
Hacking Hot Potatoes: An introduction to customizing
your exercises

Index

 Introduction: What you'll learn in this workshop

 The Hot Potatoes source file system

o How Hot Potatoes uses source files

o Three types of code (XHTML, CSS and JavaScript), and how
they interact

o Examples of the three types of code

o Replacements and includes

o Five basic types of source file

 Preparing to edit the source files

o Good practices when editing source files

o Preparing for your customization tasks

 Customization tasks

o Task 1: Making the reading text scroll independently

 Instructions

 Example exercise

o Task 2: Removing styling from buttons

 Instructions

 Example exercise

o Task 3: Horizontal multiple-choice answers

 Instructions

 Example exercise

o Task 4: Using an external stylesheet

 Instructions

 Example exercise

o Task 5: Adding a new navigation button

 Instructions

 Example exercise

https://hotpot.uvic.ca/howto/hacking_workshop/intro.htm
https://hotpot.uvic.ca/howto/hacking_workshop/source_file_system.htm
https://hotpot.uvic.ca/howto/hacking_workshop/types_of_code_1.htm
https://hotpot.uvic.ca/howto/hacking_workshop/types_of_code_1.htm
https://hotpot.uvic.ca/howto/hacking_workshop/types_of_code_2.htm
https://hotpot.uvic.ca/howto/hacking_workshop/replace_include.htm
https://hotpot.uvic.ca/howto/hacking_workshop/five_files.htm
https://hotpot.uvic.ca/howto/hacking_workshop/good_practices.htm
https://hotpot.uvic.ca/howto/hacking_workshop/prepare_for_tasks.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_01.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_01.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_02.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_02.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_03.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_03.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_04.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_04.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_05.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_05.htm

o Task 6: Making the timer count up instead of down

 Instructions

 Example exercise

o Task 7: Hiding and showing the gapfill word list in JCloze

 Instructions

 Example exercise

o Task 8: Controlling question navigation

 Instructions (1)

 Instructions (2)

 Example exercise

o Task 9: Using an image instead of a button

 Instructions

 Example exercise

o Task 10: Branching based on score

 Instructions

 Example exercise

 Summary: What you've learned in this workshop

 Useful resources

 Acknowledgements: People who helped put this together

https://hotpot.uvic.ca/howto/hacking_workshop/task_06.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_06.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_07.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_07.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_08_1.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_08_2.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_08.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_09.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_09.htm
https://hotpot.uvic.ca/howto/hacking_workshop/task_10.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_10.htm
https://hotpot.uvic.ca/howto/hacking_workshop/summary.htm
https://hotpot.uvic.ca/howto/hacking_workshop/resources.htm
https://hotpot.uvic.ca/howto/hacking_workshop/thanks.htm

Three types of code, and how they interact

XHTML CSS JavaScript

XHTML consists of

content elements on

the page:

 headings

 paragraphs

 lists

 links

 buttons

 textboxes

 [...]

CSS controls how

those elements are

displayed:

 colours

 size

 position

 text style

 alignment

 borders

 visibility

 [...]

JavaScript changes

and manipulates the

elements on the page,

by changing the CSS

and XHTML to:

 hide and show
things

 move things

 change the
colour of things

 change the text
of things

 check answers

 calculate scores

 [...]

Examples of the three types of code

XHTML (*.ht_) CSS
(hp6.cs_)

JavaScript (*.js_)

<div

class="Feedback"

id="FeedbackDiv">

<div

class="FeedbackText"

id="FeedbackContent"

> </div>

<button

div.Feedbac

k {

 left:

33%;

 width:

34%;

 border-

style:

solid;

 border-

function HideFeedback(){

 document.getElementBy

Id

('FeedbackDiv').style.dis

play = 'none';

[...]

 if (Finished ==

true){

 Finish();

 }

XHTML (*.ht_) CSS
(hp6.cs_)

JavaScript (*.js_)

id="FeedbackOKButton

" class="FuncButton"

[...]

onclick="HideFeedbac

k(); return false;">

OK

</button>

</div>

width: 1px;

 positio

n:

absolute;

 display

: none;

 font-

size:

small;

[...]

}

}

Replacements and includes

=
>

...

[inclTimer]

setTimeout('StartTimer
()', 50);
[/inclTimer]

...

=
>

=
>

...

div.NavButtonBar{
 background-color:
[strNavBarColor];
 text-align: center;
 margin: 2px 0px 2px

0px;
 clear: both;
 font-size: small;
}
...

Five basic types of source file

[AppName
]6.ht_

[AppName
]6.js_

hp6*.ht_ hp6.
cs_

hp6*.js
_

This is the basic

framework for

the Web page

for this exercise

type, into which

all the other

code is inserted.

For example,

jquiz6.ht_

is used to

create JQuiz

exercises.

This is

specialized

JavaScript used

only by this

exercise type.

For example,

jquiz6.js_

contains the

code used in

JQuiz

exercises.

This is

XHTML used

in multiple

locations. For

example,

hp6navb

ar.ht_

contains the

code used for

navigation

buttons in all

the exercise

types.

This file

contain

s all the

CSS

code

used in

all the

exercis

es.

This is

JavaScript

code used

for one

specific set

of

functions,

but used in

multiple

exercise

types. For

example,

hp6car

d.js_

contains

the code

used to

handle

dragging

[AppName
]6.ht_

[AppName
]6.js_

hp6*.ht_ hp6.
cs_

hp6*.js
_

and

dropping of

elements in

JMix and

JMatch

exercises.

Good practices when editing source files

=> Create a special source folder for your project.

=> Never change original source files — edit the copies in your custom source

folder.

=> Tell the Potato where to look for source files (Control + Alt + Shift

+ S).

=> Pick a "handle" and use it to identify all your modifications (e.g.

"MDH_Custom")

=> Comment out original code, but leave it there rather than deleting it.

=> Explain your changes in comments.

=> Maintain standards-compliance (& validate!).

Preparing for your customization tasks

=> On your hard drive, create a special source folder for your project. Call it

"hp_custom_source".

=> Invent a "handle" to identify all your modifications. Make it your initials

followed by "_Custom". You will use this to mark all the changes you make

to the source files, so you can easily find them again in the future.

http://validator.w3.org/check?uri=http%3A%2F%2Fweb.uvic.ca%2Flancenrd%2F%2Fhotpot/howto%2Fhacking_workshop%2Fgood_practices.htm;verbose=1

=> Start JQuiz, and tell the program where to look for your custom source

files. (Press Control + Alt + Shift + S, then find and select your

hp_custom_source folder.)

Task 1: Making the reading text scroll independently

=> Find the Hot Potatoes source folder, and copy the hp6.cs_ file into your

custom source folder.

=> Open the hp6.cs_ file in your text editor. (Make sure you open the copy in

your custom folder, not the original one!)

=> Search for this text:

.ReadingText

This is the beginning of the code which handles the appearance of the

reading text div.

=> The code for this selector looks like this:

.ReadingText{

 text-align: left;

}

All it does right now is to make the text of the reading left-aligned.

=> Type a return character after the line text-align: left;. You're going

to insert your code starting on the next line. Type a slash followed by an

asterisk (a star). This marks the beginning of a comment. Then leave a

space, and type your "handle", and a short explanation of what you're

doing, like this:

/* MDH_Custom: added two lines to make reading text

scroll independently. */

Don't forget the */ at the end, to close the comment. Now everything

between /* and */ has been commented out, so the browser will ignore it,

but we can easily find our code again when we need to, because we can

search for the handle.

=> Now type a return, and the following three lines:

 overflow: auto;

 height: 15em;

/* MDH_Custom: end customized code.*/

We're telling the browser to fix the height of the reading text container to

15 "em" characters, and if the text is too long for that ("overflow"), to

handle it automatically. This will cause the browser to add a scrollbar.

=> This is what you should see:

.ReadingText{

 text-align: left;

/* MDH_Custom: added two lines to make reading text

scroll independently. */

 overflow: auto;

 height: 15em;

/* MDH_Custom: end customized code.*/

}

=> Save the file, then create an exercise in JQuiz with a long reading text, and

view it in your browser. Here's an example.

Task 2: Removing styling from buttons

=> If you haven't already done this for Task 1, find the Hot Potatoes source

folder, and copy the hp6.cs_ file into your custom source folder.

=> Open the hp6.cs_ file in your text editor. (Make sure you open the copy in

your custom folder, not the original one!)

=> Search for this text:

/*BeginNavBarStyle*/

This is the beginning of the code which handles navigation bar

appearance.

=> The first selector, div.NavButtonBar, controls the navigation bar itself.

We don't want to change that, so move below it to the next selector,

.NavButton.

=> On the line before before .NavButton, type a slash followed by an

asterisk (a star). This marks the beginning of a comment. Then leave a

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_01.htm

space, and type your "handle", and a short explanation of what you're

doing, like this:

/* MDH_Custom: commented out navigation button styles

to make buttons appear like standard HTML buttons.

=> Now scroll down until you see this:

/*EndNavBarStyle*/

This is where we close our comment. On the line before, type an

explanation, then a star followed by a slash, like this:

MDH_Custom: end commented-out section. */

Now everything between /* and */ has been commented out, so the

browser will ignore it.

=> This is what you should see:

/*BeginNavBarStyle*/

div.NavButtonBar{

[inclNavBarColor] background-color:

[strNavBarColor];[/inclNavBarColor]

[...]

}

/* MDH_Custom: commented out navigation button styles

to make buttons appear like standard HTML buttons.

.NavButton {

[...]

MDH_Custom: end commented-out section. */

/*EndNavBarStyle*/

=> Save the file, then create an exercise in JQuiz and view it in your browser.

Here's an example.

Show All
Index
Next

Task 3: Horizontal multiple-choice answers

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_02.htm

=> In the hp6.cs_ file, search for this text:

ol.MCAnswers li{

This is the beginning of the code which handles list items in the

ordered list of multiple-choice answers in JQuiz.

=> Add your handle and explanation, inside a comment:

/* MDH_Custom: Next two lines make m/c answers list

horizontally. */

=> Add the following line to the code:

display: inline;

=> Now, because the answers will be next to each other, we need to create

some space after each answer to separate them. Add the following line to

the code:

margin-right: 4.0em;

=> This is what you should see:

ol.MCAnswers li{

/* MDH_Custom: Next two lines make m/c answers list

horizontally. */

 display: inline;

 margin-right: 4.0em;

 margin-bottom: 1em;

}

=> Save the file, then create an exercise in JQuiz and view it in your browser.

Here's an example.

Show All
Index
Next

Task 4: Using an external stylesheet

=> First, we're going to use the Masher program to create an external

stylesheet. Start the Masher, then click on the Appearance tab. Choose

the colours and settings you want to use. Then click on Actions /

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_03.htm

Create complete HotPot stylesheet. Save the stylesheet in the

same folder as the exercises you have created. Call it external.css.

=> Find the Hot Potatoes source folder, and copy the jmix6.ht_ file into

your custom source folder. Open this file in your text editor.

=> Our task here is to prevent JMix from adding the normal stylesheet into the

exercise itself. Search for these three lines:

<style type="text/css">

[strStyleSheet]

</style>

Delete these lines, and add a comment to explain what you've done:

<!-- MDH_Custom: Deleted the placeholder for the

internal stylesheet, in order to use an external one. -

->

[strStylesheet] is the "placeholder" that is replaced by the CSS code

when JMix creates the exercise; if it's not there, then the CSS code will not

appear in the page.

=> Start JMix, and tell the program where to look for your custom source files.

(Press Control + Alt + Shift + S, then find and select your

hp_custom_source folder.)

=> Now make a little JMix exercise to test with. It doesn't matter what goes in

it; "This / is / a / test" will do.

=> Now we need to insert the link to the external CSS file into the page. Go to

the Configuration screen, and click on the Custom tab. In the box at the

bottom, "Code for insertion into <head> tag", type the following:

<link rel="stylesheet" type="text/css"

href="external.css" />

=> Press OK to exit the Configuration screen, then export your exercise and

make sure you save it in the same folder where you saved the

external.css file. The exercise should look the same, but it is different.

You can prove this by temporarily renaming the external.css file so the

browser can't find it. Here's an example.

Show All

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_04.htm

Index
Next

Task 5: Adding a new navigation button

=> Find the Hot Potatoes source folder, and copy the hp6navbar.ht_ file

into your custom source folder.

=> Open the file in your text editor. You'll see a <div> tag containing three

separate blocks of code, one for each button on the navigation bar. The

third one looks like this:

[inclNextEx]

<button class="NavButton"

[...]

onclick="location='[strNextExURL]'; return

false;">[strNextExCaption]</button>

[/inclNextEx]

=> For our custom button, we're going to copy some of this code, to create a

new button, then modify it. We don't need the include instructions, so

ignore them; just copy the <button> tag (<button ... </button>),

and paste it between the last [/inclNextEx] and the closing </div>

tag at the end of the file.

=> The last few lines of your file should look like this:

[/inclNextEx]

<button class="NavButton" onfocus="NavBtnOver(this)"

onblur="NavBtnOut(this)" onmouseover="NavBtnOver(this)"

onmouseout="NavBtnOut(this)"

onmousedown="NavBtnDown(this)"

onmouseup="NavBtnOut(this)"

onclick="location='[strNextExURL]'; return

false;">[strNextExCaption]</button>

</div>

=> The next thing to do is to comment our changes. Add a comment before

and after your new code like this:

<!-- MDH_Custom: new button added to navigation bar. --

>

<button class="NavButton"

[...]

onclick="location='[strNextExURL]'; return

false;">[strNextExCaption]</button>

<!-- MDH_Custom: end of new button. -->

</div>

=> Next, we need to change the caption of the button to its new caption. Right

now, the caption is a placeholder ([strNextExCaption]). Change this

to "HotPot".

=> Finally, we need to add the URL the button will go to. At the moment, that's

another placeholder ([strNextExURL]). Change it to this:

http://web.uvic.ca/hrd/hotpot/

Make sure you don't remove the single quotes surrounding the URL.

=> Now your code should look like this:

<button class="NavButton" onfocus="NavBtnOver(this)"

onblur="NavBtnOut(this)" onmouseover="NavBtnOver(this)"

onmouseout="NavBtnOut(this)"

onmousedown="NavBtnDown(this)"

onmouseup="NavBtnOut(this)"

onclick="location='http://web.uvic.ca/hrd/hotpot/';

return false;">HotPot</button>

=> Save the file, then create an exercise in JQuiz and view it in your browser.

Here's an example.

Show All
Index
Next

Task 6: Making the timer count up instead of down

=> Find the Hot Potatoes source folder, and copy the hp6timer.js_ file into

your custom source folder. Open this file in your text editor. This file

contains the code which makes the timer work.

=> First, we need to make the timer start from zero, instead of from the time

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_05.htm

limit specified in the configuration screen. Find this line:

var Seconds = [intSeconds];

Add a comment to explain your change:

//MDH_Custom: set the timer to start from zero

Notice that this comment begins with two slashes; that's how you make a

line into a comment in JavaScript.

=> Next, make another copy of the line of code, so you have two copies.

Comment out the first one, then modify the second, so you have this:

//var Seconds = [intSeconds];

var Seconds = 1;

Now you can see what the line used to be, and what it is now.

=> Next, we need to make the timer count upwards instead of downwards.

Find this line:

Seconds--;

And change it to this:

//MDH_Custom: made the timer count upwards instead of

downwards.

//Seconds--;

Seconds++;

=> Now make a little JQuiz exercise to test with. Remember to include a timer.

It doesn't matter what time limit you set, though; the time limit will not be

used. Here's an example.

Show All
Index
Next

Task 7: Hiding and showing the gapfill word list in
JCloze

=> First, open the hp6.cs_ file from your custom source folder in your text

editor. Find this section:

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_06.htm

.ClozeWordList{

 text-align: center;

 font-weight: bold;

}

Modify it like this:

.ClozeWordList{

 text-align: center;

 font-weight: bold;

/*MDH_Custom: added the next line to hide the word list

initially.*/

 display: none;

}

=> Find the Hot Potatoes source folder, and copy the jcloze6.ht_ file into

your custom source folder. Open this file in your text editor.

=> Find this block of code:

<div id="WordsDiv" class="StdDiv">

<span id="WordList"

class="ClozeWordList">[strWordList]

</div>

Add a button and a linebreak to the code, like this:

<div id="WordsDiv" class="StdDiv">

<!--MDH_Custom: added a button to show and hide the

word list.-->

<button onclick="ShowHideWords()">Show/hide

words</button>

<span id="WordList"

class="ClozeWordList">[strWordList]

</div>

=> Finally, we need to add the code which hides and shows the wordlist when

we click on the button. We can do this at the top of the file, by adding a

special JavaScript tag containing the code. Scroll up to the top of the file,

and find this:

<script type="text/javascript">

//<![CDATA[

<!--

This is the tag into which JCloze inserts all the JavaScript code. We can

add our code immediately after this. First, add your explanatory comment:

//<![CDATA[

<!--

//MDH_Custom: Added a function for showing and hiding

the answer list.

=> Now add this JavaScript function right after your comment:

function ShowHideWords(){

 var W = document.getElementById('WordList');

 if (W.style.display != 'block'){

 W.style.display = 'block';

 }

 else{

 W.style.display = 'none';

 }

}

=> Now make a little JCloze exercise to test your code. Remember to check

the option to "Include word list with text" in the configuration screen. Here's

an example.

Show All
Index
Next

Task 8: Controlling question navigation (1)

=> Find the Hot Potatoes source folder, and copy the jquiz6.ht_ file into

your custom source folder.

=> Open the file in your text editor, and search for the XHTML code for the

Show All Questions button. It's inside a <p> tag, and it looks like this:

<p style="text-align: right;">

<button id="ShowMethodButton"

[...]

onclick="ShowHideQuestions(); return

false;">[strShowAllQuestionsCaption]</button>

</p>

=> Comment out the whole button, adding your handle and comment at the

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_07.htm
https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_07.htm

same time, like this:

<!-- MDH_Custom: This button is commented out to hide

it. -->

<!-- <p style="text-align: right;">

<button id="ShowMethodButton"

[...]

onclick="ShowHideQuestions(); return

false;">[strShowAllQuestionsCaption]</button>

</p> -->

<!-- MDH_Custom: End of section commented out. -->

=> Save the file, then create an exercise in JQuiz and view it in your browser

to check that the button has disappeared. If everything works OK, then

move on to the second part of the task on the next page.

Show All
Index
Next

Task 8: Controlling question navigation (2)

=> Find the Hot Potatoes source folder, and copy the jquiz6.js_ file into

your custom source folder.

=> Open the file in your text editor, and search for the JavaScript ChangeQ

function. It's about a quarter of the way through the file, and it starts like

this:

function ChangeQ(ChangeBy){

=> Look at the next three lines. They all start with two slashes (//). This is one

way to make a comment in JavaScript; two slashes at the beginning of a

line will comment out the whole line. These are the lines:

//The following line prevents moving to another

question until the current

//question is answered correctly. Uncomment it to

enable this behaviour.

// if (State[CurrQNum][0] == -1){return;}

=> First, we're going to add our own comment to explain what we're doing.

Add it after the first two lines, and before the JavaScript line:

//The following line prevents moving to another

question until the current

//question is answered correctly. Uncomment it to

enable this behaviour.

//MDH_Custom: Uncommented the next line to enable

behaviour described above.

// if (State[CurrQNum][0] == -1){return;}

=> Finally, we just need to uncomment that line of code to make the page

work the way we want it to:

//The following line prevents moving to another

question until the current

//question is answered correctly. Uncomment it to

enable this behaviour.

//MDH_Custom: Uncommented the next line to enable

behaviour described above.

if (State[CurrQNum][0] == -1){return;}

=> Save the file, then create an exercise in JQuiz and view it in your browser.

Remember NOT to set the exercise to "Shuffle questions". If the

questions are shuffled, this hack won't work. Here's an example.

Show All
Index
Next

Task 9: Using an image instead of a button

=> First, we need to get the image we're going to use instead of the button.

You can find a good one here:

http://web.uvic.ca/hcmc/clipart/school/correct/correct-vt.gif

Save the image to the folder on your hard drive where you are creating

exercises.

=> Now open the jcloze6.ht_ file from your custom source folder in your

text editor. Find this section, which is the check button below the exercise:

<button id="CheckButton2" class="FuncButton"

onmouseover="FuncBtnOver(this)"

onfocus="FuncBtnOver(this)"

onmouseout="FuncBtnOut(this)" onblur="FuncBtnOut(this)"

onmousedown="FuncBtnDown(this)"

onmouseup="FuncBtnOut(this)"

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_08.htm
http://web.uvic.ca/hcmc/clipart/school/correct/correct-vt.gif

onclick="CheckAnswers()"> [strCheckCaption] </button>

=> Now add an explanatory comment, and also comment out the existing

button, by putting <!-- before it and --> after it. You should see

something like this:

<!-- MDH_Custom: Commented out the existing button to

use an image instead.-->

<!-- <button id="CheckButton2" class="FuncButton"

onmouseover="FuncBtnOver(this)"

onfocus="FuncBtnOver(this)"

onmouseout="FuncBtnOut(this)" onblur="FuncBtnOut(this)"

onmousedown="FuncBtnDown(this)"

onmouseup="FuncBtnOut(this)"

onclick="CheckAnswers()"> [strCheckCaption] </button>--

>

=> Now we're going to insert the image itself. Add this code below the old

button:

<img src="correct-vt.gif"

alt="[strCheckCaption]"

title="Check your answer"

onclick="CheckAnswers()"

style="cursor: pointer;" />

=> Now add a comment below, to show where your modifications end:

<!-- MDH_Custom: End of modification to Check button.--

>

=> Now save your changes, and make a little JCloze exercise to test your

code. It would be a good idea to uncheck the "Include 'Hint' button"

checkbox in the configuration screen, so that you don't have an ordinary

HotPot Hint button right next to your new image. Here's an example.

Show All
Index
Next

Task 10: Branching based on score

=> Find the Hot Potatoes source folder, and copy the hp6hotpotnet.js_

file into your custom source folder.

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_09.htm

=> Open the file in your text editor, and search for the JavaScript Finish

function. It's about a quarter of the way through the file, and it starts like

this:

function Finish(){

=> This function is useful to us because it's always called at the end of an

exercise. If we want to insert any behaviour at the end of an exercise, we

can put it inside this function. [Note: if you're going to post exercises on

www.hotpotatoes.net, it's best not to mess with this function, in case you

disrupt the submission of results!]

=> The best place to insert our code is at the beginning of the function, right

after the line that starts with "function". This is the code to insert:

if (Score>= 75) {

 alert("Well done! You passed!");

 window.location="http://www.google.com";

}

else{

 alert("Sorry! You scored less than 75%. Try again.");

 location.reload();

}

=> Finally, we just need to comment our code:

function Finish(){

//MDH_Custom: Redirect the student based on score.

if (Score>= 75) {

 alert("Well done! You passed!");

 window.location="http://www.google.com";

}

else{

 alert("Sorry! You scored less than 75%. Try again.");

 location.reload();

}

//MDH_Custom: End of custom redirect code.

=> Save the file, then create an exercise in JQuiz and view it in your browser.

Here's an example.

Index
Next

What you've learned in this workshop

https://hotpot.uvic.ca/howto/hacking_workshop/examples/task_10.htm

Source files Source
folders

Techniques

 3 types of
source file

 how
placeholder
s work

 how
includes
work

 source folder
locations

 how to use a
custom
source folder

 Commenting out
CSS, XHTML and
JavaScript

 Adding new CSS
code

 Adding new XHTML
code

 Adding new
JavaScript code

 Explaining your
changes in
comments

Index
Next

Useful resources

 Online version of this tutorial:
http://web.uvic.ca/hrd/hotpot/howto/hacking_workshop/

 Editing Hot Potatoes source files (online tutorial):
http://web.uvic.ca/hrd/hotpot/howto/editsource.htm

 Hacking in Hot Potatoes (online article):
http://web.uvic.ca/hrd/hotpot/howto/hacking_hotpot.htm

 Documentation for Hot Potatoes Source Files and
Placeholders (online reference page for source files and
placeholders):
http://web.uvic.ca/hrd/hotpot/howto/sourcefiles.xml

 W3Schools CSS tutorial: http://www.w3schools.com/css/

 W3Schools XHTML tutorial: http://www.w3schools.com/xhtml/

 W3Schools JavaScript tutorial: http://www.w3schools.com/js/

http://web.uvic.ca/hrd/hotpot/howto/hacking_workshop/
http://web.uvic.ca/hrd/hotpot/howto/editsource.htm
http://web.uvic.ca/hrd/hotpot/howto/hacking_hotpot.htm
http://web.uvic.ca/hrd/hotpot/howto/sourcefiles.xml
http://www.w3schools.com/css/
http://www.w3schools.com/xhtml/
http://www.w3schools.com/js/

