pointer “end” contains
1024 the condition:

while(p < end)

is no longer true and the loop terminates. The value stored in total, 34, is
returned.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 167
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

* and ++

*p++ means:

*p++ find the value at the end of the pointer

*p++ increment the POINTER to point to the
next element

(*p)++ means:

(*p)++ find the value at the end of the pointer

(*p)++ increment the VALUE AT THE END OF THE
POINTER (the pointer never moves)

*++p means:

*++p increment the pointer

*++p find the value at the end of the pointer

* and ++
In “*p++”
Which Operator
is Done First?

In fact “++” has a higher precedence than “*”. If “++” gets done first, why isn’t the
pointer incremented and THEN the value at the end of the pointer obtained?
Clearly in the last program this didn’t happen. To understand the answer it is
important to remember the register used when postfix ++ is specified. In

int i = 5, j;

j = i++;

The value of “i”, 5, is saved in a register. “i” is then incremented, becoming 6.
The value in the register, 5, is then transferred into “j”. Thus the increment is
done before the assignment, yet is appears as though the assignment happens
first. Now consider:

x = *p++

and imagine that “p” contains 1000 (as before) and that “p” points to long ints
(as before). The value of “p”, 1000, is saved in a register. “p” is incremented and
becomes 1004. The pre-incremented value of 1000, saved in the register is used
with “*”. Thus we find what is stored in location 1000. This was the value 1
which is transferred into “x”.

(*p)++ With “(*p)++” the contents of location 1000, i.e. 1, is saved in the register. The
contents of location 1000 are then incremented. The 1 becomes a 2 and the
pointer still contains 1000. This construct is guaranteed never to move the
pointer, but to continually increment at the end of the pointer, i.e. the value in
element zero of the array.

++p With “++p”, because prefix increment is used, the register is not used. The
value of “p”, 1000, is incremented directly, becoming 1004. The value stored in
location 1004, i.e. 2, is then accessed. This construct is guaranteed to miss the
first value in the array.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

168 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Which Notation?

§ An axiom of C states a[i] is equivalent to *(a + i)

ap

short a[8] = { 10, 20, 30, 40, 50, 60, 70, 80 };
short *p = a;

printf("%i\n", a[3]);
printf("%i\n", *(a + 3));
printf("%i\n", *(p + 3));
printf("%i\n", p[3]);
printf("%i\n", 3[a]);

10 20 30 40 50 60 70 80

1000 1004 1008 1012
1002 1006 1010 1014

1000

40
40
40
40
40

Which Notation?

If both array access notation, “a[index]”, and pointer notation, “*p++”, may be
used to access array elements which is better? First, here are all the variations:

A fundamental truth (what mathematicians call an “axiom”) in C is that any array
access a[i] is equivalent to *(a+i).

Consider a[3] which will access the element containing 40. This element is also
accessed by *(a+3). Since “a” is the name of an array, the address 1000 is
yielded giving *(1000+3). Since the address has type pointer to short int, the
3 is scaled by the size of the object pointed to, i.e. *(1000+3*2). The contents of
location 1006 is the same 40 as yielded by a[3].

Now consider *(p+3). The pointer “p” contains the address 1000. So *(p+3)
gives *(1000+3). Because of the type of the pointer, 3 is scaled by the size of a
short int giving *(1000+3*2), i.e. the contents of location 1006, i.e. 40.

The next variation, p[3], looks strange. How can something that is clearly not an
array be used on the “outside” of a set of brackets? To understand this, all that is
needed is to apply the axiom above, i.e. a[i], and hence p[3], is equivalent to
*(a+i), hence *(p+3). Above is an explanation of how *(p+3) works.

This last variation, 3[a], looks strangest of all. However, a[3] is equivalent to
*(a+3), but *(a+3) must be equivalent to *(3+a) since “+” is commutative (10+20
is the same as 20+10). This, reapplying the axiom, must be equivalent to 3[a]. It
is not generally recommended to write array accesses this way, however it not
only must compile, but must access the element containing 40.

Use What is
Easiest!

This doesn’t answer the question of which notation is best, pointer or array
access. The answer is stick with what is easier to read and understand. Neither
a[3] nor *(p+3) notations will have any significant speed or efficiency advantage
over one another. If they both produce approximately the same speed code, why
not choose the one that is clearest and makes the code most maintainable?

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 169
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Strings

§ C has no native string type, instead we use arrays
of char

§ A special character, called a “null”, marks the
end (don’t confuse this with the NULL pointer)

§ This may be written as ‘\0’ (zero not capital ‘o’)

§ This is the only character whose ASCII value is
zero

§ Depending on how arrays of characters are built,
we may need to add the null by hand, or the
compiler may add it for us

Strings

The sudden topic change may seem a little strange until you realize that C doesn’t
really support strings. In C, strings are just arrays of characters, hence the
discussion here.

C has a special marker to denote the last character in a string. This character is
called the null and is written as '\0'. You should not confuse this null with the
NULL pointer seen in the pointers chapter. The difference is that NULL is an
invalid pointer value and may be defined in some strange and exotic way. The
null character is entirely different as it is always, and is guaranteed to be, zero.

Why the strange way of writing '\0' rather than just 0? This is because the
compiler assigns the type of int to 0, whereas it assigns the type char to '\0'.
The difference between the types is the number of bits, int gives 16 or 32 bits
worth of zero, char gives 8 bits worth of zero. Thus, potentially, the compiler
might see a problem with:

char c = 0;

since there are 16 or 32 bits of zero on the right of “=”, but room for only 8 of
those bits in “c”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

170 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Example

char first_name[5] = { 'J', 'o', 'h', 'n', '\0' };

char last_name[6] = "Minor";

char other[] = "Tony Blurt";

char characters[7] = "No null";

'J' 'o' 'h' 'n' 0first_name

'M' 'i' 'n' 'o' 'r'last_name 0

'T' 'o' 'n' 'y' 32other 'B' 'l' 'u' 'r' 't' 0

'N' 'o' 32 'n' 'u'characters 'l' 'l'

this special case specifically
excludes the null terminator

Example

The example above shows the two ways of constructing strings in C. The first
requires the string to be assembled by hand as in:

char first_name[5] = { 'J', 'o', 'h', 'n', '\0' };

Character
Arrays vs.
Strings

Each character value occupies a successive position in the array. Here the
compiler is not smart enough to figure we are constructing a string and so we
must add the null character '\0' by hand. If we had forgotten, the array of
characters would have been just that, an array of characters, not a string.

Null Added
Automatically

The second method is much more convenient and is shown by:

char last_name[6] = "Minor";

Here too the characters occupy successive locations in the array. The compiler
realizes we are constructing a string and automatically adds the null terminator,
thus 6 slots in the array and NOT 5.

As already seen, when providing an initial value with an array, the size may be
omitted, as in:

char other[] = "Tony Blurt";

Here, the size deduced by the compiler is 11 which includes space for the null
terminator.

Excluding Null A special case exists in C when the size is set to exactly the number of characters
used in the initialization not including the null character. As in:

char characters[7] = "No null";

Here the compiler deliberately excludes the null terminator. Here is an array of
characters and not a string.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 171
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Printing Strings

§ Strings may be printed by hand

§ Alternatively printf supports “%s”

char other[] = "Tony Blurt";

char *p;

p = other;
while(*p != '\0')

printf("%c", *p++);
printf("\n");

int i = 0;

while(other[i] != '\0')
printf("%c", other[i++]);

printf("\n");

printf("%s\n", other);

Printing Strings

printf “%s”
Format
Specifier

Strings may be printed by hand, character by character until the null is found or
by using the “%s” format specifier to printf. scanf understands this format
specifier too and will read a sequence of characters from the keyboard.

Consider the way: printf("%s\n", other);

actually works. Being an array, “other” generates the address of the first
character in the array. If this address were, say, 2010 the “%s” format specifier
tells printf to print the character stored at location 2010. This is the character
“T”.

printf then increments its pointer to become 2011 (because char is being delt
with, there is no scaling of the pointer). The value at this location “o” is tested to
see if it null. Since it is not, this value is printed too. Again the pointer is
incremented and becomes 2012. The character in this location “n” is tested to
see if it is null, since it is not, it is printed.

This carries on right through the “y”, space, “B”, “l”, “u”, “r” and “t”. With “t” the
pointer is 2019. Since the “t” is not null, it is printed, the pointer is incremented.
Now its value is 2020 and the value “\0” stored at that location is tested. printf
breaks out of its loop and returns to the caller.

Consider also the chaos that would result if the array “characters” defined
previously were thrown at printf and the “%s” format specifier. This array of
characters did not contain the null terminator and, since there is no bounds
checking in C, printf would continue printing characters randomly from
memory until by the laws of chance found a byte containing zero. This is a very
popular error in C programs.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

172 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Null Really Does Mark the End!

#include <stdio.h>

int main(void)
{

char other[] = "Tony Blurt";

printf("%s\n", other);

other[4] = '\0';

printf("%s\n", other);

return 0;
} Tony Blurt

Tony

'T' 'o' 'n' 'y' 32other 'B' 'l' 'u' 'r' 't' 0

even though the rest of
the data is still there,
printf will NOT move
past the null terminator

Null Really Does Mark the End!

The example here shows how printf will not move past the null terminator. In
the first case, 11 characters are output (including the space).

When the null terminator is written into the fifth position in the array only the four
characters before it are printed. Those other characters are still there, but simply
not printed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 173
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Assigning to Strings

§ Strings may be initialised with “=”, but not
assigned to with “=”

§ Remember the name of an array is a CONSTANT
pointer to the zeroth element

#include <stdio.h>
#include <string.h>

int main(void)
{

char who[] = "Tony Blurt";

who = "John Minor";

strcpy(who, "John Minor");

return 0;
}

Assigning to Strings

Don’t make the mistake of trying to assign values into strings at run time as in:

who = "John Minor";

By trying to assign to “who” the compiler would attempt to assign to the address
at which the “T” is stored (since “who” is the name of an array and therefore the
address of the zeroth element). This address is a constant. Instead the Standard
Library function strcpy should be used as in:

strcpy(who, "John Minor");

notice how the format is: strcpy(destination, source);

this routine contains a loop (similar to that contained in printf) which walks the
string checking for the null terminator. While it hasn’t been found it continues
copying into the target array. It ensures the null is copied too, thus making “who”
a valid string rather than just an array of characters. Notice also how strcpy does
absolutely no bounds checking, so:

strcpy(who, "a really very long string indeed");

would overflow the array “who” and corrupt the memory around it. This would
very likely cause the program to crash. A safer option entirely is to use strcpy’s
cousin strncpy which is count driven:

strncpy(who, "a really very long string indeed",
 sizeof(who));

This copies either up to the null terminator, or up to the count provided (here 11,
the number of bytes yielded by sizeof). Unfortunately when strncpy hits the
count first, it fails to null terminate. We have to do this by hand as in:

who[sizeof(who) - 1] = '\0';

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

174 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Pointing to Strings

§ To save us declaring many character arrays to
store strings, the compiler can store them
directly in the data segment

§ We need only declare a pointer

§ The compiler may recycle some of these strings,
therefore we must NOT alter any of the characters

char *p = "Data segment!!";
char *q = "nt!!";

'D' 'a' 't' 'a' 32 's' 'e' 'g' 'm' 'e' 'n' 't' '!' '!' 0

p 0xF100

0xF100 0xF10A

q 0xF10A

Pointing to Strings

Strings May be
Stored in the
Data Segment

The compiler stores strings in the data segment whenever we use double quotes
and are not initializing an array of characters. For instance:

char str[] = "this is a string";

does not cause str, or the characters “t”, “h”, “i” etc. to be placed in the data
segment. Instead we get a “normal” stack based array of characters. However,
the entirely different initialization:

char *str = "this is a string";

declares a stack based pointer “str” pointing directly into the data segment.

The ANSI and ISO Standards committees thought it would be really neat if the
compiler could optimize the storage of these strings. Thus the compiler is
allowed to set more than one pointer into the same block of memory, as shown
above. Obviously it can only do this when one string is a substring of another. If
we had changed the initialization to read:

char *q = "NT!!";

or even: char *q = "nt";

then the compiler would not have been able to perform this optimization. Other
storage in the data segment would need to be allocated. Because we don’t know
how many pointers will be pointing into a block of storage it is inadvisable to write
down any of these pointers. Really the declaration would be better as:

const char *p = "Data segment";

Which declares “p” as a pointer to a constant character. In fact it is not only “D”
(the character to which “p” is set to point) which is the constant character, all the
characters accessible by “p” become constant.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 175
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20

Example

#include <stdio.h>

int main(void)
{

char *p = "a string in the data segment\n";

"a second string in the data segment\n";

printf("a third string in the data segment\n");

printf("%s", p);

printf(p);

return 0;
}

this utterly pointless statement causes the
compiler to store the characters, unfortunately
we forget to save the address

a third string in the data segment
a string in the data segment
a string in the data segment

Example
The program above gives an insight into the nature of strings stored in the data
segment. Each of the lines:

char *p = "a string in the data segment\n";
"a second string in the data segment\n";
printf("a third string in the data segment\n");

and printf("%s", p);

cause strings to be stored in the data segment. The second of these is rather a
waste of time (indeed most compilers will produce a warning to this effect) as
although the characters are carefully stored by the compiler we forget to provide a
variable to store the address. Thus the address is forgotten and unless we trawl
the data segment looking for them we’d have a hard task finding them. A smart
compiler may decide not to store these characters at all. Although the third
statement:

printf("a third string in the data segment\n");

does not provide a variable to store the address, it does pass the address as the
first and only parameter to printf (remember the address will be that of the “a”
at the front of the string). printf takes this address and prints the characters
stored at successive locations until the null is encountered.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

176 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

The fourth line also causes characters to be placed in the data segment, though
perhaps not as obviously as with the previous statements. Here only three
characters are stored, “%”, “s” and the null, “\0”. As before the address of the first
character, the “%”, is passed to printf, which encounters the %s format
specifier. This instructs it to take the address stored in “p” and to walk down the
array of characters it finds there, stopping when the null is encountered.

The statement:

printf(p);

passes the pointer “p” directly to printf. Instead of having to wade through a
“%s”, it is handed a pointer to the character “a” on the front of “a second string in
the data segment\n”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 177
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 21

Multidimensional Arrays

§ C does not support multidimensional arrays

§ However, C does support arrays of any type
including arrays of arrays

float rainfall[12][365]; “rainfall” is an array of 12
arrays of 365 float

short exam_marks[500][10]; “exam_marks” is an array of
500 arrays of 10 short int

const int brighton = 7;
int day_of_year = 238;

rainfall[brighton][day_of_year] = 0.0F;

Multidimensional Arrays

Sometimes a simple array just isn’t enough. Say a program needed to store the
rainfall for 12 places for each of the 365 days in the year (pretend it isn’t a leap
year). 12 arrays of 365 reals would be needed. This is exactly what:

float rainfall[12][365];

gives. Alternatively imagine a (big) college with up to 500 students completing
exams. Each student may sit up to 10 exams. This would call for 500 arrays of
10 integers (we’re not interested in fractions of a percent, so whole numbers will
do). This is what: short exam_marks[500][10];

gives. Although it may be tempting to regard these variables as multi
dimensional arrays, C doesn’t treat them as such. Firstly, to access the 5th
location’s rainfall on the 108th day of the year we would write:

printf("rainfall was %f\n", rainfall[5][108]);

and NOT (as in some languages):

printf("rainfall was %f\n", rainfall[5, 108]);

which wouldn’t compile. In fact, C expects these variables to be initialized as
arrays of arrays. Consider:

int rainfall_in_mm_per_month[4][12] = {
{ 17, 15, 20, 25, 30, 35, 48, 37, 28, 19, 18, 10 },
{ 13, 13, 18, 20, 27, 29, 29, 26, 20, 15, 11, 8 },
{ 7, 9, 11, 11, 12, 14, 16, 13, 11, 8, 6, 3 },
{ 29, 35, 40, 44, 47, 51, 59, 57, 42, 39, 35, 28 },

};

where each of the four arrays of twelve floats are initialized separately.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

178 Arrays in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 22

Review

#include <stdio.h>

int main(void)
{

int i;
int a[10];

for(i = 0; i <= 10; i++) {
printf("%d\n", i);
a[i] = 0;

}

return 0;
}

§ How many times does the following program
loop?

Review

Time for a break. How many times will the loop execute?

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C 179
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 23

Summary

§ Arrays are declared with a type, a name, “[]” and
a CONSTANT

§ Access to elements by array name, “[]” and an
integer

§ Arrays passed into functions by pointer

§ Pointer arithmetic

§ Strings - arrays of characters with a null
terminator

§ Sometimes compiler stores null for us (when
double quotes are used) otherwise we have to
store it ourselves

Summary

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Exercises 181
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

182 Arrays in C - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: ARRAYS

1. In the file “ARRAY1.C”. There is a call to a function:

void print_array(int a[], int count);

Implement this function using either pointer or array index notation. This file also contains a call to the
preprocessor macro ASIZE which determines the number of elements in an array. Don’t worry about
this, the macro works and how it works will be discussed in a later chapter.

2. In the file “ARRAY2.C” there is a call to the function:

float average(int a[], int count);

Implement this function which averages the “count” values in the array “a” and returns the answer as a
float. You will need to cut and paste your print_array function from the previous exercise.

3. In “ARRAY3.C” you need to write the copy_array function, which has the prototype:

void copy_array(int to[], int from[], int count);

which copies the array passed as its second parameter into the array passed as its first parameter.
The third parameter is a count of the number of elements to be copied. You should assume the target
array has a number of elements greater than or equal to that of the source array.

Write this routine using either pointers or array index notation. Once again, you will need to cut and
paste your print_array function.

4. In “ARRAY4.C”, implement the function

int *biggest(int *a, int count);

such that the function returns a pointer to the largest element in the array pointed to by “a”.

5. In “ARRAY5.C”, there is a call to the print_in_reverse function which has the following prototype:
void print_in_reverse(float *a, int count);

Using pointers, write this function to print the array in reverse order.

6. Open the file “STRING1.C”. There are two strings declared and a call to the function len for each one.
The function has the prototype

int len(char *str);

and returns the number of characters in the string. Implement this function by walking down the array
searching for the null terminator character.

7. Open the file “STRING2.C”. Implement the count_char function with the prototype:

int count_char(char *str, char what);

which returns the number of occurrences of the character what within the string str.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Exercises 183
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

8. Open the file “STRING3.C”. There is a call to the copy_string function which has the prototype:

void copy_string(char *to, char *from);

Notice that unlike the copy_array function, there is no third parameter to indicate the number of
characters to be copied. Always assume there is enough storage in the target array to contain the data
from the source array.

9. Open the file “LOTTERY.C”. If you run the program you will see that 6 random numbers in the range
1..49 are stored in the selected array before it is printed. No checking is done to see if the same
number occurs more than once.

Add the required checking and as a final touch, sort the numbers before you print them.

Could you think of a better strategy for generating the 6 different numbers?

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Solutions 185
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Arrays Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

186 Arrays in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. In the file “ARRAY1.C” implement the function

void print_array(int a[], int count);

This solution uses array index notation

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(A[0])

void print_array(int a[], int count);

int main(void)
{
 int values[] = { 17, 27, 34, 52, 79,
 87, 103, 109, 187, 214 };

 printf("The array contains the following values\n");
 print_array(values, A_SIZE(values));

 return 0;
}

void print_array(int a[], int count)
{
 int i;

 for(i = 0; i < count; i++)
 printf("%i\t", a[i]);

 printf("\n");
}

2. In the file “ARRAY2.C” implement the function

float average(int a[], int count);

The only problem here is to ensure that the average is calculated using floating point arithmetic. This
will not necessarily happen since the routine deals with an array of integers. By declaring the sum as a
float, when the sum is divided by the number of elements, floating point division is achieved.

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(A[0])

void print_array(int a[], int count);
float average(int a[], int count);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Solutions 187
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int main(void)
{
 int values[] = { 17, 27, 34, 52, 79,
 87, 103, 109, 187, 214 };

 printf("The array contains the following values\n");
 print_array(values, A_SIZE(values));

 printf("and has an average of %.2f\n",
 average(values, A_SIZE(values)));

 return 0;
}

void print_array(int a[], int count)
{
 int i;

 for(i = 0; i < count; i++)
 printf("%i\t", a[i]);

 printf("\n");
}

float average(int a[], int count)
{
 float av = 0.0F;
 int i;

 for(i = 0; i < count; i++)
 av += a[i];

 return av / count;
}

3. In “ARRAY3.C” implement the function:

void copy_array(int to[], int from[], int count);

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(A[0])

void print_array(int a[], int count);
void copy_array(int to[], int from[], int count);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

188 Arrays in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int main(void)
{
 int orig[6] = { 17, 27, 37, 47, 57, 67 };
 int copy[6] = { -1, -1, -1, -1, -1, -1 };

 copy_array(copy, orig, A_SIZE(copy));

 printf("The copy contains the following values\n");
 print_array(copy, A_SIZE(copy));

 return 0;
}

/* This function is as before
 */
void print_array(int a[], int count)
{
 int i;

 for(i = 0; i < count; i++)
 printf("%i\t", a[i]);

 printf("\n");
}

void copy_array(int to[], int from[], int count)
{
 int i;

 for(i = 0; i < count; i++)
 to[i] = from[i];
}

4. In “ARRAY4.C”, implement the function

int *biggest(int *a, int count);

The function “biggest” initializes a pointer “current_biggest” to the first element of the array. It then
starts searching one beyond this element (since it is pointless to compare the first element with itself).

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(A[0])

int* biggest(int *a, int count);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Solutions 189
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int main(void)
{

int values[16] = { 47, 17, 38, 91, 33, 24, 99, 35, 42, 10,
11, 43, 32, 97, 108, -8 };

int *p;

p = biggest(values, A_SIZE(values));

printf("the biggest element in the array is %i\n", *p);

return 0;
}

int* biggest(int *a, int count)
{

int *current_biggest = a;
int *p = a + 1;
int *end = a + count;

while(p < end) {
if(*current_biggest < *p)

current_biggest = p;
p++;

}
return current_biggest;

}

5. In “ARRAY5.C” implement the print_in_reverse function which has the following prototype:
void print_in_reverse(float *a, int count);

The -1 in the initialization of “end” is important, since without it, “end” points one beyond the end of the
array and this element is printed within the loop. Where no -1 is used, “*end--” would need to be
changed to “*--end”.

#include <stdio.h>

#define A_SIZE(A) sizeof(A)/sizeof(A[0])

void print_in_reverse(float a[], int count);

int main(void)
{
 float values[6] = { 12.1F, 22.2F, 32.3F,

42.4F, 52.5F, 62.6F };

 printf("The array in reverse\n");
 print_in_reverse(values, A_SIZE(values));

 return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

190 Arrays in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

void print_in_reverse(float a[], int count)
{
 float * end = a + count - 1;

 while(end >= a)
 printf("%.1f\t", *end--);

 printf("\n");
}

6. In “STRING1.C” implement the function len which has the prototype

int len(char *str);

Although the while loop within slen is already consise, it would be possible to write “while(*str++)” which
would achieve the same results. This would rely on the ASCII values of the characters being non zero
(true). When the null terminator is encountered, it has a value of zero (false).

#include <stdio.h>

int slen(char *str);

int main(void)
{
 char s1[] = "Question 6.";
 char s2[] = "Twenty eight characters long";

 printf("The string \"%s\" is %i characters long\n",
 s1, slen(s1));

 printf("The string \"%s\" is %i characters long\n",
 s2, slen(s2));

 return 0;
}

int slen(char* str)
{
 int count = 0;

 while(*str++ != '\0')
 count++;

 return count;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Solutions 191
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

7. In “STRING2.C” implement the count_char function which has the prototype:

int count_char(char *str, char what);

The solution uses the tricky, yet popular, construct “n += first == second”. This relies on the guaranteed
result of a boolean expression being 1 or 0. If first and second are not alike false, i.e. 0, results. When
added into the running total, no difference is made. If first and second are the same true, i.e. 1, results.
When added to the running total, the total is increased by one more. By the end of the loop we have
counted all the trues. This is a count of the matching characters.

#include <stdio.h>

int count_char(char *str, char what);

int main(void)
{
 char s1[] = "Twenty eight characters long";
 char s2[] = "count_char";

 printf("The string \"%s\" contains '%c' %i times\n",
 s1, 'e', count_char(s1, 'e'));

 printf("The string \"%s\" contains '%c' %i times\n",
 s2, 'c', count_char(s2, 'c'));

 return 0;
}

int count_char(char *str, char what)
{
 int count = 0;

 while(*str != '\0') {
 count += *str == what;
 str++;
 }

 return count;
}

8. In “STRING3.C” implement:

void copy_string(char *to, char *from);

The copy_string function uses one of the most concise C constructs imaginable. Here the “=” is not a
mistake (normally “==” would be intended). One byte at a time is copied via the “=”, both pointers being
moved to the next byte by the “++” operators. The byte that has just been copied is then tested. C
treats any non zero value as true. Thus if we had copied ‘A’ its ASCII value would be 65 and thus true.
Copying the next character gives another ASCII value and so on. At the end of the “from” string is a
null terminator. This is the only character whose ASCII value is zero. Zero always tests false. Don’t
forget the assignment must complete before the value may be tested.

#include <stdio.h>

void copy_string(char to[], char from[]);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

192 Arrays in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int main(void)
{
 char s1[] = "Twenty eight characters long";
 char s2[] = "Important data";

 copy_string(s1, s2);

 printf("The string s1 now contains \"%s\"\n", s1);

 return 0;
}

void copy_string(char to[], char from[])
{

while(*to++ = *from++)
;

}

9. In “LOTTERY.C” 6 random numbers in the range 1..49 are stored in the selected array before printing.
No checking is done to see if the same number occurs more than once. Add the required checking and
as a final touch, sort the numbers before you print them.

The search function checks to see if the new number to be added is already present in the array.
Although it is a “brute force” approach, there are only a maximum of 6 numbers so this is not a problem.
Once chosen, the Standard Library routine qsort is used to sort the numbers. This routine requires the
int_compare function. Look up qsort in the help to understand what is going on here.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define TOTAL_NUMBER 6

void seed_generator(void);
int get_rand_in_range(int from, int to);
int search(int target, int array[], int size);
int int_compare(const void* v_one, const void* v_two);

int main(void)
{
 int i;
 int r;
 int selected[TOTAL_NUMBER];

 seed_generator();

 for(i = 0; i < TOTAL_NUMBER; i++) {

 do
 r = get_rand_in_range(1, 49);
 while(search(r, selected, i));

 selected[i] = r;
 }

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Solutions 193
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

 qsort(selected, TOTAL_NUMBER, sizeof(int), int_compare);

 for(i = 0; i < TOTAL_NUMBER; i++)
 printf("%i\t", selected[i]);

 printf("\n");

 return 0;
}

int get_rand_in_range(int from, int to)
{
 int min = (from > to) ? to : from;

 return rand() % abs(to - from + 1) + min;
}

void seed_generator(void)
{
 time_t now;

 now = time(NULL);
 srand((unsigned)now);
}

int search(int target, int array[], int size)
{
 int i;

 for(i = 0; i < size; i++)
 if(array[i] == target)
 return 1;

 return 0;
}

int int_compare(const void* v_one, const void* v_two)
{
 const int* one = v_one;
 const int* two = v_two;

 return *one - *two;
}

Could you think of a better strategy for generating the 6 different numbers?

This solution uses an array of “hits” with 49 slots. Say 17 is drawn, location 17 in the array is tested to
see if 17 has been drawn before. If it has, the location will contain 1. If not (the array is cleared at the
start) array element 17 is set to 1. We are finished when there are 6 1s in the array. The index of each
slot containing “1” is printed, i.e. 17 plus the other five. Since the array is searched in ascending order
there is no need for sorting.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

194 Arrays in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX 49
#define TOTAL_NUMBER 6

void seed_generator(void);
int get_rand_in_range(int from, int to);
int count_entries(int array[]);

int main(void)
{
 int i = 0;
 int r;
 int all[MAX + 1] = { 0 }; /* Nothing selected */

 seed_generator();

 while(count_entries(all) < TOTAL_NUMBER) {

 do
r = get_rand_in_range(1, 49);

 while(all[r]);

 all[r] = 1;
 }

 for(i = 1; i <= MAX; i++)
 if(all[i])

 printf("%i\t", i);

 printf("\n");

 return 0;
}

int get_rand_in_range(int from, int to)
{
 int min = (from > to) ? to : from;

 return rand() % abs(to - from + 1) + min;
}

void seed_generator(void)
{
 time_t now;

 now = time(NULL);
 srand((unsigned)now);
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Arrays in C - Solutions 195
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int count_entries(int array[])
{
 int i;
 int total;

 for(i = 1, total = 0; i <= MAX; i++)
 total += array[i] == 1;

 return total;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 197
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures in C

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

198 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Structures in C

§ Concepts

§ Creating a structure template

§ Using the template to create an instance

§ Initialising an instance

§ Accessing an instance’s members

§ Passing instances to functions

§ Linked lists

Structures in C

This chapters investigates structures (records) in C.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 199
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Concepts

§ A structure is a collection of one of more
variables grouped together under a single name
for convenient handling

§ The variables in a structure are called members
and may have any type, including arrays or other
structures

§ The steps are:
– set-up a template (blueprint) to tell the compiler how to build

the structure
– Use the template to create as many instances of the structure

as desired
– Access the members of an instance as desired

Concepts

Thus far we have examined arrays. The fundamental property of the array is that
all of the elements are exactly the same type. Sometimes this is not what is
desired. We would like to group things of potentially different types together in a
tidy “lump” for convenience.

Whereas the parts of an array are called “elements” the parts of a structure are
called “members”.

Just as it is possible to have arrays of any type, so it is possible to have any type
within a structure (except void). It is possible to place arrays inside structures,
structures inside structures and possible to create arrays of structures.

The first step is to set up a blueprint to tell the compiler how to make the kinds of
structures we want. For instance, if you wanted to build a car, you’d need a
detailed drawing first. Just because you possess the drawing does not mean you
have a car. It would be necessary to take the drawing to a factory and get them
to make one. The factory wouldn’t just stop at one, it could make two, three or
even three hundred. Each car would be a single individual instance, with its own
doors, wheels, mirrors etc.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

200 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Setting up the Template

§ Structure templates are created by using the
struct keyword

struct Book
{

char title[80];
char author[80];
float price;
char isbn[20];

};

struct Date
{

int day;
int month;
int year;

};

struct Library_member
{

char name[80];
char address[200];
long member_number;
float fines[10];
struct Date dob;
struct Date enrolled;

};

struct Library_book
{

struct Book b;
struct Date due;
struct Library_member *who;

};

Setting up the Template

The four examples above show how the template (or blueprint) is specified to the
compiler. The keyword struct is followed by a name (called a tag). The tag
helps us to tell the compiler which of the templates we’re interested in. Just
because we have a structure template does not mean we have any structures.
No stack, data segment or heap memory is allocated when we create a structure
template. Just because we have a blueprint telling us that a book has a title,
author, ISBN number and price does not mean we have a book.

Structures vs.
Arrays

The Date structure, consisting as it does of three integers offers advantages over
an array of three integers. With an array the elements would be numbered 0, 1
and 2. This would give no clue as to which one was the day, which the month
and which the year. Using a structure gives these members names so there can
be no confusion.

The Book structure not only contains members of different types (char and
float) it also contains three arrays.

The Library_member structure contains two Date structures, a date of birth as
well as a date of enrolment within the library.

Finally the Library_book structure contains a Book structure, a Date structure and
a pointer to a Library_member structure.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 201
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Creating Instances

§ Having created the template, an instance (or
instances) of the structure may be declared

struct Date
{

int day;
int month;
int year;

} today, tomorrow;

struct Date next_monday;

struct Date next_week[7];

an array of 7
date instances

instances must be
declared before the ‘;’ ...

... or “struct Date” has
to be repeated

Creating Instances

Instance? The template gives the compiler all the information it needs on how to build an
instance or instances. An “instance” is defined in the dictionary as “an example,
or illustration of”. Going back to the car example, the blueprint enables us to
make many cars. Each car is different and distinct. If one car is painted blue, it
doesn’t mean all cars are painted blue. Each car is an “instance”. Each instance
is separate from every other instance and separate from the template. There is
only ever one template (unless you want to start building slightly different kinds of
car).

Above, the Date template is used to create two date instances, “today” and
“tomorrow”. Any variable names placed after the closing brace and before the
terminating semicolon are structures of the specified type.

After the semicolon of the structure template, “struct Date” needs to be
repeated.

With the array “next_week”, each element of the array is an individual Date
structure. Each element has its own distinct day, month and year members. For
instance, the day member of the first (i.e. zeroth) date would be accessed with:

next_week[0].day

the month of the fourth date would be accessed with:

next_week[3].month

and the year of the last date with:

next_week[6].year

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

202 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Initialising Instances

§ Structure instances may be initialised using
braces (as with arrays)

int primes[7] = { 1, 2, 3, 5, 7, 11, 13 };

struct Date bug_day = { 1, 1, 2000 };

struct Book k_and_r = {
"The C Programming Language 2nd edition",
"Brian W. Kernighan and Dennis M. Ritchie",
31.95,
"0-13-110362-8"

};
struct Book
{

char title[80];
char author[80];
float price;
char isbn[20];

};

Initializing Instances

In the last chapter we saw how braces were used in the initialization of arrays, as
in the “primes” example above. The seven slots in the array are filled with the
corresponding value from the braces.

A similar syntax is used in the initialization of structures. With the initialization of
“bug_day” above, the first value 1 is assigned into bug_day’s first member, “day”.
The second value “1” is assigned into bug_day’s second member, “month”. The
2000 is assigned into bug_day’s third member “year”. It is just as though we had
written:

struct Date bug_day;

bug_day.day = 1;
bug_day.month = 1;
bug_day.year = 2000;

With the initialization of “k_and_r” the first string is assigned to the member “title”,
the second string assigned to the member “author” etc. It is as though we had
written:

struct Book k_and_r;

strcpy(k_and_r.title, "The C Programming Language 2nd edition");
strcpy(k_and_r.author, "Brian W. Kernighan and Dennis M. Ritchie");
k_and_r.price = 31.95;
strcpy(k_and_r.isbn, "0-13-110362-8");

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 203
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Structures Within Structures

struct Library_member
{

char name[80];
char address[200];
long member_number;
float fines[10];
struct Date dob;
struct Date enrolled;

};

struct Library_member m = {
"Arthur Dent",
"16 New Bypass",
42,
{ 0.10, 2.58, 0.13, 1.10 },
{ 18, 9, 1959 },
{ 1, 4, 1978 }

};

initialises first 4
elements of array
“fines”, remainder are
initialised to 0.0

initialises day, month
and year of “dob”

initialises day, month
and year of “enrolled”

Structures Within Structures

We have already seen that it is possible to declare structures within structures, here
is an example of how to initialize them. To initialize a structure or an array braces
are used. To initialize an array within a structure two sets of braces must be used.
To initialize a structure within a structure, again, two sets of braces must be used.

It is as though we had written:

struct Library_member m;

strcpy(m.name, "Arthur Dent");
strcpy(m.address, "16 New Bypass");
m.member_number = 42;
m.fines[0] = 0.10; m.fines[1] = 2.58; m.fines[2] = 0.13; m.fines[3] = 1.10;
m.fines[4] = 0.00; m.fines[5] = 0.00; m.fines[6] = 0.00; m.fines[7] = 0.00;
m.fines[8] = 0.00; m.fines[9] = 0.00;
m.dob.day = 18; m.dob.month = 9; m.dob.year = 1959;
m.enrolled.day = 1; m.enrolled.month = 4; m.enrolled.year = 1978;

Reminder -
Avoid
Leading
Zeros

Although a small point, notice the date initialization:

{ 18, 9, 1959 }

above. It is important to resist the temptation to write:

{ 18, 09, 1959 }

since the leading zero introduces an octal number and “9” is not a valid octal digit.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

204 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

struct Library_member
{

char name[80];
char address[200];
long member_number;
float fines[10];
struct Date dob;
struct Date enrolled;

};

Accessing Members

§ Members are accessed using the instance name,
“.” and the member name

printf("name = %s\n", m.name);
printf("membership number = %li\n", m.member_number);

printf("fines: ");
for(i = 0; i < 10 && m.fines[i] > 0.0; i++)

printf("£%.2f ", m.fines[i]);

printf("\njoined %i/%i/%i\n", m.enrolled.day,
m.enrolled.month, m.enrolled.year);

struct Library_member m;

Accessing Members

Members of structures are accessed using C’s “.” operator. The syntax is:

structure_variable.member_name

Accessing
Members Which
are Arrays

If the member being accessed happens to be an array (as is the case with
“fines”), square brackets must be used to access the elements (just as they would
with any other array):

m.fines[0]

would access the first (i.e. zeroth) element of the array.

Accessing
Members Which
are Structures

When a structure is nested inside a structure, two dots must be used as in

m.enrolled.month

which literally says “the member of ‘m’ called ‘enrolled’, which has a member
called ‘month’”. If “month” were a structure, a third dot would be needed to
access one of its members and so on.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 205
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

Unusual Properties

§ Structures have some very “un-C-like” properties,
certainly when considering how arrays are
handled

Arrays Structures

Name is pointer to the structure itself
zeroth element

Passed to functions by pointer value or pointer

Returned from functions no way by value or pointer

May be assigned with “=” no way yes

Unusual Properties

Common
Features
Between Arrays
and Structures

Structures and arrays have features in common. Both cause the compiler to
group variables together. In the case of arrays, the variables are elements and
have the same type. In the case of structures the variables are members and
may have differing type.

Differences
Between Arrays
and Structures

Despite this, the compiler does not treat arrays and structures in the same way.
As seen in the last chapter, in C the name of an array yields the address of the
zeroth element of the array. With structures, the name of a structure instance is
just the name of the structure instance, NOT a pointer to one of the members.

When an array is passed to a function you have no choice as to how the array is
passed. As the name of an array is “automatically” a pointer to the start, arrays
are passed by pointer. There is no mechanism to request an array to be passed
by value. Structures, on the other hand may be passed either by value or by
pointer.

An array cannot be returned from a function. The nature of arrays makes it
possible to return a pointer to a particular element, however this is not be the
same as returning the whole array. It could be argued that by returning a pointer
to the first element, the whole array is returned, however this is a somewhat weak
argument. With structures the programmer may choose to return a structure or a
pointer to the structure.

Finally, arrays cannot be assigned with C’s assignment operator. Since the name
of an array is a constant pointer to the first element, it may not appear on the left
hand side of an assignment (since no constant may be assigned to). Two
structures may be assigned to one another. The values stored in the members of
the right hand structure are copied over the members of the left hand structure,
even if these members are arrays or other structures.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

206 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Instances may be Assigned

§ Two structure instances may be assigned to one
another via “=”

§ All the members of the instance are copied
(including arrays or other structures)

struct Library_member m = {
"Arthur Dent",
.....

};
struct Library_member tmp;

tmp = m;

copies array “name”, array “address”,
long integer “member_number”, array
“fines”, Date structure “dob” and Date
structure “enrolled”

Instances May be Assigned

Cannot Assign
Arrays

It is not possible to assign arrays in C, consider:

int a[10];
int b[10];

a = b;

The name of the array “a” is a constant pointer to the zeroth element of “a”. A
constant may not be assigned to, thus the compiler will throw out the assignment
“a = b”.

Can Assign
Structures
Containing
Arrays

Consider:
struct A {

int array[10];
};
struct A a, b;

a = b;

Now both instances “a” and “b” contain an array of 10 integers. The ten elements
contained in “b.array” are copied over the ten elements in “a.array”. Not only
does this statement compile, it also works! All the members of a structure are
copied, no matter how complicated they are. Members which are arrays are
copied, members which are nested structures are also copied.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 207
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Passing Instances to Functions

§ An instance of a structure may be passed to a
function by value or by pointer

§ Pass by value becomes less and less efficient as
the structure size increases

§ Pass by pointer remains efficient regardless of
the structure size

void by_value(struct Library_member);
void by_reference(struct Library_member *);

by_value(m);
by_reference(&m);

compiler writes a pointer
(4 bytes?) onto the stack

compiler writes 300+
bytes onto the stack

Passing Instances to Functions

Pass by Value
or Pass by
Reference?

As a programmer you have a choice of passing a structure instance either by
value or by pointer. It is important to consider which of these is better. When
passing an array to a function there is no choice. There isn’t a choice for one
important reason, it is invariably less efficient to pass an array by value than it is
by pointer. Consider an array of 100 long int. Since a long int is 4 bytes in
size, and C guarantees to allocate an array in contiguous storage, the array would
be a total of 400 bytes.

If the compiler used pass by value, it would need to copy 400 bytes onto the
stack. This would be time consuming and we may, on a small machine, run out
of stack space (remember we would need to maintain two copies - the original
and the parameter). Here we are considering a “small” array. Arrays can very
quickly become larger and occupy even more storage.

When the compiler uses pass by reference it copies a pointer onto the stack.
This pointer may be 2 or 4 bytes, perhaps larger, but there is no way its size will
compare unfavorably with 400 bytes.

The same arguments apply to structures. The Library_member structure is over
300 bytes in size. The choice between copying over 300 bytes vs. copying
around 4 bytes is an easy one to make.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

208 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Pointers to Structures

§ Passing pointers to structure instances is more
efficient

§ Dealing with an instance at the end of a pointer is
not so straightforward!

void member_display(struct Library_member *p)
{

printf("name = %s\n", (*p).name);
printf("membership number = %li\n", (*p).member_number);

printf("fines: ");
for(i = 0; i < 10 && (*p).fines[i] > 0.0; i++)

printf("£%.2f ", (*p).fines[i]);

printf("\njoined %i/%i/%i\n", (*p).enrolled.day,
(*p).enrolled.month, (*p).enrolled.year);

}

Pointers to Structures

Passing a pointer to a structure in preference to passing the structure by value
will almost invariably be more efficient. Unfortunately when a pointer to a
structure is passed, coding the function becomes tricky. The rather messy
construct:

(*p).name

is necessary to access the member called “name” (an array of characters) of the
structure at the end of the pointer.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 209
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

Why (*p).name ?

§ The messy syntax is needed because “.” has
higher precedence than “*”, thus:

*p.name

means “what p.name points to” (a problem
because there is no structure instance “p”)

§ As Kernighan and Ritchie foresaw pointers and
structures being used frequently they invented a
new operator

p->name = (*p).name

Why (*p).name?
The question occurs as to why: (*p).name

is necessary as opposed to: *p.name

The two operators “*” and “.” live at different levels in the precedence table. In
fact “.”, the structure member operator, is one of the highest precedence
operators there is. The “pointer to” operator, “*” although being a high
precedence operator is not quite as high up the table.

Thus: *p.name

would implicitly mean: *(p.name)

For this to compile there would need to be a structure called “p”. However “p”
does not have type “structure”, but “pointer to structure”. Things get worse. If “p”
were a structure after all, the name member would be accessed. The “*” operator
would find where “p.name” pointed. Far from accessing what we thought (a
pointer to the zeroth element of the array) we would access the first character of
the name. With printf’s fundamental inability to tell when we’ve got things right
or wrong, printing the first character with the “%s” format specifier would be a
fundamental error (printf would take the ASCII value of the character, go to
that location in memory and print out all the bytes it found there up until the next
byte containing zero).

A New Operator Since Kernighan and Ritchie foresaw themselves using pointers to structures
frequently, they invented an operator that would be easier to use. This new
operator consists of two separate characters “-” and “>” combined together into “-
>”. This is similar to the combination of divide, “/”, and multiply, “*”, which gives
the open comment sequence.

The messy (*p).name now becomes p->name which is both easier to write
and easier to read.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

210 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Using p->name

§ Now dealing with the instance at the end of the
pointer is more straightforward

void member_display(struct Library_member *p)
{

printf("name = %s\n", p->name);
printf("address = %s\n", p->address);
printf("membership number = %li\n", p->member_number);

printf("fines: ");
for(i = 0; i < 10 && p->fines[i] > 0.0; i++)

printf("£%.2f ", p->fines[i]);

printf("\njoined %i/%i/%i\n", p->enrolled.day,
p->enrolled.month, p->enrolled.year);

}

Using p->name

As can be seen from the code above, the notation:

p->name
although exactly equivalent to:

(*p).name

is easier to read, easier to write and easier to understand. All that is happening is
that the member “name” of the structure at the end of the pointer “p” is being
accessed.

Note: p->enrolled.day

and NOT: p->enrolled->day

since “enrolled” is a structure and not a pointer to a structure.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 211
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Pass by Reference - Warning

§ Although pass by reference is more efficient, the
function can alter the structure (perhaps
inadvertently)

§ Use a pointer to a constant structure instead

void member_display(struct Library_member *p)
{

printf("fines: ");
for(i = 0; i < 10 && p->fines[i] = 0.0; i++)

printf("£%.2f ", p->fines[i]);
}

void member_display(const struct Library_member *p)
{

....
}

function alters
the library
member instance

Pass by Reference - Warning

We have already seen how passing structure instances by reference is more
efficient than pass by value. However, never forget that when a pointer is passed
we have the ability to alter the thing at the end of the pointer. This is certainly
true with arrays where any element of the array may be altered by a function
passed a pointer to the start.

Although we may not intend to alter the structure, we may do so accidentally.
Above is one of the most popular mistakes in C, confusing “=” with “==”. The
upshot is that instead of testing against 0.0, we assign 0.0 into the zeroth element
of the “fines” array. Thus the array, and hence the structure are changed.

const to the
Rescue!

The solution to this problem which lies with the const keyword (discussed in the
first chapter). In C it is possible to declare a pointer to a constant. So:

int *p;

declares “p” to be a pointer to an integer, whereas:

const int *p;

declares “p” to be a pointer to a constant integer. The pointer “p” may change, so

p++;

would be allowed. However the value at the end of the pointer could not be
changed, thus

*p = 17;

would NOT compile. The parameter “p” to the function member_display has
type “pointer to constant structure Library_member” meaning the structure Library
member on the end of the pointer cannot be changed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

212 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Returning Structure Instances

§ Structure instances may be returned by value
from functions

§ This can be as inefficient as with pass by value

§ Sometimes it is convenient!

struct Complex add(struct Complex a, struct Complex b)
{

struct Complex result = a;

result.real_part += b.real_part;
result.imag_part += b.imag_part;

return result;
} struct Complex c1 = { 1.0, 1.1 };

struct Complex c2 = { 2.0, 2.1 };
struct Complex c3;

c3 = add(c1, c2); /* c3 = c1 + c2 */

Returning Structure Instances

As well as pass by value, it is also possible to return structures by value in C. The same
consideration should be given to efficiency. The larger the structure the less efficient
return by value becomes as opposed to return by pointer. Sometimes the benefits of
return by value outweigh the inefficiencies. Take for example the code above which
manipulates complex numbers. The add function returns the structure “result” by value.
Consider this version which attempts to use return by pointer:

struct Complex* add(struct Complex a, struct Complex b)
{

struct Complex result = a;
/* as above */
return &result;

}

This function contains a fatal error! The variable “result” is stack based, thus it is
allocated on entry into the function and deallocated on exit from the function. When this
function returns to the calling function it hands back a pointer to a piece of storage
which has been deallocated. Any attempt to use that storage would be very unwise
indeed. Here is a working version which attempts to be as efficient as possible:

void add(struct Complex *a, struct Complex *b, struct Complex
*result)

{
result->real_part = a->real_part + b->real_part;
result->imag_part = a->imag_part + b->imag_part;

}

Pass by pointer is used for all parameters. There is no inefficient return by value,
however consider how this function must be called and whether the resulting code is as
obvious as the code above:

struct Complex c1 = { 1.0, 1.1 }, c2 = { 2.0, 2.1 }, c3;

add(&c1, &c2, &c3);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 213
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Linked Lists

§ A linked list node containing a single forward
pointer may be declared as follows

struct Node {
int data; /* or whatever */
struct Node *next_in_line;

};

pointer to next
Node structure

§ A linked list node containing a forward and a
backward pointer may be declared as follows

struct Node {
int data;
struct Node *next_in_line;
struct Node *previous_in_line;

};
pointer to previous
Node structure

pointer to next
Node structure

Linked Lists

It is possible to declare and manipulate any number of “advanced” data structures
in C, like linked lists, binary trees, “red/black” trees, multi threaded trees, directed
graphs and so on.

Above is the first step in manipulating linked lists, i.e. declaring the template.
This particular template assumes the linked list will contain integers. The sort of
picture we’re looking for is as follows:

data

next_in_line

10 16data

next_in_line
28data

next_in_line

where each structure contains one integer and one pointer to the next structure.
The integer is stored in the member “data”, while the pointer is stored in the
member “next_in_line”.

A Recursive
Template?

The structure template: struct Node {
int data;
struct Node* next_in_line;

};

looks rather curious because the structure refers to itself. What it says is “a Node
structure consists of an integer, followed by a pointer to another Node structure”.
Although the compiler is not entirely sure about the “followed by a pointer to
another Node structure” it is sure about pointers and how many bytes they
occupy. Thus it creates a pointer sized “hole” in the structure and proceeds
onwards.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

214 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Example

#include <stdio.h>

struct Node {
char name[10];
struct Node *next_in_line;

};

struct Node a1 = { "John", NULL };
struct Node a2 = { "Harriet", &a1 },
struct Node a3 = { "Claire", &a2 }
struct Node a4 = { "Tony", &a3 };

Tony\0

a4

0x1012

Claire\0

a3

0x1020

Harriet\0

a2

0x102E

John\0

a1

0x1032

0x1020 0x102E 0x1032 NULL

Example

In the example above, the data has changed from integers to strings. Other than
that, all else is the same. A Node structure consists of data followed by a pointer
to another Node structure.

Creating a List Four nodes are declared, “a1” through “a4”. Notice that “a1” is declared first and
goes at the end of the chain. “a2” is declared next and points back at “a1”. This
is the only way to do this, since if we attempted to make “a1” point forwards to
“a2” the compiler would complain because when “a1” is initialized, “a2” doesn’t
exist. An alternative would be to declare the structures as follows:

struct Node a1 = { "John", NULL };
struct Node a2 = { "Harriet", NULL };
struct Node a3 = { "Claire", NULL };
struct Node a4 = { "Tony", NULL };

and then “fill in the gaps” by writing:

a4.next_in_line = &a3; a3.next_in_line = &a2;
a2.next_in_line = &a1;

Which would give exactly the same picture as above. Of course it would be just
as possible to write:

a1.next_in_line = &a2; a2.next_in_line = &a3;
a3.next_in_line = &a4;

and make the chain run the opposite way. Here “a1” would be the first node and
“a4” the last node in the chain.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 215
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Printing the List

§ The list may be printed with the following code:

struct Node * current = &a4;

while(current != NULL) {
printf("%s\n", current->name);
current = current->next_in_line;

}

current

0x1012

Tony\0

a4

0x1012

Claire\0

0x1020

Harriet\0

0x102E

John\0

0x1032

0x1020 0x102E 0x1032 NULL

Printing the List

Above is an example of how to visit, and print the data contained in, each node in
the list. A pointer is set to point at the first node in the list. This is done with:

struct Node *current = &a4;

creating a Node pointer called “current” and initializing it to point to the first node
in the chain. Notice that if we had initialized this to point to, say, “a1”, we would
be sunk since there is no way to get from “a1” back to “a2”.

The loop condition is: while(current != NULL)

let us imagine (even though it is not always true) that NULL is zero. We check
the address contained in “current”, i.e. 0x1012 against zero. Clearly “current” is
not zero, thus the loop is entered. The statement

printf("%s\n", current->name);

causes the “name” member of the structure at address 0x1012 to be printed, i.e.
“Tony”. Then the statement

current = current->next_in_line;

is executed, causing the value of the “next_in_line” member, i.e. 0x1020 to be
transferred into “current”. Now the pointer “current” points to the second structure
instance “a3”. Once again the loop condition

while(current != NULL)

is evaluated. Now “current” is 0x1020 and is still not zero, hence the condition is
still true and so the loop is entered once more.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

216 Structures in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Printing the List (Continued)

The statement

printf("%s\n", current->name);

is executed, causing the “name” member of the structure at address 0x1020 to be
accessed, i.e. “Claire”. Next, the statement

current = current->next_in_line;

is executed taking the value of the member “next_in_line”, i.e. 0x102E and
transferring it into “current”. Now “current” points to the third structure instance,
“a2”. Again the loop condition is evaluated:

while(current != NULL)

Since 0x102E is not zero the condition is again true and the loop body is entered.
Now the statement

printf("%s\n", current->name);

prints “Harriet”, i.e. the value contained in the “name” field for the structure whose
address is 0x102E. The statement

current = current->next_in_line;

causes the value in the “next_in_line” member, i.e. 0x1032 to be transferred into
“current”. Now “current” points to the last of the structure instances “a1”. The
loop condition:

while(current != NULL)

is evaluated, since 0x1032 does not contain zero, the condition is still true and the
loop body is entered once more. The statement:

printf("%s\n", current->name);

prints “John” since this is the value in the “name” field of the structure whose
address is 0x1032. Now the statement

current = current->next_in_line;

causes the value NULL to be transferred into current (since this is the value
stored in the “next_in_line” member of the structure whose address is 0x1032).
Now the “current” pointer is invalid. The loop condition

while(current != NULL)

is evaluated. Since “current” does contain NULL, the condition is no longer true
and the loop terminates.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C 217
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Summary

§ Creating structure templates using struct

§ Creating and initialising instances

§ Accessing members

§ Passing instances to functions by value and by
reference

§ A new operator: “->”

§ Return by value

§ Linked lists

Summary

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C - Exercises 219
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

220 Structures in C - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: STRUCT

1. Open “CARD1.C” which declares and initializes two card structures. There are two functions for you to
implement:

void print_card_by_value(struct Card which);
void print_card_by_ref(struct Card * p);

The first of these is passed a copy of the card to print out. The second is passed a pointer to the card.
Both functions should print the same output.

2. In “CARD2.C” are the definitions of several cards. Implement the is_red function which has the
following prototype:

int is_red(struct Card * p);

This function should return true (i.e. 1) if the argument points to a red card (a heart or a diamond) and
return false (i.e. 0) otherwise. You will need to copy your print_card_by_ref function from part 1
and rename it print_card.

3. Open the file “CARD3.C”. Implement the function may_be_placed which has the following prototype:

int may_be_placed(struct Card * lower, struct Card * upper);

This function uses the rules of solitaire to return true if the card “upper” may be placed on the card
“lower”. The cards must be of different colors, the upper card (i.e. the one being placed) must have a
value which is one less than the lower card (i.e. the one already there). You will need your
print_card and is_red functions.

4. In “LIST1.C” Node structures are declared, like those in the chapter notes. Implement the function:

void print_list(struct Node *first_in_list);

which will print out all the integers in the list.

5. The file “LIST2.C” has an exact copy of the Nodes declared in “LIST1.C”. Now there is a call to the
function

void print_list_in_reverse(struct Node *first_in_list);

Using recursion, print the integers in reverse order. If you are unfamiliar with recursion, ask your
instructor.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C - Exercises 221
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

6. Linked lists enable new values to be inserted merely by altering a few pointers. “LIST3.C” creates the
same list as in “LIST1.C” and “LIST2.C”, but also declares three other nodes which should be
inserted into the correct point in the list. Implement the function:

struct Node* insert(struct Node *first_in_list, struct Node *new_node);
which will insert each of the three nodes at the correct point in the list. Notice that one insertion occurs
at the start, one in the middle and one at the end of the list. Remove the comments when you are
ready to try these insertions. You will need your print_list function from “LIST1.C”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C - Solutions 223
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Structures Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

224 Structures in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. In “CARD1.C” implement the functions:

void print_card_by_value(struct Card which);
void print_card_by_ref(struct Card * p);

The print_card_by_value function is straightforward, print_card_by_ref more elaborate. The essential
difference between the two is merely the difference between use of “.” and “->”. The shorter version
(with one printf) is used throughout the following solutions for brevity.

#include <stdio.h>

struct Card
{
 int index;
 char suit;
};

void print_card_by_value(struct Card which);
void print_card_by_ref(struct Card * p);

int main(void)
{

struct Card king_of_spades = { 13, 's' };
 struct Card four_of_clubs = { 4, 'c' };

 print_card_by_value(king_of_spades);
 print_card_by_ref(&king_of_spades);

 print_card_by_value(four_of_clubs);
 print_card_by_ref(&four_of_clubs);

 return 0;
}

void print_card_by_value(struct Card which)
{

printf("%i of %c\n", which.index, which.suit);
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C - Solutions 225
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

void print_card_by_ref(struct Card * p)
{

switch(p->index) {
 case 14:
 case 1:

printf("Ace");
break;

 case 13:
printf("King");
break;

 case 12:
printf("Queen");
break;

 case 11:
printf("Jack");
break;

 default:
printf("%i", p->index);
break;

}
printf(" of ");
switch(p->suit) {
 case 'c':

printf("clubs\n");
break;

 case 'd':
printf("diamonds\n");
break;

 case 's':
printf("spades\n");
break;

 case 'h':
printf("hearts\n");
break;

}
}

2. In “CARD2.C” implement the is_red function which has the following prototype:

int is_red(struct Card * p);

The value returned from is_red (i.e. one or zero) is already the value yielded by C’s “==” operator.

#include <stdio.h>

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

226 Structures in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

#define ASIZE(A) sizeof(A)/sizeof(A[0])

struct Card
{
 int index;
 char suit;
};

int is_red(struct Card* p);
void print_card(struct Card * p);

int main(void)
{

int i;
 struct Card hand[] = {

 { 13, 's' },
 { 4, 'c' },
 { 9, 'd' },
 { 12, 'h' },

 { 5, 'c' }
};

 for(i = 0; i < ASIZE(hand); i++) {

 printf("the ");
 print_card(&hand[i]);

 if(is_red(&hand[i]))
 printf(" is red\n");
 else
 printf(" is not red\n");
 }

 return 0;
}

void print_card(struct Card * p)
{

printf("%i of %c\n", p->index, p->suit);
}

int is_red(struct Card * p)
{
 return p->suit == 'h' || p->suit == 'd';
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C - Solutions 227
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

3. In “CARD3.C” implement the function may_be_placed

#include <stdio.h>

#define ASIZE(A) sizeof(A)/sizeof(A[0])

struct Card
{
 int index;
 char suit;
};

int is_red(struct Card* p);
void print_card(struct Card * p);
int may_be_placed(struct Card * lower, struct Card * upper);

int main(void)
{

int i;
 struct Card lower_cards[] = {

{ 13, 's' },
{ 4, 'c' },
{ 9, 'd' },
{ 12, 'h' },
{ 5, 'c' }

};
struct Card upper_cards[] = {

{ 10, 'c' },
{ 3, 'd' },
{ 8, 'd' },
{ 11, 's' },
{ 4, 's' }

};

 for(i = 0; i < ASIZE(lower_cards); i++) {

 printf("the ");
 print_card(&upper_cards[i]);

 if(may_be_placed(&lower_cards[i], &upper_cards[i]))
 printf(" may be placed on the ");
 else
 printf(" may NOT be placed on the ");

 print_card(&lower_cards[i]);
 printf("\n");
 }

 return 0;
}

void print_card(struct Card * p)
{

 printf("%i of %c\n", p->index, p->suit);
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

228 Structures in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int may_be_placed(struct Card * lower, struct Card * upper)
{
 /* If both the same colour, that's bad */
 if(is_red(lower) == is_red(upper))
 return 0;

 /* Ace does not take part */
 if(lower->index == 14 || upper->index == 14)
 return 0;

 if(lower->index == upper->index + 1)
 return 1;

 return 0;
}

int is_red(struct Card * p)
{
 return p->suit == 'h' || p->suit == 'd';
}

4. In “LIST1.C” implement the function:

void print_list(struct Node *first_in_list);

Rather than creating a local variable and assigning the value of “first_in_list”, this version of print_list
uses the parameter directly. Since call by value is always used, any parameter may be treated
“destructively”. Note that now the parameter name used in the prototype does not correspond to that
used in the function header. C doesn’t care about this and indeed this is good because the user sees
“first_in_list” and knows the correct parameter to pass whereas the function sees “current” which is far
more meaningful than changing the “first_in_list” pointer.

#include <stdio.h>

struct Node {
 int data;
 struct Node* next_in_line;
};

void print_list(struct Node * first_in_list);

int main(void)
{
 struct Node n1 = { 100, NULL };
 struct Node n2 = { 80, NULL };
 struct Node n3 = { 40, NULL };
 struct Node n4 = { 10, NULL };

 n4.next_in_line = &n3;
 n3.next_in_line = &n2;
 n2.next_in_line = &n1;

 print_list(&n4);

 return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C - Solutions 229
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

void print_list(struct Node * current)
{
 while(current != NULL) {
 printf("%i\t", current->data);
 current = current->next_in_line;
 }
 printf("\n");
}

5. In “LIST2.C” implement the function

void print_list_in_reverse(struct Node *first_in_list);

The first version of print_list_in_reverse suffers from the problem of no trailing newline. Whereas this is
not a problem with DOS (since COMMAND.COM always prints a few newlines just in case) it is an
annoyance with other operating systems (like Unix).

#include <stdio.h>

struct Node {
int data;
struct Node* next_in_line;

};

void print_list_in_reverse(struct Node * first_in_list);

int main(void)
{

struct Node n1 = { 100, NULL };
struct Node n2 = { 80, NULL };
struct Node n3 = { 40, NULL };
struct Node n4 = { 10, NULL };

n4.next_in_line = &n3;
n3.next_in_line = &n2;
n2.next_in_line = &n1;

print_list_in_reverse(&n4);

return 0;
}

void print_list_in_reverse(struct Node * p)
{

if(p == NULL)
return;

print_list_in_reverse(p->next_in_line);
printf("%i\t", p->data);

}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

230 Structures in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

This second version copes with this newline problem using a static variable. Remember that all
instances of the print_list_in_reverse function will share the same static.

void print_list_in_reverse(struct Node * p)
{

static int newline;

if(p == NULL)
return;

++newline;
print_list_in_reverse(p->next_in_line);
--newline;
printf("%i\t", p->data);
if(newline == 0)

printf("\n");
}

6. In “LIST3.C” implement the function:

struct Node* insert(struct Node *first_in_list, struct Node *new_node);

The insert function keeps the pointer “lag” one step behind the insertion point. This makes it very easy
to refer to the node which must be rewired (especially as there is no way via traversing the list to return
back to it). Since it is initialised to NULL, it is possible to detect when the body of the “find the insertion
point” has not been entered. In this case the new node becomes the new head of the list.

#include <stdio.h>

struct Node {
int data;
struct Node* next_in_line;

};

void print_list(struct Node * first_in_list);
struct Node*insert(struct Node *first_in_list, struct Node *new_node);

int main(void)
{

struct Node n1 = { 100, NULL };
struct Node n2 = { 80, NULL };
struct Node n3 = { 40, NULL };
struct Node n4 = { 10, NULL };
struct Node * head;

struct Node new_head = { 1, NULL };
struct Node new_tail = { 200, NULL };
struct Node new_middle = { 60, NULL };

n4.next_in_line = &n3;
n3.next_in_line = &n2;
n2.next_in_line = &n1;
head = &n4;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Structures in C - Solutions 231
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

printf("Before insersions, list is ");
print_list(head);

printf("inserting %i into middle of list\n", new_middle.data);
head = insert(head, &new_middle);
print_list(head);

printf("inserting %i at end of list\n", new_tail.data);
head = insert(head, &new_tail);
print_list(head);

printf("inserting %i in front of list\n", new_head.data);
head = insert(head, &new_head);
print_list(head);

return 0;
}

void print_list(struct Node * current)
{
 while(current != NULL) {
 printf("%i\t", current->data);
 current = current->next_in_line;
 }
 printf("\n");
}

struct Node*insert(struct Node *p, struct Node *new_node)
{

struct Node* start = p;
struct Node* lag = NULL;

while(p != NULL && p->data < new_node->data) {
lag = p;
p = p->next_in_line;

}

if(lag == NULL) { /* insert before list */
new_node->next_in_line = p;
return new_node;

}

lag->next_in_line = new_node;
new_node->next_in_line = p;

return start;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 233
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C declarations

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

234 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Reading C Declarations

§ Introduction

§ SOAC

§ Examples

§ typedef

§ Examples revisited

Reading C Declarations

Reading declarations in C is almost impossible unless you know the rules.
Fortunately the rules are very simple indeed and are covered in this chapter.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 235
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Introduction

§ Up until now we have seen straightforward
declarations:

void member_display(const struct Library_member *p);

§ However, they can become much worse:
int *p[15];
float (*pfa)[23];
long (*f)(char, int);
double *(*(*n)(void))[5];

long sum;
int* p;

§ Plus a few trickier ones:

Introduction

Thus far in the course we have seen some straightforward declarations. We have
declared ints, floats, arrays of char, structures containing doubles, pointers
to those structures. However, C has the capability to declare some really mind
boggling things, as you can see above. Trying to understand these declarations
is almost entirely hopeless until you understand the rules the compiler uses.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

236 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

SOAC

� Find the variable being declared

� Spiral Outwards Anti Clockwise

� On meeting: say:

* pointer to

[] array of
() function taking and returning

� Remember to read “struct S”, “union U” or
“enum E” all at once

� Remember to read adjacent collections of [] [] all
at once

SOAC

Fortunately, although mind boggling things may be declared, the rules the
compiler uses are far from mind boggling. They are very straightforward and may
be remember as SOAC (most easily remembered if pronounced as “soak”). As
mentioned above this stands for Spiral Outwards Anti Clockwise. Start spiraling
from the variable name and if while spiraling you meet any of the characters “*”,
“[]” etc. mentioned above, say the corresponding thing.

The only other things to remember is that structures, enums (which we haven’t
covered yet) and unions (which we also haven’t covered yet) followed by their
tags should be read in one go.

Also array of array declarations (effectively multi-dimensional arrays) should be
read in one go.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 237
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Example 1.

§ What is “int * p[15]” ?

int * p [15] ;

§ p is an array of 15 pointers to integers

Example 1.

The declaration “int * p[15]” could declare “p” as:

1. an array of 15 pointers to integers, or
2. a pointer to an array of 15 integers

so which is it?

Always start reading at the name of the variable being declared, here “p”. Spiral
outwards anti clockwise (in other words right from here). We immediately find:

[15]

which causes us to say “array of 15”. Carrying on spiraling again, the next thing
we meet is the “*” which causes us to say “pointer to”, or in this case where we’re
dealing with 15 of them, perhaps “pointers to”. Spiraling again, we sail between
the “]” and the “;” and meet

int

causing us to say “integer”.

Putting all this together gives:

1. p is an
2. array of 15
3. pointers to
4. integer

The variable “p” is therefore an array containing 15 elements, each of which is a
pointer to an integer.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

238 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Example 2.

§ What is “double (*p)[38]” ?

double (* p) [38];

§ p is a pointer to an array of 38 doubles

Example 2.

Essentially the only difference between this and the last example is the extra set
of parentheses around “*p”. Whereas these might look as though they have little
effect, they change the order in which we see things when we spiral.

Starting at “p” we spiral inside the parenthesis and see the “*” causing us to say
“pointer to”. Now spiraling outwards we meet the

[38]

causing us to say “array of 38”. From there we spiral round and see:

double

Putting this together:

1. p is a
2. pointer to an
3. array of 38
4. double(s)

Thus the variable “p” is a single pointer. At the end of the pointer (once
initialized) will be a single array of 38 doubles.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 239
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

Example 3.

§ What is “short **ab[5][10]” ?

short * * ab [5][10] ;

§ ab is an array of 5 arrays of 10 arrays of pointers
to pointers to short int

Example 3.

Although we’re throwing in the kitchen sink here, it doesn’t really make things that
much more difficult.

Find the variable being declared “ab” and spiral. We find:

[5][10]

which we read in one go according to our special rule giving “array of 5 arrays of
10”. Spiraling again we meet the “*” closest to “ab” and say “pointer to”.
Spiraling between the “]” and the semicolon we meet the next “*” causing us to
say “pointer to” again. Spiraling once again between the “]” and the semicolon we
meet

short

Putting this together:

1. ab is an
2. array of 5 arrays of 10
3. pointers to
4. pointers to
5. short int

Thus “ab” is a collection of 50 pointers, each pointing to a slot in memory
containing an address. This address is the address of a short integer somewhere
else in memory.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

240 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

Example 4.

§ What is “long * f(int, float)” ?

long * f (int, float) ;

§ f is a function taking an int and a float returning a
pointer to a long int

Example 4.

Here we see the “function returning” parentheses. Once again starting at “f” we
spiral and find

(int, float)

and say “function (taking an int and a float as parameters) returning”, next spiral
to find “*” causing us to say “pointer to”, then spiraling between the closing
parenthesis and the semicolon to finally land on “long”.

Putting this together gives:

1. f is a
2. function (taking an int and a float as parameters) returning a
3. pointer to a
4. long

Thus we find this is merely a function prototype for the function “f”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 241
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

Example 5.

§ What is “int (*pf)(void)” ?

int (* pf) (void) ;

§ pf is a pointer to a function taking no parameters
and returning an int

Example 5.

This example shows the effect of placing parentheses around “*pf” when dealing
with functions. The variable being declared is “pf”. We spiral inside the closing
parenthesis and meet the “*” causing us to say “pointer to”. From there we spiral
out to find:

(void)

which causes us to say “function (taking no parameters) and returning”. From
there we spiral and find:

int

Putting this together gives:

1. pf is a
2. pointer to a
3. function (taking no parameters) and returning an
4. integer

Thus “pf” is not a function prototype, but the declaration of a single individual
pointer. At the end of this pointer is a function. The course has examined the
concept of pointers and seen pointers initialized to point at the stack and at the
data segment. It is also possible to point pointers into the heap (which will be
discussed later). “pf” is an example of a pointer which can point into the code
segment. This is the area of the program which contains the various functions in
the program, main, printf, scanf etc.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

242 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Example 6.

§ What is “struct Book (*fpa[8])(void)” ?

struct Book (* fpa[8]) (void) ;

§ fpa is an array of 8 pointers to functions, taking
no parameters, returning Book structures

Example 6.

Here once again, the kitchen sink has been thrown into this declaration and
without our rules it would be almost impossible to understand.

Starting with “fpa” and spiraling we find:

[8]

causing us to say “array of 8”. Spiraling onwards we find “*” causing us to say
“pointer to”. Next we encounter:

(void)

causing us to say “function (taking no parameters) returning”. Now we meet

struct Book

which, according to our special case, we read in one go.

Putting this together gives:

1. fpa is an
2. array of 8
3. pointers to
4. functions (taking no parameters) returning
5. Book structures

Thus fpa is an array of 8 slots. Each slot contains a pointer. Each pointer points
to a function. Each function returns one Book structure by value.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 243
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Example 7.

§ What is “char (*(*fprp)(void))[6]” ?

char (* (* fprp) (void)) [6] ;

§ fprp is a pointer to a function taking no
parameters returning a pointer to an array of 6
char

Example 7.

The declaration above is hideous and the temptation arises to start screaming.
However, “fprp” is being declared. Spiraling inside the parenthesis leads us to “*”
and we say “pointer to”. Spiraling further leads us to:

(void)

causing us to say “function (taking no parameters) returning”. Spiraling beyond
this leads us to the second “*” causing us to say “pointer to”. Now we spiral to

[6]

which is an “array of 6”, and finally we alight on

char

Putting this together gives:

1. fprp is a
2. pointer to a
3. function (taking no parameters) returning a
4. pointer to an
5. array of 6
6. char

Thus only one pointer is being declared here. The remainder of the declaration
merely serves to tell us what type is at the end of the pointer (once it has been
initialized). It is, in fact, a code pointer and points to a function. The function
takes no parameters but returns a pointer. The returned pointer points to an array
of 6 characters.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

244 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Example 8.

§ What is “int * (*(*ptf)(int))(char)” ?

int * (* (* ptf) (int)) (char) ;

§ ptf is a pointer to a function, taking an integer,
returning a pointer to a function, taking a char,
returning a pointer to an int

Example 8.

Although hideous, this declaration is only one degree worse than the last. Finding
“ptf” and spiraling inside the parenthesis we find “*” causing us to say “pointer to”.
Now we spiral and find

(int)

meaning “function taking an integer and returning”. Spiraling further we find
another “*” meaning “pointer to”. Spiraling further we find

(char)

meaning “function taking a character and returning”. Again another “*” meaning
“pointer to”, then finally spiraling just in front of the semicolon to meet

int

Putting this together:

1. ptf is a
2. pointer to a
3. function taking an integer and returning a
4. pointer to a
5. function taking a character and returning an
6. integer

Thus “ptf” declares a single pointer. Again the rest of the declaration serves only
to tell us what is at the end of the pointer once initialized. At the end of the
pointer lives a function. This function expects an integer as a parameter. The
function returns a pointer. The returned pointer points to another function which
expects a character as a parameter. This function (the one taking the character)
returns a single integer value.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 245
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

typedef

§ It doesn’t have to be this difficult!

§ The declaration can be broken into simpler steps
by using typedef

§ To tackle typedef, pretend it isn’t there and read
the declaration as for a variable

§ When finished remember that a type has been
declared, not a variable

typedef

When we read a declaration, we break it down into a number of simpler steps. It
is possible to give each one of these simpler steps to the compiler using the
typedef keyword.

To understand typedef, ignore it. Pretend it isn’t there and that a variable is
being declared. Read the declaration just as for any other variable. But
remember, once the declaration has been fully read the compiler has declared a
type rather than a variable. This becomes a completely new compiler type and
may be used just as validly wherever int, float, double etc. were used.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

246 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Example 1 Revisited

§ Simplify “int * p[15]”

typedef int * pti ;

pti p[15];

pti is a pointer to an int

p is an array of 15
pointer to int

Example 1 Revisited

We want to simplify the declaration “int * p[15]” which, you will remember,
declares “p” as an array of 15 pointers to integer. Starting from the end of this,
create a new type “pointer to int”. If we wrote:

int * pti;

we would declare a variable “pti” of type “pointer to integer”. By placing typedef
before this, as in:

typedef int * pti;

we create a new type called “pti”. Wherever “pti” is used in a declaration, the
compiler will understand “pointer to integer”, just as wherever int is used in a
declaration the compiler understands “integer”. This, as a quick aside, gives a
possible solution to the dilemma of where to place the “*” in a declaration. You
will remember the problems and merits of:

int* p;
vs. int *p;

and especially the problem with int* p, q;

where “p” has type “pointer to int”, but “q” has type int. This typedef can solve
the latter problem as in:

pti p, q;

where the type of both “p” and “q” is “pointer to int” without the problems
mentioned above.

Having created this new type, declaring an array of 15 pointers to integers merely
becomes:

pti p[15];

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 247
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Example 3 Revisited

§ Simplify “short **ab[5][10]”

typedef short * * pt_pt_s ;

ab is an array of 10 arrays of
5 pointers to pointers to short

typedef pt_pt_s ao5[5];

ao5 ab[10];

ao5 is an array of 5 pointers
to pointers to short

pt_pt_s is a pointer to a
pointer to a short

Example 3 Revisited

We wish to simplify the declaration “short **ab[5][10]” which as we already
know declares “ab” as an array of 5 arrays of 10 pointers to pointers to short
int.

Start from the back with the “pointers to pointers to short int”:

typedef short * * pt_pt_s;

creates a new type called “pt_pt_s” meaning “pointer to pointer to short”.

In fact we could stop here and define “ab” as:

pt_pt_s ab[5][10];

which is slightly more obvious than it was. However, again peeling away from the
back, here is a definition for an array of 5 pointers to pointers to short:

typedef pt_pt_s ao5[5];

(Remember that if the typedef were covered, we would be creating a variable
called “ao5” which would be an array of 5 pointers to pointers to short). Once
this has been done, creating “ab” is easily done. We just need 10 of the ao5’s as
follows:

ao5 ab[10];

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

248 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Example 5 Revisited

§ Simplify “int (*pf)(void)”

typedef int fri(void); fri * pf ;

fri is a function, taking no
parameters, returning an int

pf is a pointer to a function,
taking no parameters,

returning an int

Example 5 Revisited

Now we wish to simplify the declaration of “pf” in “int (*pf)(void)” which as
we already know declares “pf” to be a pointer to a function taking no parameters
and returning an integer.

Tackling this last part first, a new type is created, “fri” which is a function, taking
no parameters, returning an integer

typedef int fri(void);

does this quite nicely. Remember that if typedef were covered we would be
writing a function prototype for “fri”.

From here “pf” is created quite simply by declaring a pointer to an “fri” as:

fri * pf;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 249
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Example 6 Revisited

§ Simplify “struct Book (*fpa[8])(void)”

typedef struct Book f(void);

f is a function, taking no
parameters, returning a

Book structure

typedef f * fp ;

fp is a pointer to a function,
taking no parameters,

returning a Book structure

fp fpa[8];

fpa is an array of 8 pointers
to functions, taking no
parameters, returning a

Book structure

Example 6 Revisited

We wish to simplify the declaration “struct Book (*fpa[8])(void)” which as we
already know declares “fpa” as an array of 8 pointers to functions, taking no
parameters, returning Book structures.

We start by creating a typedef for a single function, taking no parameters,
returning a Book structure. Such a function would be:

struct Book f(void);

Adding the typedef ensures that instead of “f” being the function it instead
becomes the new type:

typedef struct Book f(void);

Now all we have to do is create a pointer to one of these:

typedef f *fp;

Now all we need is an array of 8 of these:

fp fpa[8];

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

250 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Example 7 Revisited

§ Simplify “char (*(*fprp)(void))[6]”

typedef char (* pta6c) [6] ;

pta6c is a pointer to an
array of 6 char

typedef pta6c f(void);

f is a function, taking no
parameters, returning a
pointer to an array of 6

char

f * fprp ;

fprp is a pointer to a
function, taking no

parameters, returning a
pointer to an array of 6

char

Example 7 Revisited

We wish to simplify the declaration “char (*(*fprp)(void))[6]” which, as
we already know declares “fprp” as a pointer to a function, taking no parameters,
returning a pointer to an array of 6 characters.

The first thing to tackle, once again, is the last part of this declaration, the pointer
to an array of 6 characters. This can be done in one step as above, or in two
steps as:

typedef char array_of_6_char[6];
typedef array_of_6_char *pta6c;

Now for a function, taking no parameters, that returns one of these:

typedef pta6c f(void);

All that is left is to create “fprp” as a pointer to one of these:

f *fprp;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations 251
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Example 8 Revisited

§ Simplify “int * (*(*ptf)(int))(char)”

typedef int * pti ;

pti is a pointer to an int

typedef pti f(char);

f is a function, taking a
char, returning a pointer

to an int

typedef f * ptfri ;

ptfri is a pointer to a
function, taking a char,

returning a pointer to an int

ptfri (* ptf)(int) ;

ptf is a pointer to a function, taking int,
returning a pointer to a function, taking a

char, returning a pointer to an int

Example 8 Revisited

Finally, we wish to simplify the declaration “int * (*(*ptf)(int))(char)”
which as we already know declares “ptf” as a pointer to a function, taking an int,
returning a pointer to a function, taking a char, returning a pointer to an int.

Starting at the end with the “pointer to int” part,

typedef int *pti;

creates the type “pti” which is a “pointer to an int”. Again picking away at the end,
we need a function taking a char returning one of these, thus:

typedef pti f(char);

Now, a pointer to one of these:

typedef f *ptfri;

Next a function, taking an int and returning a pointer to one of these (there wasn’t
room for this step above):

typedef ptfri func_returning_ptfri(int);

Now, a pointer to one of these:

typedef func_returning_ptfri *ptf_r_ptfri;

So that finally the variable “ptf” can be declared:

ptf_r_ptfri ptf;

Alternatively we could have used the previous typedef as in:

func_returning_ptfri *ptf;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

252 Reading C Declarations
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Summary

§ Don’t Panic!

§ SOAC - Spiral Outwards Anti Clockwise

§ To simplify, use typedef(s)

Summary

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations - Exercises 253
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C Declarations Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

254 Reading C Declarations - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. What types do the following variables have?

int *a;
int b[10];
int *c[10];
int (*d)[10];
int *(*e)[10];
int (**f)[10];
int *(**g)[10];

char h(void);
char *i(void);
char (*j)(void);
char *(*k)(void);
char **l(void);
char (**m)(void);
char *(**n)(void);

float (*o(void))[6];
float *(*p(void))[6];
float (**q(void))[6];
float *(**r(void))[6];

short (*s(void))(int);
short *(*t(void))(int);
short (**u(void))(int);
short *(**v(void))(int);

long (*(*x(void))(int))[6];
long *(*(*y(void))(int))[6];
long *(*(*(*z)(void))[7])(void);

2. Using typedef, simplify the declaration of:

e in 3 steps
g in 4 steps
l in 3 steps
n in 3 steps
p in 4 steps
u in 4 steps
x in 5 steps
z in 7 steps

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations - Solutions 255
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Reading C declarations Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

256 Reading C Declarations - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. What types do the following variables have?

• int *a;

‘a’ is a pointer to int.

• int b[10];

‘b’ is an array of 10 int.

• int *c[10];

‘c’ is an array of 10 pointers to int.

• int (*d)[10];

‘d’ is a pointer to an array of 10 int.

• int *(*e)[10];

‘e’ is a pointer to an array of 10 pointers to int.

• int (**f)[10];

‘f’ is a pointer to a pointer to an array of 10 int.

• int *(**g)[10];

‘g’ is a pointer to a pointer to an array of 10 pointer to int.

• char h(void);

‘h’ is a function, taking no parameters, returning a char.

• char *i(void);

‘i’ is a function, taking no parameters, returning a pointer to char.

• char (*j)(void);

‘j’ is a pointer to a function, taking no parameters, returning a char.

• char *(*k)(void);

‘k’ is a pointer to a function, taking no parameters, returning a pointer to a char.

• char **l(void);

‘l’ is a function, taking no parameters, returning a pointer to a pointer to a char.

• char (**m)(void);

‘m’ is a pointer to a pointer to a function, taking no parameters, returning a char.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations - Solutions 257
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

• char *(**n)(void);

‘n’ is a pointer to a pointer to a function, taking no parameters, returning a pointer to a char.

• float (*o(void))[6];

‘o’ is a function, taking no parameters, returning a pointer to an array of 6 float.

• float *(*p(void))[6];

‘p’ is a function, taking no parameters, returning a pointer to an array of 6 pointers to float.

• float (**q(void))[6];

‘q’ is a function, taking no parameters, returning a pointer to a pointer to an array of 6 float.

• float *(**r(void))[6];

‘r’ is a function, taking no parameters, returning a pointer to a pointer to an array of 6 pointer to float.

• short (*s(void))(int);

‘s’ is a function, taking no parameters, returning a pointer to a function, taking an int, returning a short.

• short *(*t(void))(int);

‘t’ is a function, taking no parameters, returning a pointer to a function, taking an int, returning a pointer
to a short.

• short (**u(void))(int);

‘u’ is a function, taking no parameters, returning a pointer to a pointer to a function, taking an int,
returning a short.

• short *(**v(void))(int);

‘v’ is a function, taking no parameters, returning a pointer to a pointer to a function, taking an int,
returning a pointer to a short.

• long (*(*x(void))(int))[6];

‘x’ is a function, taking no parameters, returning a pointer to a function, taking an int, returning a pointer
to an array of 6 long.

• long *(*(*y(void))(int))[6];

‘y’ is a function, taking no parameters, returning a pointer to a function, taking an int, returning a pointer
to an array of 6 pointers to long.

• long *(*(*(*z)(void))[7])(void);

‘z’ is a pointer to a function, taking no parameters, returning a pointer to an array of 7 pointers to
functions, taking no parameters, returning pointers to long.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

258 Reading C Declarations - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

2. Using typedef, simplify the declaration of:

• e in 3 steps. ‘e’ is a pointer to an array of 10 pointers to int.

i) typedef for pointer to int:
typedef int * int_ptr;

ii) typedef for 10 of “i”:
typedef int_ptr arr_int_ptr[10];

iii) typedef for a pointer to “ii”:
typedef arr_int_ptr * ptr_arr_int_ptr;

• g in 4 steps. ‘g’ is a pointer to a pointer to an array of 10 pointer to int.

 Continuing from (iii) above:

iv) typedef for a pointer to “iii”:
typedef ptr_arr_int_ptr * ptr_ptr_arr_int_ptr;

• l in 3 steps. ‘l’ is a function, taking no parameters, returning a pointer to a pointer to a char.

 i) typedef for a pointer to a char:

 typedef char * ptr_char;

 ii) typedef for a pointer to “i”:

 typedef ptr_char * ptr_ptr_char;

 iii) typedef of a function returning “ii”:

 typedef ptr_ptr_char func_returning_ptr_ptr_char(void);

• n in 3 steps. ‘n’ is a pointer to a pointer to a function, taking no parameters, returning a pointer to a

char.

 i) typedef for a pointer to a char:

 typedef char * ptr_char;

 ii) typedef for a function, taking no parameters, returning “i”:

 typedef ptr_char func_returning_ptr_char(void);

 iii) typedef of a pointer to “ii”:

 typedef ptr_to_func * ptr_char func_returning_ptr_char;

• p in 4 steps. ‘p’ is a function, taking no parameters, returning a pointer to an array of 6 pointers to

float.

 i) typedef for a pointer to a float:

 typedef float * ptr_flt;

 ii) typedef for an array of 6 “i”s:

 typedef ptr_flt arr_ptr_flt[6];

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Reading C Declarations - Solutions 259
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

 iii) typedef of a pointer to “ii”:

 typedef arr_ptr_flt * ptr_to_arr;

 iv) typedef of a function returning “iii”:

 typedef ptr_to_arr func_returning_ptr_to_arr(void);

• u in 4 steps. ‘u’ is a function, taking no parameters, returning a pointer to a pointer to a function, taking

an int, returning a short.

 i) typedef for the function taking an int and returning a short:

 typedef short f(int);

 ii) typedef for a pointer to “i”:

 typedef f * ptr_func;

 iii) typedef of a pointer to “ii”:

 typedef ptr_func * ptr_ptr_func;

 iv) typedef of a function returning “iii”:

 typedef ptr_ptr_func func_returning_ptr_ptr_func(void);

• x in 5 steps. ‘x’ is a function, taking no parameters, returning a pointer to a function, taking an int,

returning a pointer to an array of 6 long.

 i) typedef for an array of 6 long:

 typedef long arr_long[6];

 ii) typedef for a pointer to “i”:

 typedef arr_long * ptr_arr_long;

 iii) typedef of a function taking an int and returning a “ii”:

 typedef ptr_arr_long f(int);

 iv) typedef for a pointer to “iii”:

 typedef f * ptr_to_func;

 v) typedef for a function, taking no parameters returning “iv”:

 typedef ptr_to_func func(void);

• z in 7 steps. ‘z’ is a pointer to a function, taking no parameters, returning a pointer to an array of 7

pointers to functions, taking no parameters, returning pointers to long.

 i) typedef for a pointer to a long:

 typedef long * ptl;

 ii) typedef for a function, taking no parameters, returning “i”:

 typedef ptl f(void);

 iii) typedef of a pointer to “ii”:

 typedef f * ptr_func;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

260 Reading C Declarations - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

 iv) typedef for an array of 7 “iii”:

 typedef ptr_func arr_ptr_func[7];

 v) typedef for a pointer to a “iv”:

 typedef arr_ptr_func * ptr_arr_ptr_func;

 vi) typedef for a function, taking no parameters, returning “iv”:

 typedef ptr_arr_ptr_func frp(void);

 vii) typedef for a pointer to a “vi”:

 typedef frp * ptr_frp;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 261
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

262 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Handling Files in C

§ Streams

§ stdin, stdout, stderr

§ Opening files

§ When things go wrong - perror
§ Copying files

§ Accessing the command line

§ Dealing with binary files

Handling Files in C

This chapter discusses how the Standard Library makes files accessible from the
C language.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 263
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Introduction

§ File handling is not built into the C language itself

§ It is provided by The Standard Library (via a set
of routines invariably beginning with “f”)

§ Covered by The Standard, the routines will
always be there and work the same way,
regardless of hardware/operating system

§ Files are presented as a sequence of characters

§ It is easy to move forwards reading/writing
characters, it is less easy (though far from
impossible) to go backwards

Introduction

The Standard
Library

Some languages have special keywords for dealing with files. C doesn’t, instead
it uses routines in the Standard Library which, because they are covered by The
Standard will always work the same way despite the environment they are used
in. Thus a Cray running Unix or a PC running CP/M (if there are any), the
mechanism for opening a file is exactly the same.

Opening a file is rather like being presented with a large array of characters,
except whereas an array provides random access to its elements a file provides
sequential access to its characters. It is possible to achieve random access, but
the routines are most easily driven forwards through the file character by
character.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

264 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Streams

§ Before a file can be read or written, a data
structure known as a stream must be associated
with it

§ A stream is usually a pointer to a structure
(although it isn’t necessary to know this)

§ There are three streams opened by every C
program, stdin, stdout and stderr

§ stdin (standard input) is connected to the
keyboard and may be read from

§ stdout (standard output) and stderr (standard
error) are connected to the screen and may be
written to

Streams

The procedure by which files are manipulated in C is that a stream must be
associated with a file to be read or written. A stream is a “black box” (although
not in the aircraft sense) in that you don’t really need to know what is going on in
a stream. In fact it is best not to have to know, since there can be some
headache inducing stuff happening in there.

As far as we are concerned the stream is transparent, we don’t know what is it
and we don’t care. This is a similar idea to the “handle” concept popularized with
Microsoft Windows programming. We don’t know what a handle is, we just get
them back from functions and pass them around to other functions that are
interested in them. Same idea with a stream.

stdin, stdout
and stderr

Whenever a C program runs (it doesn’t matter what it does) it has 3 streams
associated with it. These are:

1. the standard input, or stdin, connected to the keyboard. When characters
are read from stdin the program will wait for the user to type something.
scanf, for instance, uses stdin.

2. the standard output, or stdout, connected to the screen. When characters
are written to stdout characters appear on the screen. printf, for instance,
uses stdout.

3. the standard error, or stderr, also connected to the screen. Characters
written to stderr will also appear on the screen. The perror function uses
stderr.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 265
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

What is a Stream?

§ Although implementations vary, a stream creates
a buffer between the program running in memory
and the file on the disk

§ This reduces the program’s need to access slow
hardware devices

§ Characters are silently read a block at a time into
the buffer, or written a block at a time to the file

a b c d e f g h i j k l

output stream

a b c d e f g h i j

input stream

What is a Stream?

It is all very well saying a stream must be associated with each file to be
manipulated, but what is a stream and what does it do? The Standard does not
say how a stream should be implemented, this is left to the compiler writers.

Fast Programs
Deal with Slow
Hardware

Streams were invented in the very early days of C when devices were slow (much
slower than they are today). Programs executing in memory run much faster
than hardware devices can provide the information they need. It was found that
when a program read characters individually from a disk, the program would have
to wait excessively for the correct part of the disk to spin around. The character
would be grabbed and processed, then the program would have to wait again for
the disk.

Caches and
Streams

In the intervening years manufacturers have invented caches (large buffers) so
the disk never reads a single character. Thus when the program requests the
next character it is provided immediately from the buffer. Complex algorithms are
used to determine which characters should be buffered and which should be
discarded.

Streams do this buffering in software. Thus if the device you are using does not
support caching, it doesn’t matter because the stream will do it for you. If the
device does cache requests, there is a minor duplication of effort.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

266 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Why stdout and stderr?

§ There are two output streams because of
redirection, supported by Unix, DOS, OS/2 etc.

#include <stdio.h>

int main(void)
{

printf("written to stdout\n");
fprintf(stderr, "written to stderr\n");

return 0;
}

C:> outprog
written to stderr
written to stdout
C:> outprog > file.txt
written to stderr
C:> type file.txt
written to stdout

output written to
stderr first
because it is
unbuffered

Why stdout and stderr?

It seems strange to have two separate streams, stdout and stderr both going
to the screen. After all, there is only one screen and it seems odd that a
minimalist language like C would specifically attempt to cope with us having two
monitors on our desks.

The real reason C has two streams going to the same place goes to the heart of
Unix. Remember that C and Unix grew up together. Unix invented the idea of file
redirection and of the pipe. In fact both ideas proved so popular that were
adopted into other operating systems, e.g. MS-DOS, Windows 95, NT and OS/2
to name but a few.

The idea is that: prog

would run a program “normally” with its output going to the screen in front of us,
but:

prog > myfile.txt

would run the program and take its screen output and write it to the file “myfile.txt”
which is created in whatever directory the user is running in. Alternatively:

prog | print

would take the screen output and run it through the program called “print” (which
I’m guessing would cause it to appear on a handy printer).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 267
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Why stdout and stderr? (Continued)

These ideas have become fundamental to Unix, but in the early days it was
discovered there was a problem. If the program “prog” needed to output any error
messages these would either be mixed into the file, or printed on the line printer.
What was needed was a way to write messages to the user that would be
independent of the redirection currently in force. This was done by creating two
separate streams, one for output, stdout, the other for errors, stderr.
Although the standard output of the programs is redirected above, the standard
error remains attached to the screen.

stderr guarantees the program a “direct connection” to the user despite any
redirection currently in force.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

268 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

stdin is Line Buffered

§ Characters typed at the keyboard are buffered
until Enter/Return is pressed

#include <stdio.h>

int main(void)
{

int ch;

while((ch = getchar()) != EOF)
printf("read '%c'\n", ch);

printf("EOF\n");

return 0;
}

C:> inprog
abc
read 'a'
read 'b'
read 'c'
read '
'
d
read 'd'
read '
'
^Z
EOF
C:>declared as an int, even though

we are dealing with characters

stdin is Line Buffered

Above is a program that uses the getchar routine. The important thing to notice
is that because getchar uses the stdin stream, and stdin is line buffered, the
characters “abc” which are typed are not processed until the enter key is pressed.
Then they (and the enter key) are processed in one go as the loop executes four
times.

By this time getchar has run out of characters and it must go back to the
keyboard and wait for more. The second time around only “d” is typed, again
followed by the enter key. These two characters, “d” and enter are processed in
one go as the loop executes twice.

Signaling End
of File

Under MS-DOS the Control Z character is used to indicate end of file. When this
is typed (again followed by enter) the getchar routine returns EOF and the loop
terminates.

int not char It must seem curious that the variable “ch” is declared as type int and not char
since we are dealing with characters, after all. The reason for this is that neither
K&R C nor Standard C says whether char is signed or unsigned. This seems
rather irrelevant until it is revealed that the value of the EOF define is -1. Now, if a
compiler chose to implement char as an unsigned quantity, when getchar
returned -1 to indicate end of file, it would cause 255 to be stored (since an
unsigned variable cannot represent a negative value). When the 255 were
compared with the -1 value of EOF, the comparison would fail. Thus the poor
user would repeatedly type ^Z (or whatever your local flavour of end of file is) with
no effect.

Using the type int guarantees that signed values may be represented properly.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 269
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

Opening Files

§ Files are opened and streams created with the
fopen function

FILE* fopen(const char* name, const char* mode);

#include <stdio.h>

int main(void)
{

FILE* in;
FILE* out;
FILE* append;

in = fopen("autoexec.bat", "r");
out = fopen("autoexec.bak", "w");
append = fopen("config.sys", "a");

streams, you’ll
need one for each

file you want
open

Opening Files

Before a file may be manipulated, a stream must be associated with it. This
association between stream and file is made with the fopen routine.

All that is needed is to plug in the file name, the access mode (read, write,
append) and the stream comes back. This is similar in concept to placing coins
in a slot machine, pressing buttons and obtaining a chocolate bar. One kind of
thing goes in (the coins, the file name) and another kind of thing comes back out
(the chocolate bar, the stream).

The Stream
Type

A stream is actually declared as:
FILE *

i.e. a pointer to a FILE structure. If you want to see what this structure looks like,
it is defined in the stdio.h header.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

270 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

#include <stdio.h>

int main(void)
{

FILE* in;

if((in = fopen("autoexec.bat", "r")) == NULL) {
fprintf(stderr, "open of autoexec.bat failed ");
perror("because");
return 1;

}

Dealing with Errors

§ fopen may fail for one of many reasons, how to
tell which?

void perror(const char* message);

open of autoexec.bat failed because: No such file or directory

Dealing with Errors

The important thing to realize about streams is that because they are pointers it is
possible for fopen to indicate a problem by returning NULL. This is a special
definition of an invalid pointer seen previously. Thus if fopen returns NULL, we
are guaranteed something has gone wrong.

What Went
Wrong?

The problem is that “something has gone wrong” is not really good enough. We
need to know what has gone wrong and whether we can fix it. Is it merely that
the user has spelt the filename wrong and needs to be given the opportunity to try
again or has the network crashed?

The Standard Library deals with errors by manipulating a variable called “errno”,
the error number. Each implementation of C assigns a unique number to each
possible error situation. Thus 1 could be “file does not exist”, 2 could be “not
enough memory” and so on. It is possible to access “errno” by placing:

extern int errno;

somewhere at the top of the program. After the failed call to fopen we could say:

fprintf("open of autoexec failed because %i\n", errno);

this would produce:

open of autoexec failed because 1

which is rather unhelpful. What perror does is to look up the value of 1 in a
table and find a useful text message. Notice that it prints whatever string is
passed to it (“because” in the program above) followed by a “:” character. If you
don’t want this, invoke it as:

perror("");

In which case no text is prepended to the error text.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 271
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

File Access Problem

§ Can you see why the following will ALWAYS fail,
despite the file existing and being fully
accessible?

if((in = fopen("C:\autoexec.bat", "r")) == NULL) {
fprintf(stderr, "open of autoexec.bat failed ");
perror("because");
return 1;

}

C:> dir C:\autoexec.bat
 Volume in drive C is MS-DOS_62
 Directory of C:\

autoexec bat 805 29/07/90 8:15
 1 file(s) 805 bytes
 1,264,183,808 bytes free
C:> myprog
open of autoexec.bat failed because: No such file or directory

File Access Problem

There is a rather nasty problem waiting in the wings when C interacts with
operating systems like MS-DOS, NT and OS/2 which use pathnames of the form:

\name\text\afile

but not Unix which uses pathnames of the form:

/name/text/afile

The problem is with the directory separator character, “\” vs. “/”. Why is this such
a problem? Remember that the character sequences “\n”, “\t” and “\a” have
special significance in C (as do “\f”, “\r”, “\v” and “\x”). The file we would actually
be trying to open would be:

<newline>ame<tab>ext<alert>file

No such problem exists in Unix, because C attaches no special significance to
“/n” which it sees as two characters, not one as in the case of “\n”. There are two
solutions. The first: (which is rather inelegant) is to prepend “\” as follows:

\\name\\text\\afile

The second: despite the fact we are not using Unix, specify a Unix style path.
Some routine somewhere within the depths of MS-DOS, Windows, NT etc. seems
to understand and switch the separators around the other way. This behavior is
not covered by The Standard and thus you can’t rely upon it. The safest choice is
the first solution which will always work, even though it does look messy.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

272 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Displaying a File

#include <stdio.h>

int main(void)
{

char in_name[80];
FILE *in_stream;
int ch;

printf("Display file: ");
scanf("%79s", in_name);

if((in_stream = fopen(in_name, "r")) == NULL) {
fprintf(stderr, "open of %s for reading failed ", in_name);
perror("because");
return 1;

}

while((ch = fgetc(in_stream)) != EOF)
putchar(ch);

fclose(in_stream);

return 0;
}

Displaying a File

Reading the
Pathname but
Avoiding
Overflow

The array “in_name” being 80 characters in length gives the user room to specify
a reasonably lengthy path and filename. Don’t think that all filenames should be
13 characters in length just because your operating system uses “eight dot three”
format. The user will invariably need to specify a few directories too. The
pathname that results can be almost any length.

scanf("%79s", in_name);

uses %79s to prevent the user from corrupting memory if more than 79
characters are typed (space is left for the null terminator). You will also notice
this scanf is missing an “&”. Normally this is fatal, however here it is not a
mistake. An array name automatically yields the address of the zeroth character.
Thus we are providing the address that scanf needs, “&in_name” is redundant.

The Program’s
Return Code

Once again perror is used when something goes wrong to produce a
descriptive explanation. Notice that for the first time we are using

return 1;

to indicate the “failure” of the program. When the file has not been opened the
program cannot be said to have succeeded. It thus indicates failure by returning
a non zero value. In fact any value 1 up to and including 255 will do.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 273
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Example - Copying Files
#include <stdio.h>

int main(void)
{

char in_name[80], out_name[80];
FILE *in_stream, *out_stream;
int ch;

printf("Source file: "); scanf("%79s", in_name);
if((in_stream = fopen(in_name, "r")) == NULL) {

fprintf(stderr, "open of %s for reading failed ", in_name);
perror("because");
return 1;

}

printf("Destination file: "); scanf("%79s", out_name);
if((out_stream = fopen(out_name, "w")) == NULL) {

fprintf(stderr, "open of %s for writing failed ", out_name);
perror("because");
return 1;

}

while((ch = fgetc(in_stream)) != EOF)
fputc(ch, out_stream);

fclose(in_stream);
fclose(out_stream);

return 0;
}

Example - Copying Files

Reading and
Writing Files

Two arrays are needed for the input and output file names. The first file is, as
before, opened for reading by specifying “r” to fopen. The second file is opened
for writing by specifying “w” to fopen. Characters are then transferred between
files until EOF is encountered within the source file.

Closing files Strictly speaking when we fail to open the destination file for writing, before the
return, we should fclose the source file. This is not actually necessary, since
on “normal” exit from a program, C closes all open files. This does not happen if
the program “crashes”.

Closing the output file will cause any operating system dependent end of file
character(s) to be written.

Transferring the
data

The loop: while((ch = fgetc(in_stream)) != EOF)
fputc(out_stream, ch);

uses the Standard Library routine fgetc to obtain the next character in sequence
from the input file. Notice the call is NOT:

ch = fgetc(in_name)

i.e. we use the stream associated with the file rather than the name of the file.
Any attempt to pass “in_name” to fgetc would produce compiler errors. The
character obtained from the file is checked against EOF to see if we have
processed all of the characters. If not, the character is written to the output file
(again via the stream associated with the file, “out_stream” and not via the name
of the file in “out_name”).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

274 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Example - Copying Files (Continued)

Blissful
Ignorance of
Hidden Buffers

Notice that although both “in_stream” and “out_stream” have buffers associated
with them, we need to know nothing about these buffers. We are not required to
fill them, empty them, increment pointers, decrement pointers or even know the
buffers exist. The fgetc and fputc routines manage everything behind the
scenes.

Cleaning up Finally when end of file is encountered in the input file, the loop terminates and
the program calls fclose to close the input and output files. This is really
unnecessary since C will close files for us when the program finishes (which it is
about to do via return), however it is good practice. There are only so many
files you can open simultaneously (the limit usually defined by the operating
system). If you can open one file, close it, then open another and close that there
is no limit on the number of files your application could deal with.

There is, of course, always the danger of forgetting to close files and then turning
this code into a function which would be called repeatedly. On each call, one
precious file descriptor would be used up. Eventually fopen would fail with “too
many open files”.

Once again, fclose deals with the stream, “in_stream” and not the file name
“in_name”.

Program’s
Return Code

Finally the return 0;

indicates the success (i.e. successful copy) of our program.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 275
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

Convenience Problem

§ Although our copy file program works, it is not as
convenient as the “real thing”

C:> copyprog
Source file: \autoexec.bat
Destination file: \autoexec.bak
C:> dir C:\autoexec.*
 Volume in drive C is MS-DOS_62
 Directory of C:\

autoexec bak 805 31/12/99 12:34
autoexec bat 805 29/07/90 8:15
 2 file(s) 1610 bytes
 1,264,183,003 bytes free
C:> copyprog \autoexec.bat \autoexec.000
Source file:

program still prompts despite begin given file
names on the command line

Convenience Problem

Typing
Pathnames

Here we can see our program working. Note that when prompted for the source
and destination files it is neither necessary nor correct to type:

\\autoexec.bat

It is only the compiler (actually it’s the preprocessor) which converts “\a” from the
two character sequence into the alert character. Once the program has been
compiled, the preprocessor is “out of the picture”, thus typing the filename is
straightforward and we don’t have to make a note that since the program was
written in C pathnames should be typed in a strange format.

No Command
Line Interface

The fact remains that although our program works, it fails to pick up file names
from the command line. It cannot be used as conveniently as the “real thing”.
Clearly we would like to emulate the behavior of “supplied programs” like the
“real” copy command.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

276 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Accessing the Command Line

§ The command line may be accessed via two
parameters to main, by convention these are
called “argc” and “argv”

§ The first is a count of the number of words -
including the program name itself

§ The second is an array of pointers to the words

int main(int argc, char *argv[])

argc argv3

NULL

c o p y p r o g . e x e \0

\ a u t o e x e c . b a t \0

\ a u t o e x e c . 0 0 0 \0

Accessing the Command Line

In environments which support C it is possible to access the command line in a
clean and portable way. To do this we must change the way main is defined. If
we use the header we have seen thus far during the course:

int main(void)

our program will ignore all words the user types on the command line (“command
line parameters”). If on the other hand we use the header:

int main(int argc, char* argv[])

the program may pick up and process as many parameters (words) the user
provides. Since the two variables “argc” and “argv” are parameters they are ours
to name whatever we choose, for instance:

int main(int sky, char* blue[])

Providing we do not change their types the names we use are largely our choice.
However, there is a convention that these parameters are always called “argc”
and “argv”. This maintains consistency across all applications, across all
countries, so when you see “argv” being manipulated, you know that command
line parameters are being accessed. The parameters are:

argc an integer containing a count of the number of words the user typed
argv an array of pointers to strings, these strings are the actual words the user typed

or an exact copy of them.

The pointers in the “argv” array are guaranteed to point to strings (i.e. null
terminated arrays of characters).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 277
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Example

#include <stdio.h>

int main(int argc, char *argv[])
{

int j;

for(j = 0; j < argc; j++)
printf("argv[%i] = \"%s\"\n", j, argv[j]);

return 0;
}

C:> argprog one two three
argv[0] = "C:\cct\course\cprog\files\slideprog\argprog.exe"
argv[1] = "one"
argv[2] = "two"
argv[3] = "three"

Example

The program above shows a C program accessing its command line. Note that
element zero of the array contains a pointer to the program name, including its
full path (although a few operating systems provide only the program name).
This path may be used as the directory in which to find “.ini” and other data files.

Although “argc” provides a convenient count of the number of parameters the
argv array itself contains a NULL terminator (a NULL pointer, not a null terminator
‘\0’). The loop could have been written as:

for(j = 0; argv[j] != NULL; j++)
printf("argv[%i] = \"%s\"\n", j, argv[j]);

In fact, “argc” isn’t strictly necessary, its there to make our lives slightly easier.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

278 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Useful Routines

§ File reading routines:

int fscanf(FILE* stream, const char* format, ...);
int fgetc(FILE* stream);
char* fgets(char* buffer, int size, FILE* stream);

§ File writing routines:

int fprintf(FILE* stream, const char* format, ...);
int fputc(int ch, FILE* stream);
int fputs(const char* buffer, FILE* stream);

Useful Routines

fscanf The fscanf routine is just like scanf, except for the first parameter which you
will see is of the stream type. To read an int, a float and a word of not more than
39 characters into an array from the keyboard:

scanf("%I %f %39s", &j, &flt, word);

to read these things from a file:

fscanf(in_stream, "%I %f %39s", &j, &flt, word);

The fgetc routine has already been used in the file copy program to read
individual characters from an input file.

fgets The fgets routine reads whole lines as strings. The only problem is fixing the
length of the string. The storage used must be allocated by the user as an array
of characters. Doing this involves putting a figure on how long the longest line
will be. Lines longer than this magical figure will be truncated. For a “short” lines
fgets will append the newline character, “\n” (just before the null terminator).
When a “long” line is encountered, fgets truncates it and does not append a
newline. Thus the presence or absence of the newline indicates whether the line
was longer than our buffer length.

char line[100];

fgets(line, sizeof(line), in_stream);
if(strchr(line, '\n') == NULL)

printf("line \"%s\" truncated at %I characters\n", line,
sizeof(line));

The Standard Library routine strchr finds a character within a string and returns
a pointer to it, if present, or NULL if absent.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 279
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Useful Routines - (Continued)

fprintf The fprintf routine is just like printf, except for the first parameter which you
will see is of the stream type. To write an int, a float to one decimal place and a
word, left justified within a field of 39 characters:

printf("%i %.1f %-39s", j, flt, word);

to write these things to a file:

fprintf(out_stream, "%i %.1f %-39s", j, flt, word);

in fact, printf(???) is the equivalent of fprintf(stdout, ???).

The fputc routine can be seen in the file copy program a few pages ago and
writes single characters to a file.

fputs The fputs routine writes a string to a file, as follows:

char line[100];

fgets(line, sizeof(line), in_stream);
fputs(line, out_stream);

All the characters in the character array are written, up until the null terminator
“\0”. If you have a newline character at the end of the buffer this will be written
out too, otherwise you will output “part of a line”. Presumably a newline character
must be appended by hand at some stage.

Although fgets is driven by a character count (in order not to overflow the
buffer), the fputs routine is driven by the position of the null terminator and thus
does not need a count. Passing a non null terminated array of characters to
fputs would cause serious problems.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

280 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 15

Example

long l1, l2;
int j, ch;
double d;
float f;
char buf[200];

in = fopen("in.txt", "r")
out = fopen("out.txt", "w")

fscanf(in, "%lf|%li:%li/%i", &d, &l1, &l2, &j);
fprintf(out, "%li:%i:%.2lf\n", l1, j, d);

fgetc(in);

fgets(buf, sizeof(buf), in);
fputs(buf, out);

example input

28.325|9000000:68000/13

write that line to the output file (null terminator
provided by fgets tells fputs how long the line was)

read next line, or next
199 characters,

whichever is less

ignore next character
in input file (newline?)

9000000:13:28.33

Example

The example program above shows fscanf reading a double, two long ints
and an int from the file “in.txt”. The double is separated from the first long
int by a vertical bar “|”, the two long ints are separated from one another by a
“:”, while the long int is separated from the int by “/”.

When output to the file “out.txt” via the fprintf routine, the first long int, int
and double are separated by “:” characters.

The next call is to fgetc which reads one single character from the input stream.
This assumes there is a newline character immediately after the “.... 68000/13”
information which we have just read. This newline character is discarded.
Normally we would have said

ch = fgetc(in);

but here there seems no point assigning the newline character to anything since
we’re really not that interested in it.

Why all this fuss over a simple newline character? The fgets routine reads
everything up until the next newline character. If we do not discard the one at the
end of the line, fgets will immediately find it and read an empty line.

fgets Stop
Conditions

fgets will stop reading characters if it encounters end of file, “\n” or it reads 199
characters (it is careful to leave room for the null terminator) from the file into the
buffer “buf”. A null terminator is placed immediately after the last character read.

These characters are then written to the output file via the fputs routine.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 281
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Binary Files

§ The Standard Library also allows binary files to
be manipulated
– “b” must be added into the fopen options

– Character translation is disabled
– Random access becomes easier
– Finding the end of file can become more difficult
– Data is read and written in blocks

size_t fread(void* p, size_t size, size_t n, FILE* stream);
size_t fwrite(const void* p, size_t size, size_t n, FILE* stream);

int fseek(FILE* stream, long offset, int whence);
long ftell(FILE* stream);
void rewind(FILE* stream);

int fgetpos(FILE* stream, fpos_t* pos);
int fsetpos(FILE* stream, const fpos_t* pos);

Binary Files

Thus far we have examined text files, i.e. the characters contained within each file
consist entirely of ASCII (or EBCDIC) characters. Thus the file contents may be
examined, edited, printed etc.

Storing, say, a double as ASCII text can be rather inefficient, consider storing the
characters “3.1415926535890” (that’s 15 characters) in a file. Then some other
character, perhaps space or newline would be needed to separate this from the
next number. That pushes the total to 16 bytes. Storing the double itself would
only cost 8 bytes. Storing another double next to it would be another 8 bytes. No
separator is required since we know the exact size of each double.

This would be called a “binary file” since on opening the file we would see not
recognizable characters but a collection of bits making up our double. In fact we
would see 8 characters corresponding to the 8 bytes in the double. These
characters would appear almost random and would almost certainly not be
readable in a “human” sense.

The double containing pi could be written to a binary file as follows:

double pi = 3.1415926535890;
FILE* out_stream;

out_stream = fopen("out.bin", "wb");
fwrite(&pi, sizeof(double), 1, out_stream);

The normal checking of the return value from fopen, which is necessary with
binary files too, has been omitted for brevity.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

282 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Binary Files (Continued)

fopen “wb” The “wb” option to fopen puts the stream into “binary” write mode. This is very
important, because there are a number of significant changes in the way the
various routines work with binary files. Fortunately these changes are subtle and
we just go ahead and write the program without needing to worry about them.
Well, mostly.

The Control Z
Problem

The first change in the behavior of the routines concerns the “Control Z problem”.
When MS-DOS was invented, someone decided to place a special marker at the
end of each file. The marker chosen was Control-Z (whose ASCII value is 26).
Writing a byte containing 26 to a file is no problem. Reading a byte containing 26
back again is a problem. If in text mode, the 26 will appear as end of file, fgetc
will return EOF and you will not be able to read any further. It is therefore very
important that you read binary files in binary mode. If you read a binary file in
text mode you will get some small percentage of the way through the file, find a
26, and inexplicably stop.

Since MS-DOS had an influence on the design of Windows 95, NT and OS/2 they
all share this problem, even though no one actually does store Control-Z at the
end of files any more (this is because there were too many problems when an
application failed to write the Control-Z. Such “EOF-less” files grew without limit
and eventually ate all the disk space).

This begs the question as to how, if our end of file character has been “used up”,
we can detect end of file with a binary file. This isn’t really that different a
question to how with “modern” files we can detect end of file when there is no
appended Control-Z. This is all done by the operating system which somewhere
must maintain a count of the number of bytes in the file (the “dir” command
certainly doesn’t open each file and count the number of bytes each time you run
it).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 283
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Binary Files (Continued)

The Newline
Problem

The second change in behavior revolves around the newline character “\n”. To
understand what a newline really does, you need to think of the movement of a
print head either for a teletype or for a printer (back in the days when printers had
print heads). At the end of a line the print head returns to column one. This is
called a “carriage return”. Then the paper moves up one line, called a “line feed”.
Thus a single newline character would seem to do two things.

Under Unix there is an immense amount of heavy code within the terminal driver
to make sure these two things happen whenever a “\n” is output. This behavior
can even be turned off whenever appropriate.

MS-DOS is a much more simple operating system. It was decided that a newline
character should do one thing and not two. It is therefore necessary to place two
characters “\r” and “\n” at the end of each line in an MS-DOS file. The “\r”,
carriage return character moves the cursor to column one, the “\n” causes the line
feed to move to the next line.

Clearly we have not taken this into account thus far. In fact the Standard Library
routines take care of this for us. If we do the following:

FILE* out_stream;

out_stream = fopen("out.txt", "w");
fprintf(out_stream, "hi\n");

Because “out_stream” is opened in text mode, four characters are written to the
file, “h”, “i”, “\r”, “\n”. If we had done the following:

FILE* out_stream;

out_stream = fopen("out.bin", "wb");
fprintf(out_stream, "hi\n");

then only three characters would have been written, “h”, “i”, “\n”. Without the
carriage returns in the file, listing it would produce some interesting effects.

The upshot is:
text mode write 10 13 10 written
binary mode write 10 10 written
text mode read 13 see 13 (if 13 not followed by 10)

see 10 (if 13 followed by 10)
binary mode read 13 see 13

You can imagine that if a binary file were read in text mode and these 10s and
13s were embedded within, say, a double the value would not be pulled back out
properly.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

284 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Binary Files (Continued)

The Movement
Problem

A further problem arises with random movement around the file. Say we wish to
move forwards 100 bytes in a file. If the file were opened in text mode every time
we moved over a 10 it would count as two characters. Thus if there were 3 10s
within the next 100 bytes would that mean we should move forwards 103 bytes
instead? If the file were opened in binary mode there wouldn’t be a problem since
a 10 is a 10, moving 100 bytes would mean 100 bytes.

Moving Around
Files

There are two mechanisms for moving around files. As just discussed these work
best with binary files. The “traditional” method is to use the fseek function.

int fseek(FILE* stream, long offset, int whence);

The second parameter, of type long is the position we wish to move to. Thus if
we wished to move to the 30th byte in the file (regardless of our current position):

fseek(stream, 30L, SEEK_SET);

Where “stream” is the stream opened for reading or writing in binary mode and
SEEK_SET is a constant defined in stdio.h which says “move relative to the
start of the file”. Two other constants SEEK_CUR, “move relative to the current
position” and SEEK_END, “move relative to the end of the file”, are available.

When SEEK_SET is used, the position specified must not be negative. When
SEEK_CUR is used, the position may be either positive or negative, when
SEEK_END is used the value should be negative. The ftell function may be
used to determine the current position within the file.

fsetpos vs.
fseek

A fundamental problem with fseek and ftell is that the maximum value of a
long is 231-1. In byte terms we can move to any position within a 2.1 Gigabyte
file. If the file is larger we’re in trouble. To address this problem, the Standard
Library defines two other routines:

int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, const fpos_t *pos);

where fpos_t is an implementation specific type able to hold a position within a
file of arbitrary size. Unfortunately you need to visit the point you wish to return to
first. In other words fgetpos must be called to initialize an fpos_t before
fsetpos can called using the fpos_t. It is not possible to say “move the
position forwards by 3000 bytes” as it is with fseek, though you could say “move
the position backwards by 3000 bytes” as long as you had remembered to save
the position 3000 bytes ago.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C 285
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Example

double d;
long double lda[35];
fpos_t where;

in = fopen("binary.dat", "rb");
out = fopen("binnew.dat", "wb");

fread(&d, sizeof(d), 1, in);

fgetpos(in, &where);
fread(lda, sizeof(lda), 1, in);

fsetpos(in, &where);
fread(lda, sizeof(long double), 35, in);

fwrite(lda, sizeof(long double), 20, out);

fseek(in, 0L, SEEK_END);

read one chunk
of 8 bytes

read one chunk
of 350 bytes

read 35 chunks
of 10 bytes

remember current
position in file

return to previous
position

write 20 long
doubles from ldamove to end of binary.dat

Example

This is an example of some of the routines mentioned. It is an example only, not
a particularly coherent program. Firstly the files are opened in binary mode by
appending “b” to the file mode. The first fread transfers sizeof(d) == 8 bytes,
multiplied by 1 (the next parameter) from the stream “in” into the variable “d”.

The current position is saved using the fgetpos function. The second fread
transfers sizeof(lda) == 350 bytes, multiplied by 1, into “lda”. As “lda” is an
array, it is not necessary to place an “&” before it as the case with “d”.

Using the fsetpos function, the file position is returned to the point at which the
35 long doubles are stored (just after the initial 8 byte double which was read
into “d”). These long doubles are then re-read. This time the parameters to
fread are sizeof(long double) == 10 bytes and 35 because we need to
read 35 chunks of 10 bytes. The net effect is exactly the same. 350 bytes are
transferred from the file directly into the array “lda”.

We then write the first 20 long doubles from the “lda” array to the file “out”.

The call to fseek moves the current file position to zero bytes from the end of the
file (because SEEK_END is used). If the call had been

fseek(in, 0L, SEEK_SET);

we would have moved back to the start of the file. This would have been
equivalent to:

rewind(in);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

286 Handling Files in C
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Summary

§ Streams stdin, stdout, stderr

§ fopen opening text files

§ functions: perror, fprintf, fscanf, fgetc,
fputc

§ variables: argc, argv

§ “b” option to fopen to open binary files

§ functions: fread, fwrite, fseek, ftell

Summary

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C - Exercises 287
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

288 Handling Files in C - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: STDLIB

1. Write a program called “SHOW” which displays text files a screenfull at a time (rather like “more”).
Prompt for the name of the file to display. Assume the screen is 20 lines long.

2. Update “SHOW” such that it tests for a file name on the command line, so

SHOW SHOW.C

would display its own source code. If no file name is provided, prompt for one as before.

3. Further update “SHOW” so that it will display each one in a list of files:

SHOW SHOW.C FCOPY.C ELE.TXT

Using the prompt “press return for next file <name>“ when the end of the first two files has been
reached. Do not produce this prompt after “ELE.TXT”

4. The file “ELE.TXT” is a text file containing details about the elements in the Periodic Table. The format
of each line in the file is:

nm 45.234 100.95 340.98

where “nm” is the two letter element name, 45.234 is the atomic weight (or “relative molecular mass”
as it is now called), 100.95 is the melting point and 340.98 the boiling point. Write a program “ELEMS”
to read this text file and display it, 20 lines at a time on the screen.

5. Using “ELEMS” as a basis, write a program “ELBIN” to read the text information from “ELE.TXT” and
write it to a binary file “ELE.BIN”. Then write a “BINSHOW” program to read the binary file and display
the results on the screen. The results should look the same as for your “ELEMS” program. If you write
floats to the file, you should notice the binary file is smaller than its text equivalent.

6. When a program is compiled, all strings that are to be loaded into the data segment at run time are
written into the executable. If the executable is opened for reading in binary mode, these strings may
be found and printed. Write such a program “STRINGS.C” which prints out sequences of 4 or more
printable characters. The character classification routines from <ctype.h> may be helpful in
determining what is printable and what is not.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C - Solutions 289
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Handling Files in C Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

290 Handling Files in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. Write a program called “SHOW” which displays text files a screenful at a time (rather like “more”).
Prompt for the name of the file to display. Assume the screen is 20 lines long.

Using scanf to prompt for the filename leaves an unread newline character in the input buffer. This
must be discarded or the first call to getchar in the show function will appear to do nothing (it will merely
pick up the newline from the buffer). The call to getchar immediately after the call to scanf discards this
newline. Notice also how the show function uses getchar within a loop. Typing “abc<return>” would
cause four characters to be saved in the input buffer. If getchar is only called once each time, three
other pages will zoom past. The return value from show is used as the return value from the program.
Thus when show fails to open a file the return value is 1. When everything goes well, the return value is
0.

#include <stdio.h>
#define STOP_LINE 20

int show(char*);

int main(void)
{

char name[100+1];

printf("File to show ");
scanf("%100s", name);
getchar();

return show(name);
}

int show(char* filename)
{

int ch;
int lines = 0;
FILE* stream;

if((stream = fopen(filename, "r")) == NULL) {
fprintf(stderr, "Cannot open file %s, ", filename);
perror("");
return 1;

}

while((ch = fgetc(stream)) != EOF) {
putchar(ch);
if(ch == '\n') {

lines++;
if(lines == STOP_LINE) {

lines = 0;
while(getchar() != '\n')

;
}

}
}
fclose(stream);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C - Solutions 291
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

2. Update “SHOW” such that it tests for a file name on the command line

By using strncpy to copy characters, the program is protected from overflowing the array “name”.
However, strncpy does not guarantee to null terminate the buffer in the case where the maximum
possible number of characters were copied across. Thus the program ensures the buffer is null
terminated.

#include <stdio.h>
#include <string.h>

#define STOP_LINE 20

int show(char*);

int main(int argc, char* argv[])
{

char name[100+1];

if(argc == 1) {
printf("File to show ");
scanf("%100s", name);
getchar();

} else {
strncpy(name, argv[1], sizeof(name));
name[sizeof(name) - 1] = '\0';

}

return show(name);
}

int show(char* filename)
{

int ch;
int lines = 0;
FILE* stream;

if((stream = fopen(filename, "r")) == NULL) {
fprintf(stderr, "Cannot open file %s, ", filename);
perror("");
return 1;

}

while((ch = fgetc(stream)) != EOF) {
putchar(ch);
if(ch == '\n') {

lines++;
if(lines == STOP_LINE) {

lines = 0;
while(getchar() != '\n')

;
}

}
}
fclose(stream);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

292 Handling Files in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

3. Further update “SHOW” so that it will display each one in a list of files.

With this version, the character array needed if there are no command line parameters is declared
within the if statement. If the array is required, the storage is allocated and used. Whereas many
different possible error strategies exist (the program could exit when the first error occurs opening a file)
this program “stores” the error status and continues. When the program finishes this error value is
returned.

#include <stdio.h>
#include <string.h>

#define STOP_LINE 20

int show(char*);

int main(int argc, char* argv[])
{

int i;
int err = 0;

if(argc == 1) {
char name[100+1];

printf("File to show ");
scanf("%100s", name);
getchar();
return show(name);

}

for(i = 1; i < argc; i++) {
if(show(argv[i]))

err = 1;

if(i < argc - 1) {
printf("press return for next file %s\n", argv[i + 1]);
while(getchar() != '\n')

;
}

}

return err;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C - Solutions 293
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int show(char* filename)
{

int ch;
int lines = 0;
FILE*stream;

if((stream = fopen(filename, "r")) == NULL) {
fprintf(stderr, "Cannot open file %s, ", filename);
perror("");
return 1;

}

while((ch = fgetc(stream)) != EOF) {
putchar(ch);
if(ch == '\n') {

lines++;
if(lines == STOP_LINE) {

lines = 0;
while(getchar() != '\n')

;
 }

}
}
fclose(stream);

return 0;
}

4. The file format of “ELE.TXT” is

nm 45.234 100.95 340.98

Write a program “ELEMS” to read this text file and display it

#include <stdio.h>
#include <string.h>

#define STOP_LINE 20

int show(char*);
void processFile(FILE* s);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

294 Handling Files in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int main(int argc, char* argv[])
{

char*p;
char name[100+1];

if(argc == 1) {
printf("File to show ");
scanf("%100s", name);
getchar();

p = name;
} else

p = argv[1];

return show(p);
}

int show(char* filename)
{

FILE*stream;

if((stream = fopen(filename, "r")) == NULL) {
fprintf(stderr, "Cannot open file %s, ", filename);
perror("");
return 1;

}
processFile(stream);
fclose(stream);

return 0;
}

void processFile(FILE* s)
{

char name[3];
float rmm;
float melt;
float boil;
int count = 0;

while(fscanf(s, "%2s %f %f %f", name, &rmm, &melt, &boil) == 4) {
printf("Element %-2s rmm %6.2f melt %7.2f boil %7.2f\n",

name, rmm, melt, boil);
if(++count == STOP_LINE) {

count = 0;
while(getchar() != '\n')

;
}

}
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C - Solutions 295
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

5. Write a program to read “ELE.TXT” and write it to a binary file “ELE.BIN”. Then write a “BINSHOW”
program to read the binary file and display the results on the screen.

The binary file generator is listed first:

#include <stdio.h>

int convert(char*, char*);
void processFile(FILE*, FILE*);

int main(int argc, char* argv[])
{

char* in;
char* out;
char in_name[100+1];
char out_name[100+1];

switch(argc) {
 case 1:

printf("File to read ");
scanf("%100s", in_name);
getchar();

printf("File to write ");
scanf("%100s", out_name);
getchar();

in = in_name;
out = out_name;
break;

 case 2:
printf("File to write ");
scanf("%100s", out_name);
getchar();

in = argv[1];
out = out_name;
break;

 case 3:
in = argv[1];
out = argv[2];
break;

}

return convert(in, out);
}

int convert(char* in, char* out)
{

FILE* in_stream;
FILE* out_stream;

if((in_stream = fopen(in, "r")) == NULL) {
fprintf(stderr, "Cannot open input file %s, ", in);
perror("");
return 1;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

296 Handling Files in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

}
if((out_stream = fopen(out, "wb")) == NULL) {

fprintf(stderr, "Cannot open output file %s, ", out);
perror("");
return 1;

}
processFile(in_stream, out_stream);

fclose(in_stream);
fclose(out_stream);

return 0;
}

void processFile(FILE* in, FILE* out)
{

char name[3];
float rmm;
float melt;
float boil;

while(fscanf(in, "%2s %f %f %f", name, &rmm, &melt, &boil) == 4) {
fwrite(name, sizeof(char), 2, out);
fwrite(&rmm, sizeof(rmm), 1, out);
fwrite(&melt, sizeof(melt), 1, out);
fwrite(&boil, sizeof(boil), 1, out);

}
}

Now the binary file listing program:

#include <stdio.h>

#define STOP_LINE 20

int show(char*);
void processFile(FILE* s);

int main(int argc, char* argv[])
{

char* p;
char name[100+1];

if(argc == 1) {
printf("File to show ");
scanf("%100s", name);
getchar();

p = name;
} else

p = argv[1];

return show(p);
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C - Solutions 297
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int show(char* filename)
{

FILE* stream;

if((stream = fopen(filename, "rb")) == NULL) {
fprintf(stderr, "Cannot open file %s, ", filename);
perror("");
return 1;

}

processFile(stream);

fclose(stream);

return 0;
}

void processFile(FILE* in)
{

char name[3] = { 0 };
float rmm;
float melt;
float boil;
int count = 0;

while(fread(name, sizeof(char), 2, in) == 2 &&
fread(&rmm, sizeof(rmm), 1, in) == 1 &&
fread(&melt, sizeof(melt), 1, in) == 1 &&
fread(&boil, sizeof(boil), 1, in) == 1) {

printf("Element %-2s rmm %6.2f melt %7.2f boil %7.2f\n",
name, rmm, melt, boil);

if(++count == STOP_LINE) {
count = 0;
while(getchar() != '\n')

;
}

}
}

6. Write a program “STRINGS.C” which prints out sequences of 4 or more printable characters from an
executable.

The program buffers printable characters one through four. When a fifth is found the preceding four
characters are printed followed by the fifth. The sixth and subsequent characters are printed directly.
The first non printable character causes a newline to be output.

The program uses its own name in error messages thus if and when the user moves the executable,
errors reflect the new program name and a fixed one. Notice that only the last component of argv[0] is
used (the filename itself) and then only those characters before the “.” (this loses “.exe”).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

298 Handling Files in C - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

As an alternative to prompting for a filename if none is provided, this program produces an error
message.

#include <stdio.h>
#include <string.h>

#define MAGIC_LENGTH 4

int open_file(char*, char*);
void process_file(FILE*);

int main(int argc, char* argv[])
{

int i;
int err = 0;
char* dot;
char* name;

if((name = strrchr(argv[0], '\\')) == NULL)
name = argv[0];

else
name++;

if((dot = strchr(name, '.')) != NULL)
*dot = '\0';

if(argc == 1) {
fprintf(stderr, "usage: %s filename [filename]\n", name);
return 9;

}

for(i = 1; i < argc; i++) {
if(open_file(argv[i], name))

err = 1;

if(i < argc - 1) {
printf("press return for next file %s\n", argv[i + 1]);
while(getchar() != '\n')

;
}

}

return err;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Handling Files in C - Solutions 299
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

int open_file(char* filename, char* progname)
{

FILE* stream;

if((stream = fopen(filename, "rb")) == NULL) {
fprintf(stderr, "%s: Cannot open file %s, ",

progname, filename);
perror("");
return 1;

}

process_file(stream);
fclose(stream);

return 0;
}

void process_file(FILE* in)
{

int i;
int ch;
int count = 0;
char buffer[MAGIC_LENGTH];

while((ch = fgetc(in)) != EOF) {

if(ch < ' ' || ch >= 0x7f) {
if(count > MAGIC_LENGTH)

putchar('\n');
count = 0;

} else {
if(count < MAGIC_LENGTH)

buffer[count] = ch;
else if(count == MAGIC_LENGTH) {

for(i = 0; i < MAGIC_LENGTH; i++)
putchar(buffer[i]);

putchar(ch);
} else

putchar(ch);

++count;
}

}
if(count > MAGIC_LENGTH)

putchar('\n');
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 301
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Miscellaneous Things

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

302 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

Miscellaneous Things

§ Unions

§ Enumerated types

§ The Preprocessor

§ Working with multiple .c files

Miscellaneous Things

This chapter covers most of the remaining important “odds and ends” in C.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 303
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

Unions

§ A union is a variable which, at different times,
may hold objects of different types and sizes

struct S
{

short s;
long l;
double d;
char c;

} s;

s.s = 10;
s.l = 10L;
s.d = 10.01;
s.c = '1';

union U
{

short s;
long l;
double d;
char c;

} u;

u.s = 10;
u.l = 10L;
u.d = 10.01;
u.c = '1';

s

u

Unions

Unions provide a mechanism for overlaying variables of different types and sizes
in the same memory. In the example above, the struct “S” arranges its
members to follow one after another. The union “U” arranges its members to
overlap and thus occupy the same region of memory.

Size of struct
vs. Size of
union

The struct instance “s” would be 15 bytes in size (or maybe 16 when “padded”).
The union instance “u” would be size 8 bytes in size, the size of its largest
member “d”.

Assigning a value to “s.s” will not effect the value stored in “s.l” or any other
member of “s”. Assigning a value to “u.s” will write into the first 2 of 8 bytes. “u”
would store a short. Assigning a value to “u.l” would write into the first 4 of the
8 bytes. “u” would store a long. The value previously stored in “u.s” would be
overwritten. Assigning a value to “u.d” would write over all 8 bytes of “u”. The
long previously stored would be overwritten and “u” would store a double.
Assigning a value to “u.c” would write into the first byte of “u”. This would be
sufficient to “corrupt” the double, but since “u” is storing a character, we
shouldn’t look at the double anyway.

Thus, a union may hold values of different types here, a short, long, double
or char. Unlike the structure “s”, the union “u” may NOT hold two values at the
same time.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

304 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

Remembering

§ It is up to the programmer to remember what type
a union currently holds

§ Unions are most often used in structures where a
member records the type currently stored

struct preprocessor_const
{

char* name;
int stored;
union
{

long lval;
double dval;
char* sval;

} u;
};

#define N_SIZE 10
#define PI 3.1416

struct preprocessor_const s[10000];

s[0].name = "N_SIZE";
s[0].u.lval = 10L;
s[0].stored = STORED_LONG;

s[1].name = "PI";
s[1].u.dval = 3.1416;
s[1].stored = STORED_DOUBLE;

Remembering

The compiler gives no clues as to what value a union currently holds. Thus with the
union “u” on the previous page we could write a value into the long (4 byte) part, but
read a value from the short (2 byte) part. What is required is some mechanism for
remembering what type is currently held in the union. All is possible, but we have to
do the work ourselves.

A Member
to Record
the Type

In this example a union is placed in a structure along with a member “stored” which
records the type currently stored within the union. Whenever a value is written into
one of the union’s members, the corresponding value (probably #defined) is placed
in the “stored” member. The example above is how a symbol table for a preprocessor
might look. A simple preprocessor could deal with constants as either longs,
doubles or strings. To this end, the define

#define N_SIZE 100

would cause the name “N_SIZE” to be stored and the value 100 stored as a long. For
the define

#define PI 3.1416

the name “PI” would be stored and the value 3.1416 stored as a double. For a
define

#define DATA_FILE "c:\data\datafile1.dat"

the name “DATA_FILE” would be stored and the value “c:\data\datafile1.dat” stored as
a char*.

By overlaying the long, double and char* each preprocesor_const uses only
the minimum amount of memory. Clearly a preprocessor constant cannot be a long,
a double and a string at the same time. Using a struct instead of a union would
have wasted storage (since only one out of the three members of the structure would

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 305
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

have been used).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

306 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Enumerated Types

§ Enumerated types provide an automated
mechanism for generating named constants

enum day { sun, mon, tue,
wed, thu, fri, sat };

enum day today = sun;

if(today == mon)
....

#define sun 0
#define mon 1
#define tue 2
#define wed 3
#define thu 4
#define fri 5
#define sat 6

int today = sun;

if(today == mon)
....

Enumerated Types

The enumerated type provides an “automated” #define. In the example above,
seven different constants are needed to represent the days of the week. Using
#define we must specify these constants and ensure that each is different from
the last. With seven constants this is trivial, however imagine a situation where
two or three hundred constants must be maintained.

The enum guarantees different values. The first value is zero, each subsequent
value differs from the last by one.

The two examples above are practically identical. enums are implemented by the
compiler as “integral types”, whether ints or longs are used is dictated by the
constants (a constant larger than 32767 on a machine with 2 byte integers will
cause a switch to the use of long integers).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 307
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Using Different Constants

§ The constants used may be specified

enum day { sun = 5, mon, tue, wed, thu, fri, sat };

enum direction { north = 0, east = 90, south = 180,
west = 270 };

§ What you see is all you get!

§ There are no successor or predecessor functions

Using Different Constants

enum does not force the programmer to use values from 0 onwards, this is just
the default. With the enum “day” above, the initial value of 5 causes “sun” to be
5, “mon” to be 6 and so on. With the enum “direction”, the value of each of the
constants is specified.

Printing enums There is no mechanism for directly printing enum as text. The following is
possible:

enum direction heading = west;

printf("your direction is currently %i\n", heading);

or alternatively the user may prefer:

enum direction heading = west;

printf("your direction is currently ");
switch(heading) {
 case north:

printf("north\n");
break;

 case east:
printf("east\n");
break;

 case west:
printf("west\n");
break;

 case south:
printf("south\n");
break;

}

It is also not possible to say “the direction before east”, or “the direction after
south” without writing yet more code.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

308 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

The Preprocessor

§ Preprocessor commands start with ‘#’ which may
optionally be surrounded by spaces and tabs

§ The preprocessor allows us to:

– include files
– define, test and compare constants

– write macros
– debug

The Preprocessor

We have used the preprocessor since the very first program of the course, but
never looked in detail at what it can do. The preprocessor is little more than an
editor placed “in front of” the compiler. Thus the compiler never sees the program
you write, it only sees the preprocessor output:

.c file Intermediate
(sometimes

“.i”) file

CompilerPreprocessor

As we have seen, preprocessor commands start with “#” as in:

#include <stdio.h>

which may also be written as

include <stdio.h>

As well as including files and defining constants, the preprocessor performs a
number of other useful tasks.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 309
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

Including Files

§ The #include directive causes the preprocessor
to “edit in” the entire contents of another file

#define JAN 1
#define FEB 2
#define MAR 3

#define PI 3.1416

double my_global;

mydefs.h

#include "mydefs.h"

double angle = 2 * PI;
printf("%s", month[FEB]);

myprog.c

#define JAN 1
#define FEB 2
#define MAR 3

#define PI 3.1416

double my_global;

double angle = 2 * 3.1416;
printf("%s", month[2]);

myprog.i

Including Files

The #include directive causes the preprocessor to physically insert (and then
interpret) the entire contents of a file into the intermediate file. By the time this
has been done, the compiler cannot tell the difference between what you’ve typed
and the contents of the header files.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

310 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

Pathnames

§ Full pathnames may be used, although this is not
recommended

#include "C:\cct\course\cprog\misc\slideprog\header.h"

§ The “I” directive to your local compiler allows
code to be moved around much more easily

#include "header.h"

cc -I c:\cct\course\cprog\misc\slideprog myprog.c

Pathnames

Finding
#include Files

The preprocessor “knows” where to look for header files. When

#include <stdio.h>

is used, the compiler knows where the stdio.h file lives on the disk. In fact it
examines the INCLUDE environment variable. If this contains a path, for example
“c:\bc5\include” with the Borland 5.0 compiler, it opens the file
“c:\bc5\include\stdio.h”.

If: #include "stdio.h"

had been used, the preprocessor would have looked in the current directory for
the file first, then in whatever “special” directories it knows about after (INCLUDE
may specify a number of directories, separated by “;” under DOS like operating
systems).

If there is a specific file in a specific directory you wish to include it might be
tempting to use a full path, as in the slide above. However this makes the
program difficult to port to other machines. All of the .c files using this path would
have to be edited. It is much easier to use double quotes surrounding the file
name only and provide the compiler with an alternative directory to search. This
can be done either by updating the INCLUDE variable, or with the “I” option (they
both amount to the same thing) although with the fully integrated development
environments in common use today it can be a battle to find out how precisely
this is done.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 311
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Preprocessor Constants

§ Constants may be created, tested and removed

#if !defined(SUN)
#define SUN 0
#endif

#if SUN == MON
#undef SUN
#endif

if “SUN” is not defined, then begin

 define “SUN” as zero

end

#if SUN > SAT && SUN > MON

#if WED > 0 || SUN < 3

#if TUE if “TUE” is defined with a non zero value

if “WED” is greater than zero or “SUN” is
less than 3

if “SUN” is greater than “SAT” and “SUN”
is greater than “MON”

if “SUN” and “MON” are equal, then begin

 remove definition of “SUN”

end

Preprocessor Constants

Preprocessor constants are the “search and replace” of the editor. The constants
themselves may be tested and even removed. The defined directive queries
the preprocessor to see if a constant has been created. This is useful for setting
default values. For instance:

#define YEAR_BASE 1970

#define YEAR_BASE 1970

will produce an error because the symbol “YEAR_BASE” is defined twice (even
though the value is the same). It would seem daft to do this, however the first line
may be in a header file while the second in the .c file. This case may be catered
for by:

#define YEAR_BASE 1970 (in the header)

#if defined(YEAR_BASE) (in the .c)
#undef YEAR_BASE
#endif
#define YEAR_BASE 1970

This would keep the preprocessor happy, since at the point at which
“YEAR_BASE” were #defined for the second time, no previous value would exist.

#if rather like “if(....) {”
#endif like the “}” closing the “if(....) {” block
#define set up a search and replace
#undef forget a search and replace

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

312 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Avoid Temptation!

§ The following attempt to write Pascal at the C
compiler will ultimately lead to tears

#define begin {
#define end ;}
#define if if(
#define then)
#define integer int

integer i;

if i > 0 then begin
i = 17

end

int i;

if(i > 0) {
i = 17

;}

Avoid Temptation!

The preprocessor can be used to make C look like other languages. By writing
enough preprocessor constructs it is possible to make C look like your favourite
language. However, ultimately this is not a good idea. No matter how hard you
try it is almost inevitable that you cannot make the preprocessor understand
every single construct you’d like. For instance when writing Pascal, assignments
are of the form:

a := b;

 It is not possible to set this up with the preprocessor, although you might think

#define := =

would work, it causes the preprocessor no end of grief. Also, declarations in
Pascal are the “opposite” to C:

i: integer;

There is no way to do this either. Thus what you end up with is an unpleasant
mixture of Pascal and C. However, it gets worse. To test a variable in Pascal:

if i = 0 then

would be perfect. In C assignment results. Thus our Pascal would never be
Pascal only a “version” or a “variation” of it. Thus the whole idea is best avoided.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 313
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Preprocessor Macros

§ The preprocessor supports a macro facility which
should be used with care

#define MAX(A,B) A > B ? A : B
#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))

int i = 10, j = 12, k;

k = MAX(i, j); printf("k = %i\n", k);
k = MAX(j, i) * 2; printf("k = %i\n", k);
k = MIN(i, j) * 3; printf("k = %i\n", k);
k = MIN(i--, j++); printf("i = %i\n", i); k = 12

k = 12
k = 30
i = 8

Preprocessor Macros

The preprocessor has a form of “advanced search and replace” mode in which it
will replace parameters passed into macros. Macros should be used with care.
The first assignment to “k” expands to:

k = i > j ? i : j;

This uses the conditional expression operator discussed earlier in the course.
Since “i” is 10 and “j” is 12 “i>j” is false and so the third expression “j” is evaluated
and assigned to “k”. All works as planned. The maximum value 12 is assigned to
“k” as expected.

The second assignment expands to:

k = j > i ? j : i * 2;

Although “i” and “j” have been swapped, there should be little consequence.
However, since “j>i” is true the second expression “j” is evaluated as opposed to “i
* 2”. The result is thus “j”, 12, and not the expected 24. Clearly an extra set of
parentheses would have fixed this:

k = (j > i ? j : i) * 2;

The MIN macro with its excess of parentheses goes some way toward correcting
this. The third assignment to “k” expands to:

k = ((i) < (j) ? (i) : (j)) * 3;

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

314 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Now whichever value the conditional expression operator yields, “i” or “j”, will be
multiplied by 3. Although the parentheses around “i” and “j” are unnecessary they
make no difference to the calculation or the result. The do make a difference
when the MIN macro is invoked as:

k = MIN(i + 3, j - 5);

The expansion:

k = ((i--) < (j++) ? (i--) : (j++))

causes “i” to be decremented and “j” to be incremented in the condition. 10 is
tested against 12 (prefix increment and decrement) thus the condition is true.
Evaluation of “i--” causes “i” to be decremented a second time. Thus “i” ends up
at 8, not at the 9 the code might have encouraged us to expect.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 315
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

A Debugging Aid

§ Several extra features make the preprocessor an
indespensible debugging tool

#define GOT_HERE printf("reached %i in %s\n", \
_ _LINE_ _, _ _FILE_ _)

#define SHOW(E, FMT) printf(#E " = " FMT "\n", E)

printf("i = %x\n", i);

printf("reached %i in %s\n", 17, "mysource.c");

GOT_HERE;
SHOW(i, "%x");
SHOW(f/29.5, "%lf");

printf("f/29.5 = %lf\n", f/29.5);

A Debugging Aid

The preprocessor provides many valuable debugging tools. The preprocessor
constant _ _LINE_ _ stores the current line number in the .c or .h file as an integer.
The constant _ _FILE_ _ stores the name of the current .c or .h file as a string.

The definition of GOT_HERE shows that preprocessor macros must be declared
on one line, if more than one line is required, the lines must be glued together
with “\”.

Although none of macros look particularly useful, their definition could be as
follows:

#if defined(WANT_DEBUG)
#define GOT_HERE printf("reached %i in %s\n", _ _LINE_ _, _ _FILE_ _)
#define SHOW(E, FMT) printf(#E " = " FMT "\n", E)
#else
#define GOT_HERE
#define SHOW(E, FMT)
#endif

Adding the line:

#define WANT_DEBUG

above “#if defined” would enable all the invocations of GOT_HERE and SHOW,
whereas removing this line would cause all invocations to be disabled.

There are two features of the SHOW macro worth mentioning. The first is that #E
causes the expression to be turned into a string (a double quote is placed before
the expression and another after it). The strings are then concatenated, thus:

SHOW(x, "%i")

becomes: printf("x" " = " "%i" "\n", x);

which then becomes: printf("x = %i\n", x);

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

316 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 13

Working With Large Projects

§ Large projects may potentially involve many
hundreds of source files (modules)

§ Global variables and functions in one module
may be accessed in other modules

§ Global variables and functions may be
specifically hidden inside a module

§ Maintaining consistency between files can be a
problem

Working With Large Projects

All the programs examined thus far have been in a single .c file. Clearly large
projects will involve many thousands of lines of code. It is impractical for a
number of reasons to place all this code in one file. Firstly it would take weeks to
load into an editor, secondly it would take months to compile. Most importantly
only one person could work on the source code at one time.

If the source code could be divided between different files, each could be edited
and compiled separately (and reasonably quickly). Different people could work
on each source file.

One problem with splitting up source code is how to put it back together.
Functions and global variables may be shared between the different .c files in a
project. If desired, the functions in one .c may be hidden inside that file. Also
variables declared globally within a .c may be hidden within that file.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 317
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Data Sharing Example

extern float step;

void print_table(double, float);

int main(void)
{

step = 0.15F;

print_table(0.0, 5.5F);

return 0;
}

#include <stdio.h>

float step;

void print_table(double start, float stop)
{

printf("Celsius\tFarenheit\n");
for(;start < stop; start += step)

printf("%.1lf\t%.1lf\n", start,
 start * 1.8 + 32);

}

Data Sharing Example

These two modules share a variable “step” and a function print_table.
Sharing the variable “step” is possible because the variable is declared globally
within the second module. Sharing the function print_table is possible
because the function is prototyped within the first module and declared “globally”
within the second module.

Functions are
Global and
Sharable

It is perhaps strange to think of functions as being global variables. Although
functions are not variables (since they cannot be assigned to or otherwise altered)
they are definitely global. It is possible to say:

extern void print_table(double, float);

although “extern” is implied by the prototype.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

318 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 14

Data Sharing Example

extern float step;

void print_table(double, float);

int main(void)
{

step = 0.15F;

print_table(0.0, 5.5F);

return 0;
}

#include <stdio.h>

float step;

void print_table(double start, float stop)
{

printf("Celsius\tFarenheit\n");
for(;start < stop; start += step)

printf("%.1lf\t%.1lf\n", start,
 start * 1.8 + 32);

}

Data Hiding Example

static Before
Globals

Placing the static keyword before a global variable or function locks that
variable or function inside the .c file which declares it. The variables “entries” and
“current” are hidden inside the module, the function print is also locked away.

Errors at Link
Time

Although there is no error when compiling the second module containing the
statements:

void print(void);
extern int entries[];

and
entries[3] = 77;
print();

There are two errors when the program is linked. The errors are:

undefined symbol: entries
undefined symbol: print

The linker cannot find the symbols “entries” and “print” because they are hidden
within the first module.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 319
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 16

Disaster!

extern float step;

void print_table(double, float);

int main(void)
{

step = 0.15F;

print_table(0.0, 5.5F);

return 0;
}

#include <stdio.h>

double step;

void print_table(double start, double stop)
{

printf("Celsius\tFarenheit\n");
for(;start < stop; start += step)

printf("%.1lf\t%.1lf\n", start,
 start * 1.8 + 32);

}

Disaster!

Inconsistencies
Between
Modules

A few minor changes and the program no longer works. This will easily happen if
two people are working on the same source code. The second module now
declares the variable “step” as double and the second parameter “stop” as
double.

The first module expects “step” to be float, i.e. a 4 byte IEEE format variable.
Since “step” is actually declared as double it occupies 8 bytes. The first module
will place 0.15 into 4 bytes of the 8 byte variable (the remaining 4 bytes having
been initialized to 0 because “step” is global). The resulting value in “step” will
not be 0.15.

A similar thing happens to the 5.5 assigned to “stop”. It is written onto the stack
as a 4 byte IEEE float, picked up as an 8 byte double.

Neither the compiler nor linker can detect these errors. The only information
available to the linker are the symbol names “step” and print_table. Neither
of these names hold any type information.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

320 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 17

Use Header Files

§ Maintain consistency between modules by using
header files

§ NEVER place an extern declaration in a module

§ NEVER place a prototype of a non static (i.e.
sharable) function in a module

Use Header Files

Although the problem of maintaining consistency may seem overwhelming, the
solution is actually very simple. The preprocessor can help cross-check the
contents of different modules.

An extern declaration should not be placed in a module, it should always be
placed in a header file. Similarly function prototypes should not be placed in
modules (unless static in which case they cannot be used anywhere but in the
current module).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 321
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 18

Getting it Right

extern double step;

void print_table(double, double);

#include "project.h"

int main(void)
{

step = 0.15F;

print_table(0.0, 5.5F);

return 0;
}

#include <stdio.h>
#include "project.h"

double step;

void print_table(double start, double stop)
{

}

project.h

Getting it Right

Place Externs in
the Header

By placing the extern declaration and the print_table function prototype in
the header file “project.h” the compiler can cross check the correctness of the two
modules. In the first module the compiler sees:

extern double step;
void print_table(double, double);

The assignment:
step = 0.15F;

the compiler knows the type of step is double. The 4 byte float specified with
0.15F is automatically promoted to double.

When the print_table function is called:

print_table(0.0, 5.5F);

the second parameter 5.5F is automatically promoted from float to double.

It may appear as though the second module would no longer compile, because:

extern double step;
is followed by:

double step;

and these would appear to contradict. However, the compiler accepts these two
statements providing the type double agrees. If either type is changed (as was
the case) the compiler will produce an error message.

The compiler completes its usual cross-checking of prototype vs function header.
If there is an inconsistency the compiler would report it.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

322 Miscellaneous Things
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 19

Be as Lazy as Possible

§ Get the preprocessor to declare the variables too!

#if defined(MAIN)
#define EXTERN
#else
#define EXTERN extern
#endif

EXTERN double step;
EXTERN long current;
EXTERN short res;

#define MAIN
#include "globals.h"

#include "globals.h" #include "globals.h"

main.c
first.c second.c

Be as Lazy as Possible

Within the module “main.c” the #define of MAIN causes EXTERN to be defined
as nothing. Here the preprocessor performs a search and delete (as opposed to
search and replace). The effect of deleting EXTERN means that:

double step;
long current;
short res;

results. This causes compiler to declare, and thus allocate storage for, the three
variables. With the module “first.c” because MAIN is not defined the symbol
EXTERN is defined as extern. With the preprocessor in search and replace
mode the lines from globals.h become:

extern double step;
extern long current;
extern short res;

The only problem with this strategy is that all the globals are initialized with the
same value, zero. It is not possible within globals.h to write:

EXTERN double step = 0.15;
EXTERN long current = 13;
EXTERN short res = -1;

 because within first.c and second.c this produces the erroneous:

extern double step = 0.15;
extern long current = 13;
extern short res = -1;

An extern statement may not initialize the variable it declares.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things 323
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 20

Summary

§ A union may store values of different types at
different times

§ enum provides an automated way of setting up
constants

§ The preprocessor allows constants and macros
to be created

§ Data and functions may be shared between
modules

§ static stops sharing of data and functions

§ Use the preprocessor in large, multi module
projects

Summary

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things - Exercises 325
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Miscellaneous Things Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

326 Miscellaneous Things - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: MISC

1. The chapter briefly outlined a possible implementation of the stack functions push and pop when
discussing data and function hiding with the static keyword.

Open “TEST.C” which contains a test harness for the functions:

void push(int i);
int pop(void);

This menu driven program allows integers to be pushed and popped from a stack. Thus if 10, 20 and
30 were pushed, the first number popped would be 30, the second popped would be 20 and the last
popped would be 10.

Implement these functions in the file “STACK.C”. The prototypes for these functions are held in the
header “STACK.H”

You should include code to check if too many values have been pushed (important since the values are
stored in an array) and to see if the user attempts to pop more values than have been pushed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Miscellaneous Things - Solutions 327
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Miscellaneous Things Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

328 Miscellaneous Things - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. Open “TEST.C” which contains a test harness for the functions:

void push(int i);
int pop(void);

Implement these functions in the file “STACK.C”.

The variable “current” and the array “the_stack” must be shared by both push and pop. The only way
to do this is to make it global, however in order for these variables not to be seen outside the module
the static keyword is used.

#include <stdio.h>
#include "stack.h"

#define MAX_STACK 50

static int the_stack[MAX_STACK];
static int current;

void push(int v)
{
 if(current >= MAX_STACK) {
 printf("cannot push: stack is full\n");
 return;
 }

 the_stack[current++] = v;
}

int pop(void)
{
 if(current == 0) {
 printf("cannot pop: stack is empty\n");
 return -1;
 }

 return the_stack[--current];
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 329
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

C and the Heap

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

330 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 1

C and the Heap

§ What is the Heap?

§ Dynamic arrays

§ The calloc/malloc/realloc and free routines

§ Dynamic arrays of arrays

§ Dynamic data structures

C and the Heap

This chapter shows how to store data in the heap, retrieve it, enlarge it, reduce it
and release it.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 331
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 2

What is the Heap?

§ An executing program is divided into four parts:

§ Stack: provides storage for local variables, alters
size as the program executes

§ Data segment: global variables and strings stored
here. Fixed size.

§ Code segment: functions main, printf, scanf
etc. stored here. Read only. Fixed size

§ Heap: otherwise known as “dynamic memory”
the heap is available for us to use and may alter
size as the program executes

What is the Heap?

The Parts of an
Executing
Program

A program executing in memory may be represented by the following diagram:

Code segment (fixed size, read only)

Data segment (fixed size, parts may be read only)

Stack (varies in size)

main, printf, scanf

gobal variables
strings

automatic
variables

Heap (varies in size)
“dynamic
storage”

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

332 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

What is the Heap? (Continued)

Stack The code and data segments are fixed size throughout the program lifetime. The
stack:
1. increases in size as functions are called, parameters are pushed, local

variables are created,
2. decreases in size as functions return, local variables are destroyed,

parameters are popped

Heap and Stack
“in Opposition”

The heap is placed in “opposition” to the stack, so that as stack usage increases
(through deeply nested function calls, through the creation of large local arrays,
etc.) the amount of available heap space is reduced. Similarly as heap usage
increases, so available stack space is reduced.

The line between heap and stack is rather like the line between the shore and the
sea. When the tide is in, there is a lot of sea and not much shore. When the tide
is out there is a lot of shore and not much sea.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 333
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 3

How Much Memory?

§ With simple operating systems like MS-DOS there
may only be around 64k available (depending on
memory model and extended memory device
drivers)

§ With complex operating systems using virtual
memory like Unix, NT, OS/2, etc. it can be much
larger, e.g. 2GB

§ In the future (or now with NT on the DEC Alpha)
this will be a very large amount (17 thousand
million GB)

How Much Memory?

Simple
Operating
Systems

The heap provides “dynamic memory”, but how much? With simple operating
systems like MS-DOS the header in the executable file contains a number
indicating the total amount of memory the program requires. This is as much
memory as the program will ever get. The code and data segments are loaded
in, what remains is left to be divided between heap and stack. When the stack
runs into the heap the program is killed. No second chance.

Advanced
Operating
Systems

With more advanced operating systems, a program is loaded into a hole in
memory and left to execute. If it turns out the hole wasn’t large enough (because
the stack and heap collide), the operating system finds a larger hole in memory.
It copies the code and data segments into the new area. The stack and heap are
moved as far apart as possible within this new hole. The program is left to
execute. If the stack and heap collide again the program is copied into an even
larger hole and so on. There is a limit to how many times this can happen,
dependent upon the amount of physical memory in the machine. If virtual
memory is in use it will be the amount of virtual memory the machine may
access. With “32 bit” operating systems like Unix, NT, Windows 95 etc. The limit
is usually somewhere around 232 bytes, or 2GB. You probably wont get exactly
this amount of memory, since some of the operating system must remain
resident in memory, along with a few dozen megabytes of important data
structures.

Future
Operating
Systems

With “64 bit” operating systems, like NT running on the DEC Alpha processor, the
limit is around 264 bytes. This is a rather large number of GB and should really
be quoted in TB (terra bytes). Although most people have a “feeling” for how
large one Gigabyte is, few people yet have experience of how large a Terabyte is.
The ultimate limit of a program’s size will be the amount of disk space. The
virtual memory used by an operating system must be saved somewhere.
Chances are the machine does not contain the odd billion bytes of memory, so
the next best storage medium is the hard disk. The smaller the disk, the smaller
the amount of the program which may be saved.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

334 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 4

Dynamic Arrays

§ Arrays in C have a fundamental problem - their
size must be fixed when the program is written

§ There is no way to increase (or decrease) the size
of an array once the program is compiled

§ Dynamic arrays are different, their size is fixed at
run time and may be changed as often as
required

§ Only a pointer is required

Dynamic Arrays

Arrays in C are rather primitive data structures. No mechanism exists in the
language to change the size of an array once it has been declared (like the
“redim” command from BASIC). All is not lost, however. The storage for an
array may be allocated on the heap. This storage must be physically contiguous
(the only requirement for an array), but the routines that manage the heap
guarantee this.

All the program requires is a pointer which will contain the address at which the
block of memory starts.

An example. An array of 100 long integers is declared like this:

long a[100];

and is fixed in size forever (at 400 bytes). An attempt to make it larger, like:

long a[200];

will cause an error because the compiler will see the variable “a” being declared
twice. If we do the following:

long *p;

p = malloc(100 * sizeof(long));

we end up with same amount of memory, 400 bytes, but stored on the heap
instead of the stack or data segment. An element of the array “a” may be
accessed with a[58], an element of the array pointed to by “p” may be accessed
with p[58]. The array may be made larger with:

long *q;

q = realloc(p, 200 * sizeof(long));

which increases the block of storage to hold 200 long ints, i.e. 800 bytes.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 335
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 5

Using Dynamic Arrays

§ The following steps create a dynamic array:

� Declare a pointer corresponding to the desired
type of the array elements

� Initialise the pointer via calloc or malloc using
the total storage required for all the elements of
the array

� Check the pointer against NULL

� Increase or decrease the number of elements by
calling the realloc function

� Release the storage by calling free

Using Dynamic Arrays

One Pointer per
Dynamic Array

One pointer is required for each dynamic array which is to be stored on the heap.
The type of this pointer is dictated by the type of the array elements. Thus if an
array of doubles, an array of short integers and an array of Book structures
are required, three pointers would be needed:

double *double_array;
short *short_array;
struct Book *book_array;

Calculating the
Storage
Requirement

The second step is to calculate how much memory will be required for each array.
If 100 doubles, 480 short ints and 238 books are required:

double_array = malloc(100 * sizeof(double));
short_array = calloc(480, sizeof(short));
book_array = calloc(238, sizeof(struct Book));

There is little to choose between malloc and calloc, however the 100
doubles pointed to by “double_array” are entirely random, whereas the 480
short ints and the 238 books pointed to by “short_array” and “book_array”
respectively are all zero (i.e. each element of the name, author and ISBN number
of each book contain the null terminator, the price of each book is zero).

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

336 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Using Dynamic Arrays (continued)

Insufficient
Storage

Just calling malloc or calloc does not guarantee the memory to store the
elements. The call may fail if we have already allocated a large amount of
memory and there is none left (which will happen sooner rather than later under
MS-DOS). The routines indicate the limit has been reached by returning the NULL
pointer. Thus each of the pointers “double_array”, “short_array” and “book_array”
must be checked against NULL.

Changing the
Array Size

The amount of memory on the end of any one of these pointers may be changed
by calling realloc. Imagine that 10 of the doubles are not required and an
extra 38 books are needed:

da = realloc(double_array, 90 * sizeof(double));
ba = realloc(book_array, 276 * sizeof(struct Book));

Where “da” is of type pointer to double and “ba” is of type pointer to Book
structure. Note that it is inadvisable to say:

book_array = realloc(book_array, 276 *
sizeof(struct Book));

Since it is possible that the allocation may fail, i.e. it is not possible to find a
contiguous area of dynamic memory of the required size. If this does happen, i.e.
there is no more memory, realloc returns NULL. The NULL would be assigned
to “book_array” and the address of the 238 books is lost. Assigning to “ba”
instead guarantees that “book_array” is unchanged.

When realloc
Succeeds

If the allocation does not fail, “ba” is set to a pointer other than NULL. There are
two scenarios here:

1. realloc was able to enlarge the current block of memory in which case the
address in “ba” is exactly the same as the address in “book_array”. Our 238
books are intact and the 38 new ones follow on after and are random, or

2. realloc was unable to enlarge the current block of memory and had to find
an entirely new block. The address in “ba” and the address in “book_array”
are completely different. Our original 238 books have been copied to the new
block of memory. The 38 new ones follow on after the copied books and are
random.

We do not need to be concerned which of these two scenarios took place. As far
as we are concerned the pointer “ba” points to a block of memory able to contain
276 books and specifically points to the value of the first book we written before
the realloc.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 337
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Using Dynamic Arrays (continued)

Maintain as Few
Pointers as
Possible

One consequence of the second scenario is that all other pointers into the array of
books are now invalid. For example, if we had a special pointer:

struct Book *war_and_peace;

which was initialized with:

war_and_peace = book_array + 115;

this pointer would now be invalid because the whole array would have been
moved to a new location in memory. We must NOT use the pointer “book_array”,
or the pointer “war_and_peace”. Both must be “recalculated” as follows:

book_array = ba;
war_and_peace = ba + 115;

In fact it would probably be more convenient to remember “war_and_peace” as
an offset from the start of the array (i.e. 115). In this way it wouldn’t have to be
“recalculated” every time realloc was called, just added to the single pointer
“book_array”.

Requests
Potentially
Ignored

As an aside, it is possible that the request:

da = realloc(double_array, 90 * sizeof(double));

might be completely ignored. Finding a new block in memory only slightly
smaller than the existing block might be so time consuming that it would be
easier just to return a pointer to the existing block and change nothing. The entire
block would be guaranteed to be reclaimed when free was called.

Releasing the
Storage

Finally when all books, short ints and doubles have been manipulated, the
storage must be released.

free(double_array);
free(book_array);
free(short_array);

Strictly speaking this doesn’t need to happen since the heap is part of the
process. When the process terminates all memory associated with it will be
reclaimed by the operating system. However, it is good practice to release
memory in case program is altered so that a “one off” routine is called repeatedly.

Repeatedly calling a routine which fails to deallocate memory would guarantee
that the program would eventually fail, even if the amount of memory concerned
was small. Such errors are known as “memory leaks”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

338 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 6

calloc/malloc Example
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

unsigned i, s;
double *p;

printf("How many doubles? ");
scanf("%u", &s);

if((p = calloc(s, sizeof(double))) == NULL) {
fprintf(stderr, "Cannot allocate %u bytes "

"for %u doubles\n", s * sizeof(double), s);
return 1;

}
for(i = 0; i < s; i++)

p[i] = i;

free(p);

return 0;
}

here we access the “s”
doubles from 0..s-1

if((p = malloc(s * sizeof(double))) == NULL) {

all of the allocated
memory is freed

calloc/malloc Example

The previous page of notes mentioned rather fixed numbers, “238 books”, “276
books”, “90 doubles”. If these numbers could be reliably predicted at compile
time, “ordinary” fixed sized C arrays could be used.

The program above shows how, with simple modification, the program can start
to manipulate numbers of doubles which cannot be predicted at compile time.
There is no way of predicting at compile time what value the user will type when
prompted. Note the use of unsigned integers in an attempt to prevent the user
from entering a negative number. In fact scanf is not too bright here and
changes any negative number entered into a large positive one.

Notice the straightforward way C allows us to access the elements of the array:

p[i] = i;

is all it takes. The pointer “p” points to the start of the array, “i” serves as an
offset to access a particular element. The *(p+i) notation, although practically
identical, would not be as readable.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 339
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 7

realloc Example
double *p;
double *p2;

if((p = calloc(s, sizeof(double))) == NULL) {
fprintf(stderr, "Cannot allocate %u bytes "

"for %u doubles\n", s * sizeof(double), s);
return 1;

}

printf("%u doubles currently, how many now? ", s);
scanf("%u", &s);

p2 = realloc(p, s * sizeof(double));

if(p2 == NULL) {
fprintf(stderr, "Could not increase/decrease array "

"to contain %u doubles\n", s);
free(p);
return 1;

}
p = p2;

free(p);

calculate new array
size and allocate

storage

pointer “p” is invalid at this point, so
a new value is assigned to it

pointer “p” is still
valid at this point

realloc Example

The program shows the use of realloc. As previously discussed the assignment:

p2 = realloc(p, s * sizeof(double));

is more helpful than:

p = realloc(p, s * sizeof(double));

because if the re-allocation fails, assigning back to “p” will cause the existing
array of doubles to be lost. At least if the block cannot be enlarged the program
could continue processing the data it had.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

340 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 8

realloc can do it all

§ The routines malloc and free are almost
redundant since realloc can do it all

§ There is some merit in calloc since the memory
it allocates is cleared to zero

p = malloc(s * sizeof(double));

p = realloc(NULL, s * sizeof(double));

free(p);

realloc(p, 0);

realloc can do it all

With the right parameters, realloc can take the place of malloc and free. It
can’t quite take the place of calloc, since although it can allocate memory it
does not clear it to zeros.

realloc can
Replace malloc

A NULL pointer passed in as a first parameter causes realloc to behave just like
malloc. Here it realizes it is not enlarging an existing piece of memory (because
there is no existing piece of memory) and just allocates a new piece.

realloc can
Replace free

A size of zero passed in as the second parameter causes realloc to deallocate
an existing piece of memory. This is consistent with setting its allocated size to
zero.

There is a case to be made for clarity. When seeing malloc, it is obvious a
memory allocation is being made. When seeing free, it is obvious a
deallocation is being made. Use of the realloc function tends to imply an
alteration in size of a block of memory.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 341
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 9

Allocating Arrays of Arrays

§ Care must be taken over the type of the pointer
used when dealing with arrays of arrays

float *p;

p = calloc(s, sizeof(float));

float **rain;

rain = calloc(s, 365 * sizeof(float));

float (*rainfall)[365];

rainfall = calloc(s, 365 * sizeof(float));

rainfall[s-1][18] = 4.3F;

Allocating Arrays of Arrays

Thus far we have seen how to allocate an array. This is simply done by allocating
the address of a block of memory to a pointer. It might seem logical that if an
array is handled this way, an array of arrays may be handled by assigning to a
pointer to a pointer. This is not the case.

Pointers Access
Fine with
Dynamic Arrays

In the example above an array is allocated with:

float *p;

p = calloc(s, sizeof(float));

The elements of the array are accessed with, for example, p[3], which would
access the fourth element of the array (providing “s” were greater than or equal to
4).

At the end of the Arrays In C chapter there was a “rainfall” example where an
arrays of arrays were used. The rainfall for 12 locations around the country was
to be recorded for each of the 365 days per year. The declaration:

float rainfall[12][365];
was used.

Say now that one of the “rainfall” arrays must be allocated dynamically with the
number of countrywide locations being chosen at run time. Clearly for each
location, 365 floats will be needed. For 10 locations an array able to contain
3650 floats would be needed.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

342 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Allocating Arrays of Arrays (continued)

Pointers to
Pointers are not
Good with
Arrays of Arrays

The way to do this would SEEM to be:

float **rain;

rain = calloc(s, 365 * sizeof(float));

(where “s” presumably contains the 10). However, there is not enough
“information” in the pointer “rain” to move correctly. Consider, for example,
accessing element rain[2][100]. The 2 is required to jump into the third block of
356 floats, i.e. over 2 entire blocks of 356 float (2*365*4 = 2920 bytes) and
then on by another 100*4 = 400 bytes. That’s a total move of 3320 bytes.
However the compiler cannot determine this from the pointer. “rain” could be
drawn as:

rain intermediate
pointer

float

However, the memory has been allocated as:

rain float next float

Where the float pointed to is followed by several thousand others. Any attempt
to use the pointer “rain” will cause the compiler to interpret the first float as the
intermediate pointer drawn above. Clearly it is incorrect to interpret an IEEE value
as an address.

Use Pointers to
Arrays

The solution is to declare the pointer as:

float (*rainfall)[365];

(“rainfall” is a pointer to an array of 365 float). The compiler knows that with
access of rainfall[2][100] the 2 must be multiplied by the size of 365 floats
(because if “rainfall” is a pointer to an array of 365 float, 2 must step over two
of these arrays). It also knows the 100 must be scaled by the size of a float.
The compiler may thus calculate the correct movement.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 343
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 10

Dynamic Data Structures

§ It is possible to allocate structures in dynamic
memory too

struct Node {
int data;
struct Node *next_in_line;

};

struct Node* new_node(int value)
{

struct Node* p;

if((p = malloc(sizeof(struct Node))) == NULL) {
fprintf(stderr, "ran out of dynamic memory\n");
exit(9);

}
p->data = value; p->next_in_line = NULL;

return p;
}

Dynamic Data Structures

It is not only arrays that may be allocated in dynamic memory, structures can be
allocated too. This is ideal with “linked” data structures like linked lists, trees,
directed graphs etc. where the number of nodes required cannot be predicted at
compile time. The example above shows a routine which, when called, will
allocate storage for a single node and return a pointer to it. Because of the
“next_in_line” member, such nodes may be chained together.

Notice that the integer value to be placed in the node is passed in as a parameter.
Also the routine carefully initializes the “next_in_line” member as NULL, this is
important since by using malloc, the pointer “p” points to memory containing
random values. The value in the “data” member will be random, as will the
address in the “next_in_line” member. If such a node were chained into the list
without these values being changed, disaster could result. This way, if this node
is used, the presence of the NULL in the “next_in_line” member will not cause us
to wander into random memory when walking down the list.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

344 C and the Heap
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 11

Linking the List

struct Node *first_node, *second_node, *third_node, *current;

first_node = new_node(-100);

second_node = new_node(0);

first_node->next_in_line = second_node;

third_node = new_node(10);

second_node->next_in_line = third_node;

current = first_node;
while(current != NULL) {

printf("%i\n", current->data);
current = current->next_in_line;

}

Linking the List

Above is a simple example of how a linked list could be built. In reality, rather
than wiring each node to point to the next, a function would be written to find the
insertion point and wire up the relevant “next_in_line” members. The chain
resulting from the above would be:

-100 0 10
NULL

first_node second_node third_node

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap 345
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

© Cheltenham Computer Training 1994/1997 sales@ccttrain.demon.co.uk Slide No. 12

Summary

§ The heap and stack grow towards one another

§ Potentially a large amount of heap storage is
available given the right operating system

§ The routines malloc, calloc, realloc and free
manipulate heap storage

§ Only realloc is really necessary

§ Allocating dynamic arrays

§ Allocating dynamic arrays of arrays

§ Allocating dynamic structures

Summary

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap - Exercises 347
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

C and the Heap Practical Exercises

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

348 C and the Heap - Exercises
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Directory: HEAP

1. Write a program “MAX” which allocates all available heap memory. The way to do this is to write a loop
which allocates a block of memory, say 10 bytes, continually until malloc returns NULL. When this
happens, print out the total number of bytes allocated.

2. Alter your “MAX” program such that the block size (which above was 10 bytes) is read from the
command line (the function atoi will convert a string to an integer and return zero if the string is not in
the correct format). Use your program to find out if the total amount of memory that can be allocated
differs for 10 byte, 100 byte, 1000 byte and 5000 byte blocks. What issues would influence your
results?

3. The program “BINGEN.C” is a reworking of an earlier FILES exercise. It reads a text file and writes
structures to a binary file (the structure is defined in “ELE.H”). Compile and run the program, taking
“ELE.TXT” as input and creating the binary file “ELE.BIN”.

Write a program “ELSHOW” which opens the binary file “ELE.BIN”. By moving to the end of the file
with fseek and finding how many bytes there are in the file with ftell, it is possible to find out how
many records are in the file by dividing by the total bytes by the size of an Element structure.

Allocate memory sufficient to hold all the structures. Reset the reading position back to the start of the
file and read the structures using fread. Write a loop to read an integer which will be used to index
into the array and print out the particular element chosen. Exit the loop when the user enters a
negative number.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap - Solutions 349
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

C and the Heap Solutions

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

350 C and the Heap - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

1. Write a program “MAX” which allocates all available heap memory.
2. Alter your “MAX” program such that the block size is read from the command line

The printf within the malloc loop is advisable because otherwise the program appears to “hang”.
Outputting “\r” ensures that pages of output are not produced. Each number neatly overwrites the
previous one.

#include <stdio.h>
#include <stdlib.h>

#define DEFAULT_BLOCK_SIZE 10

int main(int argc, char* argv[])
{

unsigned long total = 0;
unsigned block = DEFAULT_BLOCK_SIZE;

if(argc > 1) {
block = atoi(argv[1]);
if(block == 0)

block = DEFAULT_BLOCK_SIZE;
}

while(malloc(block) != NULL) {
printf("\r%lu", total);
total += block;

}

printf("\rblock size %u gives total %lu bytes allocated\n",
block, total);

return 0;
}

The issues regarding block sizes vs total memory allocated are that each allocation carries an overhead.
If a large block size is used, the ratio of this overhead to the block is small and so many allocations may
be done. If a small block size is used (perhaps 2 bytes) the ratio of overhead to block is very large.
Available memory is filled with control information rather than data. Making the block size too large
means that the last allocation fails because it cannot be completely satisfied.

3. Compile and run “BINGEN.C” taking “ELE.TXT” as input and creating the binary file “ELE.BIN”. Write
a program “ELSHOW” which opens the binary file “ELE.BIN”. Allocate memory sufficient to hold all the
structures and read the structures using fread. Write a loop to read an integer which will be used to
index into the array and print out the particular element chosen. Exit the loop when the user enters a
negative number.

Displaying an element structure must be done carefully. This is because the two character array
“name” is not necessarily null terminated (two characters plus a null won’t fit into a two character array).
Always printing two characters would be incorrect when an element with a single character name (like
Nitrogen, “N” for instance) were met.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

C and the Heap - Solutions 351
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

#include <stdio.h>
#include <stdlib.h>
#include "ele.h"

int get_int(void);
int show(char*);
void display(struct Element * p);
struct Element* processFile(FILE* in, unsigned * ptotal);

int main(int argc, char* argv[])
{

char*in;
char in_name[100+1];

if(argc == 1) {
printf("File to show ");
scanf("%100s", in_name);
getchar();
in = in_name;

} else
in = argv[1];

return show(in);
}

int show(char* in)
{

int which;
unsigned total;
FILE* in_stream;
struct Element* elems;

if((in_stream = fopen(in, "rb")) == NULL) {
fprintf(stderr, "Cannot open input file %s, ", in);
perror("");
return 1;

}
if((elems = processFile(in_stream, &total)) == NULL)

return 1;

fclose(in_stream);

while((which = get_int()) >= 0)
if(which >= total || which == 0)

printf("%i is out of range (min 1, max %i)\n",
which, total);

else
display(&elems[which - 1]);

return 0;
}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

352 C and the Heap - Solutions
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

struct Element* processFile(FILE* in, unsigned * ptotal)
{

unsigned long total_size;
unsigned int elements;
unsigned int el_read;
struct Element* p;

fseek(in, 0L, SEEK_END);
total_size = ftell(in);
fseek(in, 0L, SEEK_SET);

elements = total_size / sizeof(struct Element);

p = calloc(elements, sizeof(struct Element));

el_read = fread(p, sizeof(struct Element), elements, in);

if(el_read != elements) {
fprintf(stderr, "Failed to read %u elements (only read %u)\n",

elements, el_read);
free(p);
return NULL;

}
*ptotal = elements;

return p;
}

int get_int(void)
{

int status;
int result;

do {
printf("enter an integer (negative will exit) ");
status = scanf("%i", &result);
while(getchar() != '\n')

;
} while(status != 1);

return result;
}

void display(struct Element * p)
{

printf("element %c", p->name[0]);
if(p->name[1])

printf("%c ", p->name[1]);
else

printf(" ");

printf("rmm %6.2f melt %7.2f boil %7.2f\n",
p->rmm, p->melt, p->boil);

}

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Appendices 353
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Appendices

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

354 Appendices
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Precedence and Associativity of C Operators:

primary () [] -> . left to right

unary ! ~ ++ -- - + (cast) * & sizeof right to left

multiplicative * / % left to right

additive + - left to right

shift << >> left to right

relational < <= >= > left to right

equality == != left to right

bitwise and & left to right

bitwise or | left to right

bitwise xor ^ left to right

logical and && left to right

logical or || left to right

conditional expression ?: right to left

assignment = += -= *= /= %= <<= >>= &= |= ^= right to left

sequence , left to right

Notes:
1. The “()” operator in “primary” is the function call operator, i.e. f(24, 37)
2. The “*” operator in “unary” is the “pointer to” operator, i.e. *pointer
3. The “&” operator in “unary” is the “address of” operator, i.e. pointer = &variable
4. The “+” and “-” in “unary” are the unary counterparts of plus and minus, i.e. x = +4 and y = -x
5. The “,” operator is that normally found in the for loop and guarantees sequential processing of

statements, i.e. for(i = 0, j = i; i < 10; i++, j++) guarantees “i = 0” is executed before “j = i”.
It also guarantees “i++” is executed before “j++”.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Appendices 355
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Summary of C Data Types

char one byte character value, may be signed or unsigned

signed char one byte signed character, ASCII characters will test positive, extended ASCII
characters will test negative

unsigned char one byte unsigned character, all values test positive

int integer value, i.e. whole number, no fraction

short [int] integer value with potentially reduced range (may have only half the storage available
as for an int)

long [int] integer value with potentially increased range (may have twice the storage available
as for an int)

signed [int] as for int

unsigned [int] an integer value which may contain positive values only. Largest value of an
unsigned integer will be twice that of the largest positive value of an integer

signed short as for short

unsigned short a positive integer value with potentially reduced range

signed long as for long

unsigned long a positive integer value with potentially increased range

float a floating point value (a number with a fraction)

double a floating point value with potentially increased range and accuracy

long double a floating point value with potentially very great range and accuracy

void specifies the absence of a type

C guarantees that:

sizeof(char) < sizeof(short) <= sizeof(int) <= sizeof(long)

and

sizeof(float) <= sizeof(double) <= sizeof(long double)

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

356 Appendices
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Maxima and Minima for C Types

type usual size minimum value maximum value defined in

char 1 byte CHAR_MIN CHAR_MAX limits.h

signed char 1 byte SCHAR_MIN SCHAR_MAX limits.h

unsigned char 1 byte - UCHAR_MAX limits.h

short 2 bytes SHRT_MIN SHRT_MAX limits.h

unsigned short 2 bytes - USHRT_MAX limits.h

int ? INT_MIN INT_MAX limits.h

unsigned int ? - UINT_MAX limits.h

long 4 bytes LONG_MIN LONG_MAX limits.h

unsigned long 4 bytes - ULONG_MAX limits.h

float 4 bytes FLT_MIN FLT_MAX float.h

double 8 bytes DBL_MIN DBL_MAX float.h

long double 10 bytes LDBL_MIN LDBL_MAX float.h

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Appendices 357
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Printf Format Specifiers

type format specifier decimal octal hexadecimal
char %c %d %o %x
signed char %c %d %o %x
unsigned char %c %u %o %x
short %hi %hd %ho %hx
unsigned short %hu %ho %hx
int %i %d %o %x
unsigned int %u %o %x
long %li %ld %lo %lx
unsigned long %lu %lo %lx

type format specifier alternate alternate
float %f %g %e
double %lf %lg %le
long double %Lf %Lg %Le

type format specifier
pointer %p

When characters are passed to printf, they are promoted to type int. Thus any format specifier used
with int may also be used with char. The only difference is in the output format. Thus a char variable
containing 97 will print 97 when %d or %i is used, but ‘a’ when %c is used.

When using floating point types, %f prints 6 decimal places in “standard” notation, %e prints six decimal
places in exponential notation. %g chooses the most concise of %f and %e and uses that output format.

A pointer may be printed with %p, regardless of its type. The output format is machine specific, but
usually hexadecimal. There is no clean way to output a pointer in decimal notation.

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

358 Appendices
 1994/1997 - Cheltenham Computer Training C for Programmers

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Table of Escape Sequences

What ASCII Causes:
\a alert character 7 the speaker to sound
\b backspace 8 cursor to move one space backwards. Useful

with printers with print heads for emboldening
characters by printing them, backspacing and
printing the character again

\t tab character 9 cursor to move forward to next tab stop
\n newline character 10 cursor to move to start of next line
\v vertical tab 11 interesting effects with a small class of

terminals and printers
\f formfeed character 12 a page feed when sent to a printer
\r carriage return character 13 cursor to move to first column of screen
\0n n n is interpreted as octal and the

corresponding ASCII character is generated
\xn n n is interpreted as hexadecimal and the

corresponding ASCII character is generated

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Appendices 359
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Ascii Table
00000000
00000001
00000010
00000011

000
001
002
003

0
1
2
3

0x0
0x1
0x2
0x3

nul \0
^A
^B
^C

01000000
01000001
01000010
01000011

100
101
102
103

64
65
66
67

0x40
0x41
0x42
0x43

@
A
B
C

00000100
00000101
00000110
00000111

004
005
006
007

4
5
6
7

0x4
0x5
0x6
0x7

^D
^E
^F

alert \a

01000100
01000101
01000110
01000111

104
105
106
107

68
69
70
71

0x44
0x45
0x46
0x47

D
E
F
G

00001000
00001001
00001010
00001011

010
011
012
013

8
9
10
11

0x8
0x9
0xA
0xB

backspace \b
tab \t
newline \n
vt. tab \v

01001000
01001001
01001010
01001011

110
111
112
113

72
73
74
75

0x48
0x49
0x4A
0x4B

H
I
J
K

00001100
00001101
00001110
00001111

014
015
016
017

12
13
14
15

0xC
0xD
0xE
0xF

formfeed \f
return \r

^N
^O

01001100
01001101
01001110
01001111

114
115
116
117

76
77
78
79

0x4C
0x4D
0x4E
0x4F

L
M
N
O

00010000
00010001
00010010
00010011

020
021
022
023

16
17
18
19

0x10
0x11
0x12
0x13

^P
^Q
^R
^S

01010000
01010001
01010010
01010011

120
121
122
123

80
81
82
83

0x50
0x51
0x52
0x53

P
Q
R
S

00010100
00010101
00010110
00010111

024
025
026
027

20
21
22
23

0x14
0x15
0x16
0x17

^T
^U
^V
^W

01010100
01010101
01010110
01010111

124
125
126
127

84
85
86
87

0x54
0x55
0x56
0x57

T
U
V
W

00011000
00011001
00011010
00011011

030
031
032
033

24
25
26
27

0x18
0x19
0x1A
0x1B

^X
^Y
^Z
esc

01011000
01011001
01011010
01011011

130
131
132
133

88
89
90
91

0x58
0x59
0x5A
0x5B

X
Y
Z
[

00011100
00011101
00011110
00011111

034
035
036
037

28
29
30
31

0x1C
0x1D
0x1E
0x1F

^\
^]
^^
^_

01011100
01011101
01011110
01011111

134
135
136
137

92
93
94
95

0x5C
0x5D
0x5E
0x5F

\
]
^
_

00100000
00100001
00100010
00100011

040
041
042
043

32
33
34
35

0x20
0x21
0x22
0x23

space
!
“
#

01100000
01100001
01100010
01100011

140
141
142
143

96
97
98
99

0x60
0x61
0x62
0x63

open quote
a
b
c

00100100
00100101
00100110
00100111

044
045
046
047

36
37
38
39

0x24
0x25
0x26
0x27

$
%
&

close quote

01100100
01100101
01100110
01100111

144
145
146
147

100
101
102
103

0x64
0x65
0x66
0x67

d
e
f
g

00101000
00101001
00101010
00101011

050
051
052
053

40
41
42
43

0x28
0x29
0x2A
0x2B

(
)
*
+

01101000
01101001
01101010
01101011

150
151
152
153

104
105
106
107

0x68
0x69
0x6A
0x6B

h
i
j
k

00101100
00101101
00101110
00101111

054
055
056
057

44
45
46
47

0x2C
0x2D
0x2E
0x2F

comma
-
.
/

01101100
01101101
01101110
01101111

154
155
156
157

108
109
110
111

0x6C
0x6D
0x6E
0x6F

l
m
n
o

00110000
00110001
00110010
00110011

060
061
062
063

48
49
50
51

0x30
0x31
0x32
0x33

0
1
2
3

01110000
01110001
01110010
01110011

160
161
162
163

112
113
114
115

0x70
0x71
0x72
0x73

p
q
r
s

00110100
00110101
00110110
00110111

064
065
066
067

52
53
54
55

0x34
0x35
0x36
0x37

4
5
6
7

01110100
01110101
01110110
01110111

164
165
166
167

116
117
118
119

0x74
0x75
0x76
0x77

t
u
v
w

00111000
00111001
00111010
00111011

070
071
072
073

56
57
58
59

0x38
0x39
0x3A
0x3B

8
9
:
;

01111000
01111001
01111010
01111011

170
171
172
173

120
121
122
123

0x78
0x79
0x7A
0x7B

x
y
z
{

00111100
00111101
00111110
00111111

074
075
076
077

60
61
62
63

0x3C
0x3D
0x3E
0x3F

<
=
>
?

01111100
01111101
01111110
01111111

174
175
176
177

124
125
126
127

0x7C
0x7D
0x7E
0x7F

|
}
~

del

SAMPLE ONLY
NOT TO BE
USED FOR
TRAINING

Bibliography 361
C for Programmers  1994/1997 - Cheltenham Computer Training

SAMPLE ONLY NOT TO BE USED FOR TRAINING
 Cheltenham Computer Training 1997 - Tel: +44 (0)1242 227200 - Fax: +44 (0)1242 253200

Email: sales@ccttrain.demon.co.uk - Internet: http://www.cctglobal.com/

Bibliography

The C Puzzle Book
Alan R Feuer
Prentice Hall
ISBN 0-13-115502-4
around £32

This is a book of “what will the following program print” questions. The reader is expected to work
through successive programs. There are answers and comprehensive explanations in case you
haven’t got the answer right. An excellent book for learning C, although not how to write programs
in it (puzzling programs are necessarily written in a puzzling style). “Something for the new and
experienced C programmer”.

The C Programming Language 2nd edition
B. W. Kernighan and D. M. Ritchie
Prentice Hall
ISBN 0-13-110362-8
around £32

Although this book is written by the two creators of C it is not a tutorial introduction to the language.
It is directed more toward very experienced programmers who require the essential elements of C in
the most concise manner possible. An ideal book if you are planning to write a C compiler. Be
sure to buy the 2nd edition which describes Standard C as opposed to the 1st edition which
describes K&R C.

The C Standard Library
P. J. Plauger
Prentice Hall
ISBN 0-13-131509-9
around £30

The definitive guide to the why and how of C’s Standard Library. Not only is source code provided
for each and every function (the source code in disk form may be purchased separately), but there
are explanations of why the committees decided on the behavior of each function. The sort of book
that describes why fgetpos was invented when fseek was already available.

C Traps and Pitfalls
Andrew Koenig
Addison Wesley
ISBN 0-20-117928-8
around £18

“Even C Experts come across problems that require days of debugging to fix. This book helps to
prevent such problems by showing how C programmers get themselves into trouble. Each of the
book’s many examples have trapped a professional programmer”.

Initially a rather depressing book. Horrible errors are catalogued, leaving the reader asking “how
can I possibly ever write a C program that works”. The second part of the book addresses the
problems and contains many useful tips for improving code.

