Special TechEd 2006 Edition
Not for Resale

FOR MICROSOFT

OFFICE SHAREP!

Microsoft Corporation

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2006 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Printed and bound in the United States of America.
123456789 QWE 109876
Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Active Directory, ActiveX, Excel, FrontPage, InfoPath, Internet Explorer, JScript, Microsoft Dy-

namics, Microsoft Press, MSDN, Outlook, PivotChart, PivotTable, PowerPoint, SharePoint, Visual Basic, Vi-
sual C#, Visual Studio, Windows, Windows Server, and WinFX are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Other product and company names men-
tioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Melissa von Tschudi-Sutton
Production: Publishing.com

Body Part No. X12-23639

Contents at a Glance

H W NN R

O 00 N o un

Microsoft Windows SharePoint Services 3.0 1
Building Solutions with Office SharePoint Server 2007............. 21
Building a Basic SharePoint Site............... 41
Organizing Lists and Documents with Site Columns

and Content Types.ottt i e e e 57
Working with Features in Windows SharePoint Services. 77
Windows SharePoint Services Core Development 101
Creating Workflows: The Missing Piece of Office Productivity 121
Introducing Excel Serviceso 143

Microsoft Office InfoPath 2007 and Microsoft Office Forms
Server 2007 . ..o e e e 183

Table of Contents

Acknowledgments i e Xi
INtrodUCHiON .. e e e e xiii
Solution Showcase for the 2007 Microsoft Office System Xiv
ACCIUBNT XV

AVIVA Consulting Groupttt XVi
CorasWorKs ..o xviii
Knowledgelake Xix

Metalogix Software XXi

OSISoft . XXiv

QUIlOGY oo XXVi

RESOIULE ..o Xxvii

BORarD o XXX

Microsoft Office Developer Center i XXX

1 Microsoft Windows SharePoint Services 3.0 1
Integration with ASPNET 2.0 e 2
Working with Master Pagesoo i 5
Web Parts in Windows SharePoint Services 3.0 8
Developing CustomWeb Parts i, 11
Enhancements in Content Storage i 13
Event Handlers 15
Workflows in Windows SharePoint Services 3.0 16
Site Definitions, Features, and Solutions 17
Internet-Style Security 19
SUMIMIAIY o e e e 19

2 Building Solutions with Office SharePoint Server 2007............. 21
Building Office SharePoint Server 2007 Portal Sitescccoviinnnn. 23
Shared Service Providers 24

User Profiles 25

Office SharePoint Server 2007 Search 26

The Business Data Catalogt 28

Web Content Management 30
Business Intelligence Features i 35

vi Table of Contents

Managing Documents and Business Processescciio.... 37
Office Forms Server 2007t 38
Enterprise Content Management i 39
The Single Sign-On Service e 39
SUMIMIAIY Lot 40
3 Building a Basic SharePoint Site 41
Creating a Site Collection and a Top-Level Site 41
Creating a List for Tracking Project Profiles 46
Creating a Document Library 48
Customizingthe Home Page i .. 49
Creating Child Sites 51
Creating a "Hello World" Web Part 52

4 Organizing Lists and Documents with Site Columns
and Content Types.iiiii it e i e e 57
CoNteNt TYPES .ot 57
Content Type Settingso 58
File FOormatso 59
Site and List Content Types 59
Creating Content Types Based on Other Content Types 60
Controlling Changes to Content Types 61
Controlling Access to Content Typeso v et 62
Updating Content Typest 62
Extending Content TYpest 65
Site COIUMNS .. e 66
Site Column Properties 67
Working with Site Columns and Content Typesc.ciiiiiiiinnnn. 67
Creating a Site Column for Project Lookupscccoviiinnnn. 68
Creating Custom Content Types ...t 71
5 Working with Features in Windows SharePoint Services. 77
Implementing Features 78
Feature Elements 78
Element SCOPE . ..ot 79
Activation Dependencies and SCOPet 79

The Structure of Featurexml 80

Table of Contents vii

Features and the Windows SharePoint Services Object Model 82
Feature Classes 82
Accessing Feature Collections i 83
Features and Events oo 84

Designing Windows SharePoint Services Applications Using Features 84
Activating and Deactivating Features 84
Working with a Custom Feature i 86
Creating a Custom Feature i, 90
Creating a Callback Receiver Class fora Feature 93
Adding a Document Library on Activation 95
Adding an Event Handler to the Timesheets List 96

6 Windows SharePoint Services Core Development 101

TOP-LeVel Classest e 101
Updating Object Propertiesttt 103
Working with Collections 104
UsiNg INEXErS . ..o 105

Using the Windows SharePoint Services Object Model and the Data in a List107
Generating Weekly Time Sheet Aggregate Views 107
Using the Packaging API to Stuff Weekly Time Sheet Aggregates into
Word Documents 111

Adding Word Documents to a Document Library 114
Using an Event Handler to Generate Weekly Aggregate Documents 115
Adding the Assembly tothe GAC i 117
Registering the Event Handler Assembly 117

7 Creating Workflows: The Missing Piece of Office Productivity 121

Workflows and Activities 121

Windows Workflow Foundation Run-Time Engine 123

Building Custom Workflows 123

Installation and Deployment 125

WOrkflow Stages 125
Workflow Association ... 125
Workflow Initiation 126
Workflow Status 126
Workflow Task Completion i i 126

The OnWorkflowActivated Activity, 127

viii Table of Contents

Workflows in AcCtion 128
Associating and Activating SharePoint Workflows 129
Creating a Human Workflow in Visual Studio 2005 134

8 Introducing Excel Services i 143

Key Scenarios for EXCel SErvices 144
Sharing Workbooks Through a Browser 144
Building Business Intelligence Dashboards 145
Reusing the Logic Encapsulated in Excel Workbooks 147

Excel Services Architecture Overviewc.cooiiiiiiiiiiii... 148
SBCUNIEY . ottt 148
Performance and Scalability L. 148

Controlling Visible Information and Interacting with Workbooks 149
Defining Parameters 149
Interacting with Workbooks in the Browser 150

Building Applications with Excel Web Services 151
ErrorHandling 153
YT o o 153

Controlling and Protecting Workbooks 154
The View Item Right o 154
Controlling Who Can Publish Workbooks to Excel Services 155
Controlling the Publishing Process for Workbooks in Excel Services 155

Data Connection Libraries 156
What Is a Data Connection Library? 156
Connecting to Databases Made Easy 157
Solving Connection Management Problems 158
Making Data Connectivity More Secureccoiiiiiiin.... 159

Unsupported Features in Excel Servicesc.cooiiiiiiiiinnnnennaa... 159

Excel Services and ReportinginaPortal 162
Adding a Trusted Location and a Trusted Data Connection Library
to an Excel Services Configuration............... ... i 162
Building a Report for Excel Web Access ... 165

Coding with Excel Web Services ... i 172
Monte Carlo Simulation 172
A Simple Mortgage Calculator 176

Excel Services User-Defined Functions 178

9

Table of Contents ix

Microsoft Office InfoPath 2007 and Microsoft Office Forms

Server 2007 et 183
KeY SCENAIIOS . ..ottt 184
Components and Architecture of Office Forms Server 2007 185

Client Architecture and Postback Optimization 186
The Form Template Convertercoo i, 186
Data Connections and Office Forms Server 2007cooiiiiian. 186
Designing Form Templates i 187
Controls Supported on Office Forms Server 2007 187
Controls Not Supported on Office Forms Server 2007 188
Browser SUPPOrt ... 188
Controlling Postback Behavior When Control Values Change 189
Deployment 189
SBCUNIY oo 190
Custom ASP.NET Pages with the InfoPath Form Services Control 190
Automating Office Forms Server 2007 Administration Tasks 191
Working with InfoPath Forms and Forms Server 193
Creating an InfoPath Form to Capture Time SheetData 193
Publishing a Form to a Windows SharePoint Services Forms Library 200

Embedding an InfoPath Form in an Application 201

Acknowledgments

Many people had a hand in putting this book together. Mike Fitzmaurice, of the Office Servers
team, initiated the project. Ted Pattison wrote Chapters 1 and 2, and John Pierce, a technical
writer with Microsoft’s Information Worker Adoption Group, wrote and compiled the infor-
mation presented in Chapters 3 through 9.

Ben Ryan and Melissa von Tschudi-Sutton of Microsoft Press guided the book through publi-
cation. Curt Philips managed the team that edited and produced the book, and Andrea Fox
was the copy editor.

Members of the Excel Services team, including Jeff Wierer, Eran Megiddo, and David Gainer,
provided material and reviews for the chapter about Excel Services. Dave Webster contributed
to the chapter about Windows SharePoint Services workflows. Thanks also to the teams that
put together the material for the beta versions of the Microsoft Windows SharePoint Services
3.0 SDK and the Microsoft Office SharePoint Server 2007 SDK.

Finally, thanks go to Rob Barker, Joel Frauenheim, Garry Gross, and other members of the
Microsoft Office Solution Showcase team for their support of this project.

xi

Introduction

Ahead of the release of the 2007 Microsoft Office system, Microsoft Corporation has fre-
quently referred to what it calls the “new world of work”™—a business environment and econ-
omy characterized by mobility; a worldwide network of customers, partners, and suppliers;
new compliance and regulatory requirements; and a need for broad visibility into business
processes and the information that supports and governs them. Together, factors such as
these drive the need for organizations to integrate business applications, documents, and
workflows and transform the content of documents into business information they can act
on. These factors make plain the essential link between knowledge workers, business informa-
tion, business processes, and software.

The 2007 Office system has much that’s new, including the Office XML file formats, an ability
to more easily link to back-end data systems, and a new user interface. Each of these features
provides opportunities for developers to extend Office applications. For example, the support
of XML throughout the 2007 Office system provides a means to define information work-
flows and document management capabilities. An organization’s IT staff can integrate systems
such as SAP, Siebel, or Microsoft Dynamics with Office applications so that workers can per-
form operations such as invoicing or ordering when working in Office rather than the back-
end system itself.

Seven Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint
Services Version 3.0 focuses on another, just as critical, element of Office development—
Microsoft Windows SharePoint Services and Microsoft Office SharePoint Server 2007, plat-
forms that developers can use to create collaboration applications as well as applications and
features that support business intelligence, workflow, data calculation, team workspaces,
document life cycle management, content management, knowledge discovery, and project
management.

Information workers use an array of tools and devices to perform their jobs and collaborate
with others: e-mail, desktop applications, mobile devices, Web browsers, Web conferencing,
portals, and specialized line-of-business applications. Individual workers, project teams, and
departments all need the capabilities provided by collaborative workspaces and the ability to
archive and access information as projects are completed and new ones begin. Windows
SharePoint Services, an integrated part of the Microsoft Windows Server 2003 operating sys-
tem, provides services that enable teams and developers to build such workspaces. Windows
SharePoint Services 3.0 can be tightly integrated with the 2007 Office system, further
enabling information workers to make use of workspaces for organizing meetings, managing
projects, authoring documents, and other activities that they frequently manage from tradi-
tional Office applications. Windows SharePoint Services 3.0 can also be integrated with line-
of-business applications, providing access to data that workers need to update and analyze.

xiii

Xiv

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Office SharePoint Server 2007 builds on the Windows SharePoint Services framework and
provides services such as search in portal sites, team sites, and content management sites; user
profiles and audience targeting; and single sign-on to facilitate integration with enterprise data
systems. Office SharePoint Server 2007 also introduces the Business Data Catalog, which
enables integration between enterprise portal and line-of-business applications; new docu-
ment management capabilities; Web content management, which provides tools for site
branding, creating multilingual sites, and building content deployment solutions; Microsoft
Office SharePoint Server 2007 Excel Services, a technology for viewing, calculating, and
extracting values from a workbook through a Web browser or through a Web service; and
Microsoft Office Forms Server 2007, which lets information workers use a Web browser to
interact with form templates designed with Microsoft Office InfoPath 2007.

The last seven chapters of this book describe some basic and straightforward examples of the
functionality and capabilities that can be included in a solution developed for Windows
SharePoint Services, Office SharePoint Server 2007, and the 2007 Microsoft Office system.
These examples often show sample code, but be aware that the examples were developed and
tested only on the beta 1 build of the 2007 Office system. You'll see a Web Part that displays
data from a SharePoint list, for example, as well as a Web application that uses formulas in an
Excel worksheet to perform calculations, a document approval workflow, and more. The
examples are meant to show off core features and concepts and to help generate ideas for solu-
tions that can be developed or deployed in your own organization.

Solution Showcase for the Office System

Developers, development managers, and organizational decision makers can consult the
Solution Showcase for the Office System at http;//www.microsoft.com/office/showcase, to find
examples, evidence, and information about ways that organizations are transforming their
businesses and solving business problems by implementing Microsoft Office solutions. The
Solution Showcase includes information about business scenarios and solutions for a number
of industries, including manufacturing, financial services, public sector and government agen-
cies, retail operations, health care, and professional services.

Working with partners and customers, the Solution Showcase team identifies high-impact
business scenarios that can be addressed with the Office System. The Solution Showcase pro-
vides information and demonstrations that document the technical and business value of
Office solutions related to these scenarios and that help facilitate discussions with business
leaders. Solutions developed by Microsoft technology partners are shown alongside the busi-
ness scenarios.

In preparing for the release of the 2007 Office system, Microsoft worked with partners and
customers to train and prepare them to develop solutions based on the 2007 Office system.
To illustrate what you will soon see in the marketplace and the types of solutions developers
will have a hand in building, the following sections describe examples of solutions that some
of Microsoft’s technology partners currently have under way.

Introduction XV

Accruent

Accruent’s Store Lifecycle Management (SLM) product is a suite of applications that is built
on the .NET 2.0 Framework and uses Web Parts in its portal interface. The applications
address the full spectrum of real estate activities: market planning, site selection, design and
construction, lease administration, and facilities management. SLM consolidates department-
based, manual processes into a single automated process for real estate operations. For exam-
ple, SLM uses a location-centric data model to merge multiple versions of real estate informa-
tion into a single, unified repository. SLM’s financial engine can then analyze real estate
performance to identify expense leakage and resource inefficiencies. Companies can execute
store construction and remodel projects more quickly using program management templates,
workflows, alerts, and scheduling capabilities to facilitate collaboration. Finally, controls are
automatically instituted by a compliance system to monitor Sarbanes-Oxley compliance and
generate accurate Financial Accounting Standards Boards (FASB) reports.

The functionality in Accruent’s Desktop Connector offers connectivity to 2007 Office system
applications such as Microsoft Office Outlook 2007, Microsoft Office Excel 2007, and
Microsoft Office Word 2007. This connectivity integrates information from SLM applications
with these commonly used programs, providing a natural flow of information and interaction
to users where they need it. These applications help optimize the effect that real estate loca-
tions—stores, restaurants, and bank branches, for example—have on company performance by
increasing revenue days and same-store sales, reducing occupancy and construction costs,
achieving Sarbanes-Oxley compliance, and producing accurate FASB reports.

Figures 1 and 2 show examples of data integration between SLM and Office 2007 applications.

"(I'-::\' o - SLM Lease Renewal; Store Number: LEASE-01 - Task = %
\ £a
Task | Wile st Developer Accuent

; == B Gl
N QUSSR o O " U &
Save & Delete Task | Detaas Mark Reécurmente i Categonize Follow Private
Cluse Complete | o Forward = Up~

Actions Show Manage Task Options

Stare Pane - x

l Creerdue by 10 days |

Accruent Deskiop Connector
Subject SUM Lease Renewat Store Numbee LEASEO1

Store Number: Lease-01

Start date: Thu 1/26:2006 | statum | Mot Started

- o = e Y address: 652 Market S, San Francisto CA
Due date Sun 3/26/2006 w | Prineity Narmal w % Compjete 0% .

Landhurd: Johnson, John
Ol Remindes [J_; Owner | Unknewn Area (5 T): A4
wr)| Open Date: 08/10/2005

e b been assigrid th followeng Task thiough you SUM System N Lease Expieation: 8092008

Alert Type Lesaisie Renewad s

Alert Date January 26, 2006

' @ Zore ome Fage
Instructions The landlord requares an letter that
identifies our intent to accept an B Lontract Decument

exlension or temination on the lease.

Due By Marth 26, 2006
Task Status Accepted

Related Links Lease Renawal Letter Tomplate
Lease Terminatin Letter Template

accruern

4

Crline - Connected ta 54 as ‘admin’

Figure 1 Integration with an Office Outlook 2007 task item. (© 2006 Accruent, Inc. All rights
reserved.)

XVi 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

"([‘._.\' o gd= Arrrent easeRunew, dor - Microsolt Waord | Tasse Toors - L
‘ write et Pagelayout References Mallings Beview View Drveloper | Arouent Deugn layout L7
o Communcation Tasks | 5= Project History | () Delsis | 23 Expenies
s
Taskn Projets || Stoees || Amabpin
= Accruent Task Pane - x
Accruent Desktop Cannector
Communcation Tasks
Contosn, Lid. [Landiord Namef o PR AT
1420 Fifth Avenue [Landlord Corporation] MY | Silocts Comamscation Tash 1o iergs with Bas decument thon bebect
Seartle . WA H:?ud.fm'd -In’e?‘re.ssj' & Document &ction bo complets your Task
98101 ? : i Sulocta Tk
(206) 555-2512 ﬁ.mrd.f.nm' Pr};'rm? . o .
. Ph(.\.llx. [Landlore P ore] SLM Lesss Renewsl, Store Number: LEASED! 2:5
April 10, 2006 Raxc flamillord Hee) SLM Lo O Stors Nuber, LEASE02 e
SLM Lasse Rlenewsl; o Number: LEASE] M%7
Attention: Leasing Manager for Store: [Store Number]
Please be advised that the store stated above with the following details: « |

[Stare Addvess| , [Store Pastal]
Lease Start Date: [Lease Start Date]

Lease End Date: [Lease End Dare]

Pageball | Wordmal | @

Figure 2 A customized task pane in Office Word 2007. (© 2006 Accruent, Inc. All rights reserved.)

AVIVA Consulting Group

The AVIVA Compliance Environment (ACE ¢ S) is a solution for document management, pro-
cess control, and executive visibility for Sarbanes-Oxley Section 302 and 404 compliance. The
solution is based on a Web portal that uses Microsoft technologies to organize and manage
internal control documentation in addition to evaluation and testing documents and results.
ACE S can be utilized by all designated professionals, including internal and external partic-
ipants, so that all phases of a compliance program can be managed comprehensively. The
solution is built on Windows SharePoint Services and its capabilities provided by products
and technologies such as Microsoft Office InfoPath, ASP.NET 2.0, Microsoft SQL Server 2005
Reporting Services, Microsoft Information Bridge Framework 1.5, Office Word 2007, Office
Excel 2007, and AVIVA Narrative Composer 2.1.

The solution’s components provide a structured control framework that is based on COSO
and the latest Public Company Accounting Oversight Board (PCAOB) recommendations and
nomenclature. An organization can configure its own relationships between processes, con-
trol objectives, risks, controls, and so on, and use its own nomenclature if needed. In addition,
through AVIVA’s Narrative Composer, a Microsoft Word plug-in that provides a direct link
from a document to a portal environment, the solution supports the creation of walkthrough
documentation that provides context for each of the controls.

Introduction Xvii

ACE » S manages the review process by ensuring that process owners periodically review inter-
nal control documentation for accuracy and completeness. The solution also provides an
audit trail of all reviews and the date the review was performed. AVIVA uses SourceCode
K2.net for advanced workflow capabilities that include the ability to ensure that policies and
procedures conform to an organization’s specifications.

Each user’s main Web portal view is based on his or her role and contains lists of tasks, mon-
itoring of relevant processes, and reports. ACE ¢ S provides a comprehensive list of configured
reports that provide visibility into the status of the compliance effort, including the Internal
Control Matrix, the Deficiency Matrix, Assertion Coverage, and the Executive Summary.
Each report is intended for a specific type of user, and users can create a subscription that
automatically delivers critical reports at a specified interval.

Figure 3 shows a sample of the Executive Summary report. Figure 4 on the next page shows
a Control Activity page.

3 Focativie Summary - Microsoll Inbernel Explorer [

e Edt Vew Fpodes Jooks Wb »
D - [@ | s Favorkes €8 (3¢ G @] - & 0

adcress () FACE R e ¢ A Aash, _rull v Eoo ks ™ & soeol

Process |-ALL- 1w

Location | -ALL > Cyele [-au - ‘ Winw Aeport

il b [oos e Find | Hrxt | Select a Format wepot @ & @A A

Executive Summary

Tester Conclusions Kanagement Assessment Deflclencles
[Coceptions ot - Etfective 0 ot Evniusted
[T b Excepdions Nuted -M.(EI outive -Dﬂul
Operational Fllectiveness Design Fllectineness st Status
[Effective] Nt Effectie [Effeclive) Ml Effective [Tesled
I Eifestive Afie...] Mot Evaiunted W EftectiveAne... T Mot Evabusted I Hot Teseed
8] Done N Local rranet

Figure 3 The Executive Summary report

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

0-0 H@ Gl -] | agiress [] hetp:filocahost iiswiresl o ahisw, S50 R & -F=

control Activity P Nt started |

Header -

Fields =

WaorkFlaw show History and Comments ¥ I3
Select a check bux to mark & morkllow stage & complete, Chicking the rollback scun dears the completed stalus of sssignments b the
paint Ttams that have beon masked as camplets cannat e remaved sehnat ealling back first,

= 1. Ducument Add Assignment

AssigndTo Dueate: SComplet: CompletiiBy RallBack R

1 | AVTVACONSLULTINGUotaD ebrahirn natwal Saject & [=
Histary snd Comments Wk Sun Mon Tue Wad Thu Fri Sat
Wkl Statirs Assined To ModedBy | ° U & 3

Rurrmvd L r— Etirahim Natod 10 o EREE A

1 13 14 15 18 1T 18

assigned Rav Vaswani Ebrahim Natws 9 i 3 e 2 e

Crested Ebrahim Natws - el £ 4

1z 2w MW oz 0N
Comment ; - -,
vt Aderanisiralor 1CL Tue AT 2008
Cormment :
= 7. Dusign Asussment Add Aasignment
AssigniTo Dundate: SComplet: Completed By RolBack Remo:
1 AVIVACONSULTINGUOtaR v vaswani 3172006 00% = %
Histary snd Carmminlss
WarkTiow Statius Assignad Tn Mndlifindd Hy Data and Tina w
] Selnct 03:29-2006 a5 date. | | &3 tocal intranet

Figure 4 A Control Activity page used for managing compliance requirements

CorasWorks

CorasWorks is developing a solution named Workplace Suite for Office SharePoint Server
2007. The solution enables organizations to design, create, and manage a collaborative work-
place of interconnected business applications without the time and expense of custom pro-
gramming. The solution includes 40 business solutions that can be used as is or that can be
easily extended to meet specific needs. For example, the Project Management solution can be
configured for multiple small projects or a large project or to support an integrated, world-
wide program management office.

Workplace Suite for Office SharePoint Server 2007 includes a set of “intelligent” modular com-
ponents that can be snapped together to create flexible business applications and that inte-
grate applications to create a complete workplace. The suite also includes the Workplace
Configuration Manager, which is used to manage and control the behavior of the components,
applications, interconnected solutions, and the workplace, including the integration of exter-
nal data sources. In addition, the suite provides pre-built integration of Office SharePoint
Server 2007 capabilities, including workflows, Office Forms Server 2007, enterprise content
management, and the Business Data Catalog. Figure 5 shows an example of a workspace and
the types of operations users can perform.

Introduction Xix

Home Documents & Seiings Croate Site Settings Help Site Nawigation = | Welcome CWimiriedsnborg = | 57 | My Links= | Help

2% pashboard A Comtent =
orasWorks V3 > Michsel I nedenberg > Dashboard
::D) My Work Status Documents Tasks Project Mgmt Events Site Admin

Documents Assigned To Me Documents I Created Issues Assigned To Me Projects [Manage

Tasks Assigned to Me -

Navigatine
|| Self Managemant Pawered By CorasWorks 1 | Search |

|| Administration
L Lists Sort By: Title | Statue | Assgned To | Dus Date | Fr

Edi Title fasagned Ta Due Ciate Pricity
Update 2.0 Sgecs cwimfriedenberg oIzt z00n (2) Hormal
Z] Recyde Bin
Status Key
1B rect Stanted D b Prugress @ comuieted Defarred @) Walieg On Somecrs Eise

Figure 5 A status dashboard that's part of the Workplace Suite for Office SharePoint Server 2007

KnowledgelLake

Knowledgelake extends the capabilities of Windows SharePoint Services as the core reposi-
tory for an enterprise content management (ECM) solution. KnowledgelLake’s ECM solution
provides capture, imaging, and content-centric workflow that allow companies to manage mil-
lions of paper-based documents and unstructured information and streamline business work-
flow processes.

Knowledgel ake Capture is a production-level scanning solution, usually found in mailrooms,
that allows users to scan, index, and export documents within a single user interface.
KnowledgelLake Capture automatically exports images and indexing data to the SharePoint
repository, where it queries SharePoint for the available libraries and content types.
Knowledgel ake Capture is integrated with KnowledgelLake Imaging and features bar code
and patch code recognition, image enhancement, and index validation. For the 2007 Office
system release, KnowledgeLake Capture enables users to select content types directly from
the Indexing screen and use optical character recognition (OCR) to apply metadata proper-
ties before saving scanned documents to a SharePoint site.

Knowledgel ake Imaging enhances the capabilities of SharePoint to enable easy organization,
storage, and access of all unstructured business documents (paper, faxes, e-mail, computer
reports, and so on). An integrated Web Part within the SharePoint interface allows users to
search for documents by index values that are created and maintained as a SharePoint site
feature. Users can even configure the search results by document type, date, or any other
column.

The thin-client viewer allows users to view scanned documents from SharePoint using
thumbnails, zooming, and rotating, with a user interface usually seen only in Windows Forms
applications. This feature is made possible through AJAX technologies by allowing partial
page postbacks. Users can also add annotations to the documents and save them back to
SharePoint with the markup. Annotations, drawn completely on the client side using

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

JavaScript, include highlights, rectangles, text, stamps, straight lines, freehand lines, and
sticky notes. Figures 6 and 7 show examples from the Knowledgel.ake ECM solution.

F tocument 1 Properlies [
(ONONOXC) D'J‘D I _i‘.‘-j/.-)_l]_j:lx_j@ |51 s FO ~|
Document Class:
R itherzfow® | PURCHASE
ORDER

Irvwnicrhlumiber
Midwest Medical Supplies
L3kt~

[goeept][osean][con]

Figure 6 After a user clicks Accept, the image is uploaded to a SharePoint site. C#, SharePoint Web
services, and the FrontPage Remote Procedure Call protocol allow this operation to occur.

3 Home - Accounting - Microsolt Inbernet Explorer i =10 x|
B Bt Yew Fgeodes ok eb | &
Qosk - 3 - [@) | S semch i Favortes 5] (37 b 2 -)L
ke [] P =] e s *
Home Welcome 0Z007SERVER\adminstrator = | My Site | My Lnks = | Helo | Send Feedback =3
143)
12 Accounting [A1Contert =T
Home Mews Reports v Snorch Cenber m Topics
[il St Comeent [Morme = Sites > Accounting
R ake Imaging Search -
& S accountsPayable
[Etocuments n: Name: I Created By: I
Earccrcements Hodified By: | Modified: | Crnated: I
[Tasks — — T —
N - v
.ﬁw“m'm, Tithe: MNEMONIC: Involce_Number: |87
Status: Pad -I PO_Number: I
Sart by: [None =l[aze =] than [nene ez =1
Search | Reset I
View ID Namie & Crested by & Moddfied by Modified Crested Inwoice Mumnber
A 11 00023953 administrator adrrmnistrator 4752006 4/5/2006 17541
ZATPH 2:46 PM -
A 12 00023856 administrator adrrmnistr stor A/S/Z006 4/5/2006 §7265
2:1TPM 2:16 PM
Uproming Tasks -
B Fiease spprove DUDGIZIONN 10
= Piivies opprerve SO0SNEROO0IS0A70
) Recydle Bin B Fieass spprove DODGIZIONIS0A10
d [F] Piass spprove 20060322000150420
=]
E)oone | || | trusted stes v

Figure 7 Once the search results are returned, the site feature adds an icon to view any image via
KnowledgeLake Imaging’s thin-client viewer (contains no ActiveX or Java).

SharePoint integration built into the viewer makes KnowledgeLake Imaging look and feel like
an Office 2007 client application. Users can view and modify SharePoint properties (the

Introduction xxi

metadata added with KnowledgeLake Capture), as well as check the status and act on associ-
ated Office workflow items. Figure 8 shows the KnowledgeLake AJAX viewer.

B Fowle doelnke Wnoge Viewar - Wiridows Tatar el Explarer =6
m_ & e : " o] o] | oo o]
Fle Edr View Froeies Teolt Meb OeyToofoer VewDOM Disabls View Cutine Voldate Images Resize Mise Show Ruder
(D 5| @rrondedgelshe triage Vewsr ™ BB e lPam - BTok = "
@ 1= = 8251 brvice M- KnowledgeLale brage Viewst =
~ View | Annolations |
[&[A] 20N S s 3 v ! | Bl | | et] (=[x Dymamc: azpenven |) e Dyname
[mEpTe— EEEER R £y Simte | Current DnterTme] ©) Une Stalic
Annolation Type Colar Font Stamps
! Workllow Task Fracess worHlow for 6261 imvaice | Edit his fask... | X
Document Properties X
L Anpreved e
Midwest Medical Supplivs INVOICE Createdt. 82008 84934 A1
ot g Ukt e s 1481 File Siza: 31303
S e Ussthloshed 4112006 10:34:53 Al
“] ;
e MostedDi OMLEDGELAKERetrego
J)-::Jmn:-.’-: HumencCalumnt: 1 _
sl TedColimnl S Annabations
Versioa: wn

Figure 8 Knowledgelake AJAX Image Viewer

Metalogix Software

Metalogix’s Migration Manager is a content migration solution that enables users to discover,
analyze, extract, and transform content from Web sites, file shares, existing SharePoint repos-
itories, Microsoft Content Management Server 2002, and third-party enterprise content
management systems. Information from these sources can be exported to SharePoint libraries
and lists.

Migration Manager includes crawlers for discovering content on the file system or any HTTP-
accessible Web site. These crawlers are compatible with enterprise content management
systems such as Vignette, Interwoven, IBM, Tridion, Stellent, and Microsoft Content Man-
agement Server 2002. Static sites are also supported in addition to many other third-party
systems. Migration Manager also helps organizations analyze content assets by providing a
metadata explorer and filtering tools. Users can determine what type of content exists
(-html, .doc, .pdf, or other file formats), when it was created, how frequently it is accessed and

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

modified, and who authored it. Migration Manager lets users add metadata of any data type to
multiple content items at the same time. After the metadata is defined, it can be easily mapped
to SharePoint library columns. Web content, documents, and metadata can be exported to
any Office SharePoint Server 2007 site that is accessible through HTTP. Content in HTML or
XML format can be mapped to Office SharePoint Server page fields or to Web Part pages, and
metadata can be mapped to existing columns or new columns can be created automatically.

Figures 9, 10, and 11 illustrate operations of Migration Manager.

% Mkgration Manager - \Demo'g.mdb (Default) =10/ x|
B Help
A 5 || L werkspace = | i lmpcet o Expunt - ctone = | 1)
Progaty Exghoret Lt View | Conen View |
_Show= / Fiber K A Fed | (] Fbene [73View~ dShows
= L MimeTpe (35%) = [lem | Fieblane [SowcaURL | MIME Tyme Shabar Ttk -
0 mnage 1235) NI Press Release Oct 12 2003, C:\netpeivowms applcshion/mavond Saved export taig Missgsoh word 10,
=0 ?ﬁ”":i':“w | |2) Fuesz_Relense_Oct_ 132003 C\netpebfowasn | appicsfion/mawoed [T p——— Missasnlt o 10
;:]' smlllgi = " 7% Prese_Relase_Ucl_1A_Z003. G stpnivewenws | appibcsbon/imonond Saved eponl laig. Micsosull Wond 10,
| |H] 77 Press Retesse Oct 15 2000 Clinetnbivwwes appicssion/mvard Saved expatt 1aig Micsasoh werd 10,
| =] 20 Press Retesse Oct 16 2000 Clnetabivwwes appicston/maward Seved expott 181y Micsasoh werd 10,
| |2] 78 Puess Relossn et 172003 Cnespubivown appieion/mavsnd Savedt gt laig Micssinh wioar 10
)80 Press_Helas Dol 16 2008 Chinstpnbieweres apbsinmovoed S gl Lo Mzl Wond 10,
o Prase_Naloace_Oct_19.2000. Clnetbivvwien appicstion/mavrd Saved erpoit 1aig Micsasoh werd 10,
| |5 02 Press Retease Oct 20 2000 Cinetabivwwes appicston/mivard Seved epatt 1aig Micsasoh Werd 10,
F) 8 Puess Relonsn Ot 730003 Cnepebiowssn applcaionmewod Savedt gt laig Micssinh wioar 10
B 81 Press_Feleas Dc_20 2008 Chinstpndieweres apbsinnmoved S gl Lo Mzl Wond 10,
)85 Press_Heleas_cl_25 2003 Chinetpndieweres apbsinmoved Sived gl Lo Mzl Wond 10,
L | S 06 Press Retesse Oct 26 2000 Cinetnbivwwes appicstion/mvard Seved epatt 1aig Micsasoh Werd 10,
LinkTeut ®) a7 C\nepedivowwinn | appiestion e Sawed psport g Miesnanh wioad 10
Mimelyos euphcabon/me | [77]) y - Ued_7 [T T — P w—] [T pmy Mucsersll Wi 111
F:"“‘;“ ;:::';;:"“ L] Frese_Retease_Ucl_Z9 2003, C\stpnivewenws auivcshon/imowod Savd el laig. Micsosull Wond 10,
Tie ’ [P 2190 Press_Relesse Dot 30 2000, Micsosoh Wird 10,
e Evieciad e Press_ Relosse_ Nt 31_2003 C:\neipebiwan | appleation/mavind Savedt gt laig Micassn wioar 10
P P,vc"_ - | |#] % Pues Aelossn_ ct 4 20030 Cneputiwwan | appeatioe/mavnd Savedt gt laig Micassn wioar 10
B File Description Propedies W) 53 Press_Heleasm Dol_i_2003d Chinetpndiveweres apsinnmoved S gl Lo Mzl Wond 10,
ChasacterCourd 488 | 5] 98 Press Retesse Oct 3 20000 Clnesabivwwes appicstion/mivard Seved expatt 181y Micsasoh Werd 10,
ChaiscteCouns 570 || =) a5 Press_Meleare Oct 12 2000, C:\inetpubfewwws | appcstion/mvwosd Cravded
Lound 4 | 2] % P Relossn 0ct 13,9003 Cnetpubiwan | appeatioe/mavned Crawdesd
PageCort 1 |29 Pros Retemse_ Ucl_14_ 2003, Crtenkhmvems | appicalnnyimovd Ciavhed
PaiagracrCour | B 90 Press_Nelease_Oct 152000 Cinetpubhowanes sppbcsiin/miwosrd Cravded
WerdCount A6 | |S] 99 Press Retease Oct 16 2000 Cnetnbivwwes appicstion/mward Cravded
B File Origin Propenties | 2] 100 Poes Relossn_0ct 172003 \nespubivowin appieatioey/mavind Crawdesd
Apgicsontln Mwciosll Wond B0 Prese_Heleas_ Dc_ 16 2008 Chinstpndivewenes apibsinmovoed Ciavhed
Autho: Nasocl Nayani B2 Prese Helave Dol 19 2003, CNostpubhevwes | appislion/ oo Crawded
Lumpany Mutaugu Sulle 100 Press Neleste Dct 20 2000, CVnetpubhewwes | appic stion/miword Cramied
DateCiealed V12003 UL | [F100 104 Puoas_ Redosse_Nct 73 003 C\netpubivwian | appication/mavsned Cravded
me :“,:Lm:: ,"‘“(L Procee_Fbaaen_[lc_70_7IE © \sipedfemen | apgicalon o] Cravde]
S i P06 Prese_Release Ucl_25 2003, Cnstprbivewes appicsbon/imowod Crawied
o baTom [T | 5] 107 Press Retesse Oct 26 2000 Cinetnbivwwes appicstion/mvard Cravded
s o || 1] 108 Press Relensn Ot 272003 Cnepuiowsnn applcsion e Crawdesd
MMophcotiontiame ||| ®] 109 Poras Rekease 0ot 78203 Cnepubivwsen appication/newod Cravdesd
B0 Press_Heleas Dol 29 2003 Chinstpndieweres apsionmoved Ciavhed
| S 001 Press Retease Oct 30 2000 Clnetnbivwwes appicstion/mward Cravded -
D ian n e ma mmmn men e R ==
| [17 161 fFinered) [Themselected -

Figure 9 The main application window for Migration Manager. A row is added to the List View for
each content item added. The Property sheet lets users view and edit metadata associated with a
particular content item. The Property Explorer filters and organizes the list.

Introduction
B retalogo Migration Manager Demo'g.mdb (Default) o (=
B Hep
3 15| L werkspace = | i lmpcet o Expunt F ctone = |)
Propaty Exploret Lt Vi Condon View |
_Show= 7 Fiber= 4Py« > Ned = | X 2] [FViews
= SouceUAL: C i M0
Findt |]| & it 38 Frdiipsge - @ Extrating
ICDATAL - b m— |
ceb aligrtighi™3 <
<kl calipatings 0" calpadding="1" vadth="| 00':" boedae="1"s
0 <Evenn W) =
Lo 6 in 14 s
k=
8 Document Frapaies =
Catrgoy

newa_108 himl
1

Lt ml
Croveded

B File Description Properes
UhatacieCour
ChatscteCound
LivelCount
Pagelourt —
PaisgrashCour
‘wordCount

B File Diigin Properties

L
Auther
Lumpany

[!dd:tﬂ Ture § —
Appli stian e

Win a Diy
Haband Archiliclur: Cameral
i i Ermer ourt
Business and Finance ard it
Computers
i
i i Inspired by e upcoming wordwide release of “The nmyu,” an Mlustrated childnen's
F_alrlnly and Relationships sharybook wriien by Jake, Dpan-Book YWarehouss.com (Nasdag HOUK] and Editions
Do i e 1odar announced that beginning mmediatedy, Dpan-Book Warahouse.com customers will
8510 an excluSive audio Magsage partaining to the book and recorded by
deo Cate cally fur Cpan Book Warehous com's millions of cuslomies
+ il Deals ar
Achion & Adaenbung ” g~ o
Jake Iz polsed 1o make publishing history when her book, “The English Rozes,” the firstin vl
Comedies s T e ey e R S e e Ll it]
Selecsion:
[3] Heml] Himd | Spit
1214 245 [Fkered) 1 i selected “

XX

=

Figure 10 This split view enables a user to analyze an HTML or XML document selected in the List
View. The upper pane shows HTML source code and the lower pane shows the rendered HTML. This
view enables users to visually tag HTML and XML content and run XPath queries to extract content
from within an HTML or XML document.

Xxiv

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

.J S 3] L wokspee = | i et Bt - ctons = | ED)

Propeny Expiest [Fhesed] | List View r‘mmw—|
b Fill e 4 Hioeow B Neod = | (2] [T Vi =
S SowcelRL (100%) 21 GowcelNL: hitp:/ e openbosk iabout/News aws_ 141 himl
B0 mare(142) =l
Bl [operbock [142) =
i books [72) L . Open-Book Wareh A Sal WinaDigaal g7y
5O sl [52) st and Architeciure pen-Book Warehouse.com Announces Sales Cameral e]
L Mews [41] Hiography & Marair Impact frem New Search Fer the Book Feature Enier ourbock mview amest
O e (8] GG sl win & digital camasl

H O eviews [16] Computers

OuemBosk Warshouss.com
L. vk 111 2| Enlertanment .N":s'jgg‘jf}‘;?:;o"e”“' com
LN E] Family and Relstionships announced e Inial resulls of
e &l Fiction and Literature 13 new feature, Search For the
dmv_. Dook, which launched on October

3.
news 141 html
b g ik

Jizals of the Month =]

= L = b e s fh ey "
- Comedias for filles: includied in Search For the Book oulaced arowth for fie:
LinkTest Dpen-Book Ware
MimeType text/himi ExporledURL. bl owen: 36742/ agesrews_141.asgs
Slatug Exported to Shar - ‘Welecome Rasool Rayani = d
Tenplabe [] Herme
Tile Dpen Rook Ware
B Exlrati Corord BT eress releases Sile Actioms
PublshingPagels czpan clazze"art
. ::'“‘L"‘d"‘:d' Mo/ fmoine/ooE Version: Checked Dut Status: Only you can see and moddy this page. Publication Start Date: i publcston date
wm Frupetiss
herniD ateC 4 Page = Workflow = Tous > | AEdit Page Content |] Check In to Share Draft | (] Submi for Approval
tem Press Releases Open-Book Warehouse.com Announces Sales Impacl from New Search For
B Location Propeities [the Book Feature
Diereoriomd cazale:
CiportedUFl hinp://bowen: 16!
@ ResteedlBL bl /maine/ope [77F FE 5
@ SowcelAL Bt mainefope il prfh o e SR
¥MLDowrdoadlo | ¥ ‘
PublsshingF agelmaps

(1741 [Fesed) 1 e selected 4‘

Figure 11 This split view enables users to view source content in the upper pane and exported con-
tent in the lower pane. This example shows an HTML page above a newly created page in an Office
SharePoint Server 2007 pages library.

OSISoft

OSISoft has defined an Excel Services solution that includes a set of user-defined functions
that retrieve time-series data from a proprietary database. The functions are defined for an
Excel workbook, which can be rendered in a browser using Excel Web Access. By defining
cells that act as parameters, a user can change the value of a cell when the workbook is ren-
dered in the browser, and the solution can retrieve the data for any time period. For example,
if one of the user-defined functions displayed an irregular trend in the data being analyzed,
users could focus on that time period to find out the cause of the irregularity.

Figure 12 shows the workbook rendered in Excel Web Access with a new value in the Param-
eters list. Figure 13 shows the workbook in the browser with the updated data.

Introduction XXV

Bl Bl e Fgoedes Twk Heb | &y
Qo = () - # (Z) cu| S Search oFaverkss)| 0 lp]+),
agess [5] P —g n Ko 2D LU de — B ENET
Excel Server Demo = Reports Hy Site | My Links = |
Open= | Lpdue = Mend L
' B [=d o E F G Parameters
1 Server localhost Actual Data for: Reactorl_Temp = | L meuednte
5 Start Time y A4/11/2006 12:00:00 AM 52 3670 deg. C e
3 End Time t 4/11/2006 2:00:00 AM 51.9149deg. £ calchon
4 Interval Zh A4/11/2006 4:00:00 AM 514628 deg. C :’::f
s Calc Type Average 4/11/2006 6:00:00 AM 51.0107 deg. C server
G 4/11/2006 8:00:00 AM 50.5586 deg. ¢ .
Agname Restord Temp
7 Tags 4/11/2006 10:00:00 AM62.0395deg. C
g Reactorl_Temp 65.5387deg. C A£11/2006 12:00:00 PM 704107 deg. €
3 Reactor?_Temp 105275deg. C 4/11/2006 2:00:00 PM 78.6679 deg. C
10 Reactor3_Temp 157.1%-deg. C A£11/2006 4:00:00 PM 62.3911 deg. € r
11 Reactord_Temp 111.463 deg. C 4/11/2006 6:00:00 PM 726884 deg. C
1z Reactory_Temp 834042 deg. C A4/11/2006 8:00:00 PM 65.3245deg. C
1z Reactors_Temp 104417 deg. C 4/11/2006 10:00:00 PM 110.437 deg. C
" A4/12/2006 12:00:00 AM90.6651 deg. C
15
16
17
15
i)
* I I Ill
4 *
M4 bW Sheetl Sheetz Shestd [ogly] ciear_|
ooe T (@ s e
distant| (3 @ |[@] el web access M (% 1z3em

Figure 12 An Excel workbook rendered in Excel Web Access. Data can be updated based on values
entered in the Parameters list.

B ER e Fperie Twis e | &

Qoo » 3 -) [b P sewch oRavertns | (e fa] -)W,
adbess [£] P —g n ” Ko 2D LU de — B ENET
Excel Server Demo = Reports Hy Site | My Links = |
Open= | Lpdue = Mend L
' B [=d o E F G Parameters
1 Server localhost Actual Data for: Reactor3_Temp =| | . et
5 Start Time y A4/11/2006 12:00:00 AM 103 678 deg. C e
3 End Time t 4/11/2006 2:00:00 AM 92.6510deg. C calchon
4 Interval Zh A/11/2006 4:00:00 AM 81.6236 deg. C :’::f
s Calc Type Average 4/11/2006 6:00:00 AM 70.5961deg. C server
G 4/11/2006 8:00:00 AM 59,5687 deg. C .
7 Tage 4/11/2006 10:00:00 AM87.7669 deg. C
g Reactorl_Temp 65.5387deg. C A£11/2006 12:00:00 PM 722477 deg. €
3 Reactor?_Temp 105275deg. C 4/11/2006 2:00:00 PM 223.790deg. C
10 Reactor3_Temp 125341 deg. C A£11/2006 4:00:00 PM 176,864 deg. € r
11 Reactord_Temp 111.463 deg. C 4/11/2006 6:00:00 PM 220.619deg. C
1z Reactory_Temp 834042 deg. C A4/11/2006 8:00:00 PM 212 041 deg. C
1z Reactors_Temp 104417 deg. C 4/11/2006 10:00:00 PM 151.154 deg. C
" A4/12/2006 12:00:00 AM 58.9171 deg. C
15
16
17
15
i)
* I I Ill
4 *
M4 bW Sheetl Sheetz Shest3 apoly | [eioae |
ooe T (@ s e
Bistont| [(3 @ |[@] Fecel web Access - M. [Conmmand Pt - priy | (% s

Figure 13 The updated data

XXVi 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Quilogy

Quilogy performed a proof of concept using the 2007 Office system for a large energy client.
The customer had an inefficient paper and document-based process for bringing on contract
staff. Quilogy and Microsoft helped them envision a new process that leverages the 2007
Office system. Office InfoPath 2007 forms, routed through an Office SharePoint Server 2007
workflow, automate the contractor on-boarding process—providing new speed, control, and
accountability to this process. Office Word 2007 documents, such as the Contractor Back-
ground Investigation form, can be securely incorporated into the workflow process using
Rights Management Services to provide strict control over document information. Workflow
tasks can arrive in an Office Outlook 2007 e-mail message, show up on the Office Outlook
2007 To-Do Bar, and be completed offline. Managers can use Office Excel 2007 to produce
visualizations of the workflow process and its metrics to easily identify bottlenecks and
throughput.

Figure 14 shows the workflow process on a SharePoint site. Figure 15 shows an Office
InfoPath 2007 form template rendered in Internet Explorer.

“Policy Revision Workflow” Status

]

Wiblom Lalormation

A0 |1 Wi prmaond o i Py P, ok es R o 98 Bk Frematoen Canfcanon doce
AN |14 A Tk Crwed b et Tt v crmed by i By bl

Figure 14 A workflow process on a SharePoint site

Introduction XXVii

Terry Earlsumd - Sacrosalt Office Infopath

Bl ot Mew et Fgmat lock Tahle b

FTEE3ISDY s nm e 6 [yl s e s v] AR o =o i= e e
Hiring Manager View
Contractor Add Request Infopath
b Codet Geographical Lacatiant -Intuitive, easy to use electronic forms
6003 - Outsourced Labor ﬂ West j' -Structure and business rules for colleeting,
Supply Contract Burmbar; Relasse Numbar: Contract Start Date: Contract End Date: using and integrating data to other systems
123] 123 i 2711706] | 2/18/06] | or appiications
Contracter Status: I~ Baior cortractor I~ rar Employes I ratas - Eliminate Job Aids & Instructions by
buiiding logic and intelligance into fornt
Contractor Information - Required Ficlds(") ensure form completion
Narnat EmplayarVandar Mamat
Terry Earls] [Acme Professional Services 3
Gandar: Social Sacusity Humbar: rmmﬂank Grsund Examprisn: T = . "
Mal =] [123-45-6789 6, sgl < ate Ficker - anforces timestamp and'or
| Ll -] I |I| /5 common date format by end user.
W ok Phone) Horma FPhona Homae Statel
[123-a58-7850 | [555-55-555 | [I0aHD =
Employes Class Py Group Y Full Tima/Part Tima: <- Select from using drop-down list of values to
[F. - contractor] [ac | [Ful Time =] enforce consistency, data integrity, structure.
Approval
AquUaItSr NAFRS ! Ragquastar Wark Phana:
Luis Bonifaz = —555'123'45” <- Auto-population of field data based on
Luzul AL Uil D Requestor Name reduces time to complete
LuisBDlitwarein. com | [2r10/z008] form, reduces errors and ensures accuracy
PP AT TR
Brian Cox =] |sss-123-4568
Manager Emails HManager Employes 10:
BrianC@phitwaresnc.com] [152-110
Submit " Buckgrionaed ivvmstiguation Certiistion.doce <- Insert Attachments — keep relevant &
1] | macroscfs it woed Document y documen together using
Il o .
N infoPath Client version

k|
[T T

Ej
@short] (3 @ (5 &) Conractor adForm .. |[2] Terry tarlsomi - pricr... [HEE st am
Figure 15 An Office InfoPath 2007 form template rendered in Internet Explorer

Resolute

Resolute has been working with Microsoft on solutions that integrate Microsoft Office Groove
and Windows SharePoint Services. Some of this integration can be implemented out of the
box. Groove and Windows SharePoint Services work together in a variety of common scenar-
ios; for example, creating a workspace that can be used by a mobile sales force to build and
review sales proposals, sharing internal content on a SharePoint site with users outside an
organization, or archiving content stored in Groove workspaces to a SharePoint document
library.

Another aspect of these solutions uses the Groove forms tool to perform integration with
SharePoint lists on an existing site. The integration makes use of SharePoint Web services pro-
vided by the Groove client and the Groove Enterprise Data Bridge (EDB). Synchronization
occurs by copying items from SharePoint lists into the forms tool list, and from the forms tool
list into a SharePoint list. Because the Web services required for this component are available
in both the Groove client and EDB, the solution works in both environments.

In the client environment, users must install a synchronization tool to perform the synchroni-
zation; however, only workspace members who will perform the synchronization are required
to have the synchronization tool. In a server environment, where the server is running the
EDB, a simple API exposed by the application permits server application developers to config-
ure and control this synchronization process. The synchronization application can run as a

Xxviii

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Windows service. To configure the server version of the application, a small Web application
is provided that permits users to select workspaces and tools to synchronize. This application
runs on the server that also hosts the EDB and will list each workspace that the EDB instance
is a member of, along with all of the forms tools contained within these workspaces.

Another aspect of integrating Groove workspaces and SharePoint sites is a solution for provi-
sioning Groove workspaces from SharePoint sites from both EDB and a Groove client add-in.
In the solution, users will see a button on Groove-enabled SharePoint sites. This button is
installed as part of a SharePoint site feature. When a user clicks this button, the user will be
sent a workspace invitation. On accepting the invitation, the user will find a workspace with
SharePoint Files Tools for the various document libraries on the site already set up.

Depending on which version is installed (client or server), the button will run code to launch
the provisioning process on the user’s computer or code to launch the provisioning process
on the server. SharePoint site administrators can selectively enable the provisioning feature on
individual sites or even on an entire farm. In the provisioning process, a workspace is created
on the Groove client or on the EDB server. Next, SharePoint Files Tools are created for each
document library on the SharePoint site, and synchronization options for these tools are set
up. Finally, the list of site members from the SharePoint site is read, and each user with Con-
tributor or a higher-level access is invited into the workspace. In the client version of this solu-
tion, the user who created the workspace will already be a member and will not need to be
invited into the space. In the server version, the EDB server will remain a member of the work-
space. After the Groove workspace has been provisioned, users can use the workspace with-
out any additional software. Groove’s SharePoint Files Tools will automatically handle
synchronization without any additional intervention. Beyond simple usage, however, the
server version of this scenario presents a compelling starting point for integration with other
enterprise applications, or even other data held in SharePoint itself.

Figures 16 and 17 show a Groove form before synchronization and a SharePoint list after the
form and the site have been synchronized.

[Travel Plans - Discussion - Microsoft Groove

File Edit View Optons Help P Workspaces +

Discussion

[New » [EJviewby - 43 -

Category =
= Business

Subject

. Need to plan trip

Need to book flight.

= Pleasure
4/12/2006 5:21PM

Current View: by Category «

=5 Discussion 1

Justin VonHagen

Introduction

1£) In Workspace

() Justin VonHagen
(¥ Online
\¥) Offline

¥ Did you know...

‘You can share this workspace
with someone, Type an e-mail
address or contact name below to
send an invitation.

Invite to Workspace:

Records in view: 2

 Chat

Commeon Tasks
Q4 Turn Off Tool's Unread Alerts
Ej Add Tools

& View Workspace Properties
“g% Invite My Other Computers

Q- ©- A B € Lo Frren @

e [y

01.resols s

Liks @] Chargepoint 4] Lostwave @8] Resclute 48] Tralfc

LJE 3
Y2

[

G

Home > Ju nHagen = | My Site | My Links= | Help | Send Feedback
143 . . S
#%° Justin's Site [80 Content » aehvaneed Search
Justin's Site > Travel Plans
| Travel Plans
Al site Centent Hew (=1 Actons = Settngs = wew: | Allltems -
Recyce Bin [Trme @ Tee Categery =
] Must complete ibnerary Trew Flessure Must complete itnerary
B Pl to bouk fight, vew Plessure
] Paeed o lan o Trew Dusiness

Figure 17 A SharePoint list after the Groove form and the list have been synchronized

XXiX

XXX 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

3Sharp

3Sharp is developing a building permit application solution that uses Office InfoPath 2007,
Forms Services, Excel Services, Windows SharePoint Services, and a workflow designed using
Microsoft Office SharePoint Designer 2007. The 3Sharp solution is designed for municipali-
ties that need an electronic process for building permit applications submitted by residents
and business owners. This process requires that users have access to a public site to complete
a building permit application form, which captures specific data about a building project. The
process also requires a moderately complex workflow that executes based on the data submit-
ted. The solution is designed for Office 2007 clients and servers, all with no code.

The core of the solution is an Office InfoPath 2007 form, which was designed once and
deployed for access both through the Office InfoPath 2007 client and through a Web browser.
To apply for a building permit, customers simply click a link on the city’s public Web site and
the browser-based form opens. Customers enter data in the form, including project informa-
tion. The form is able to retrieve property data from a back-end system and is also able to
retrieve a Permit Amount value using Excel Services. (The form sends customer-supplied
information to a published Excel workbook and retrieves a resulting calculated value.) When
the customer submits the form, it is routed to an internal SharePoint forms library. A custom
SharePoint Designer—based workflow automatically notifies a clerk, who ensures that a design
drawing has already been submitted, and then assigns a compliance reviewer for the project.
The compliance reviewer receives a workflow e-mail message with a generated hyperlink to
the actual form and reviews the form to determine whether the project meets certain require-
ments (for example, fire safety regulations) before submitting the form back to the forms
library. If all requirements have been met, a workflow e-mail message is sent to the applicant
indicating that the application has been approved and that the permit amount is due. Other-
wise, a different e-mail message with a hyperlink to the form is sent to the applicant, who must
then make changes and resubmit the data to start the review process again.

Microsoft Office Developer Center

Any developer working on an Office-based solution or application that is based on Windows
SharePoint Services should take full advantage of the information available on the developer
centers on MSDN, at http.//msdn.microsoft.com. Developers familiar with the Microsoft Office
Developer Center (http://msdn.microsoft.com/office) know this site as a resource where they

can obtain information through technical articles and documentation, sample code, labs, and
community activities.

Chapter 1

Microsoft Windows SharePoint
Services 3.0

By Ted Pattison
With permissions to reprint from MSDN Magazine

In this chapter:

Integration with ASPNET 2.0ttt ittt 2
Working with Master Pagesoiiiiiiiiiiiin it iiieiieennnn. 5
Web Parts in Windows SharePoint Services 3.0 8
Enhancements in Content Storage i, 13
Event Handlers i e et i 15
Workflows in Windows SharePoint Services 3.0 16
Site Definitions, Features, and Solutions 17
Internet-Style Security e 19
SUMIMIAIY .« i e e it e e et e e et 19

The next major release of Microsoft SharePoint Products and Technologies is scheduled for
fall 2006. This release includes Microsoft Windows SharePoint Services 3.0 and Microsoft
Office SharePoint Server 2007. This chapter covers what's new for developers in Windows
SharePoint Services 3.0. The developer-centric features of Office SharePoint Server 2007 will
be covered in the next chapter, which builds on this one.

Windows SharePoint Services 3.0 is a royalty-free add-on for the Windows Server 2003
operating system. At its core, Windows SharePoint Services 3.0 plays the role of a scalable site-
provisioning engine. It solves the problem of creating and managing hundreds or thousands
of Web sites and making them accessible to tens of thousands of users. Windows SharePoint
Services 3.0 scalability is achieved using an architecture designed with a Web farm environ-
ment in mind. This architecture is based on stateless front-end Web servers that rely on
Microsoft SQL Server in the back end for storing content and other site-related data.

As in the previous versions, Windows SharePoint Services 3.0 supplies out-of-the-box collab-
oration features that make it simple for users to create and design Web sites with things like

shared calendars, contact lists, and document libraries. However, developers should see Win-
dows SharePoint Services 3.0 as something far more powerful than a collaboration tool aimed

2 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

at users. Windows SharePoint Services 3.0 is a full-fledged development platform that adds a
tremendous amount of value on top of ASPNET.

Windows SharePoint Services 3.0 provides value beyond the ASP.NET 2.0 development plat-
form by means of a richer provider model. It facilitates provisioning and storage for pages,
lists, and document libraries. This provisioning can be driven through custom code or
through user actions in the browser-based user interface. Behind the scenes, Windows Share-
Point Services 3.0 automatically works out how and where to store this content. Windows
SharePoint Services 3.0 also eliminates many tedious tasks required in typical ASPNET devel-
opment because it additionally supplies the Ul elements for users to add, view, and modify
content.

In this chapter, I assume you already know something about the previous version of
Windows SharePoint Services (2.0), so [can concentrate on the most significant developer
enhancements to this new version. For more background information you can read “Use Win-
dows SharePoint Services as a Platform for Building Collaborative Applications”
(http://msdn.microsoft.com/msdnmag/issues/04,/07/WindowsSharePointServices/).

Also keep in mind that research and code samples for this chapter are based on the beta 1
release of Windows SharePoint Services 3.0. It’s possible that some of the terms and code
used in this chapter might differ in the released version.

Integration with ASP.NET 2.0

Windows SharePoint Services 3.0 provisioning starts at the level of the IIS Web site. Before
you can create your first Windows SharePoint Services site, someone must run an administra-
tive procedure to extend 3.0 functionality onto one or more IS Web sites. In Windows Share-
Point Services 2.0, the term virtual server was used to describe an IIS Web site that had been
extended with Windows SharePoint Services functionality. To avoid confusion with another
Microsoft product of the same name, the Windows SharePoint Services 3.0 documentation
now refers to an IIS Web site extended with Windows SharePoint Services functionality as a
Web application.

Windows SharePoint Services 2.0 was integrated with IIS 6.0 and ASP.NET 1.1 using an ISAPI
filter DLL. This integration technique results in IIS routing requests to Windows SharePoint
Services before ASP.NET. This routing has proven to be problematic in certain situations
because Windows SharePoint Services takes control of an incoming HTTP request before it
has a chance to be properly initialized with ASP.NET context.

The way in which Windows SharePoint Services 3.0 integrates with ASP.NET has been com-
pletely redesigned. First of all, Windows SharePoint Services 3.0 is built upon ASP.NET 2.0,
which provides significant enhancements over ASPNET 1.1. Furthermore, the integration
between Windows SharePoint Services 3.0 and ASP.NET 2.0 was changed to route incoming
requests through the ASPNET runtime before Windows SharePoint Services. The Windows

Microsoft Windows SharePoint Services 3.0 3

SharePoint Services team achieved these improvements to the routing infrastructure by
removing the ISAPI filter and adding an HttpModule and an HttpHandler that are registered
with ASP.NET using standard Web.config entries. This means incoming HTTP requests
always enter the ASP.NET run-time environment and are fully initialized with ASPNET con-
text before they are forwarded to the code written by the Windows SharePoint Services team
to carry out Windows SharePoint Services—specific processing.

Also note that when you extend an IIS Web site to become a Windows SharePoint Services
Web application, Windows SharePoint Services 3.0 adds a wildcard application map to the IIS
metabase. This wildcard application map serves to route all incoming HTTP requests to the
ASP.NET runtime regardless of their extension. This wildcard application map is necessary to
forward a request for any type of file (for example, .pdf, .doc, .docx) to ASP.NET, which then
forwards the request to Windows SharePoint Services for processing.

Another relevant issue of the new architecture has to do with how .aspx pages are parsed and
compiled. The .aspx page parser used by ASPNET 1.1 works only with .aspx pages that reside
on the local file system. However, Windows SharePoint Services architecture relies on storing
.aspx pages inside a SQL Server database. Since Windows SharePoint Services 2.0 relies on
ASPNET 1.1, the Windows SharePoint Services team had to create their own .aspx page
parser. Unfortunately, the .aspx parser of Windows SharePoint Services 2.0 does not support
many of the richer features offered by the ASP.NET .aspx page parser.

ASPNET 2.0 introduced a new pluggable component type known as a virtual path provider.
A developer can write a custom component that retrieves .aspx pages for any location includ-
ing a database such as SQL Server. Once a custom virtual path provider retrieves an .aspx
page, it can then hand it off to ASPNET to conduct the required parsing and compilation.
ASPNET also gives the virtual path provider a good deal of control as to how .aspx pages are
parsed and whether they are compiled or run in a non-compile mode.

The Windows SharePoint Services 3.0 team has created their own virtual path provider
named SPVirtualPathProvider, which is shown in Figure 1-1 on the next page. As you can see,
the SPVirtualPathProvider is able to retrieve .aspx pages from SQL Server and then hand them
off to the .aspx page parser supplied by ASP.NET 2.0. That means the Windows SharePoint
Services 3.0 team was not required to evolve their .aspx page parser from the previous ver-
sion. It also means that Windows SharePoint Services 3.0 does not suffer from a reduced fea-
ture set with respect to page parsing as it does with Windows SharePoint Services 2.0.

If you're familiar with the architecture of Windows SharePoint Services 2.0, you've probably
heard the terms “ghosting” and “unghosting” used in conjunction with the .aspx pages of a
Windows SharePoint Services 2.0 site. Page ghosting is a Windows SharePoint Services fea-
ture that allows a front-end Web server to store an .aspx page template on its local file system
and to share that page template across many different sites. Page ghosting offers performance
benefits because Windows SharePoint Services can serve up pages for thousands of sites
using a page template stored on the local file system and loaded into memory a single time.

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

11S 6.0
ASP.NET 2.0
Windows SharePoint Services 3.0
SPVirtualPathProvider > T area)
.aspx Parser
A
mmmes .aspx Page
[w—
SQL Server

Figure 1-1 Windows SharePoint Services employs a custom virtual path provider to employ the
.aspx page parser supplied by ASPNET 2.0.

Windows SharePoint Services 2.0 supports user modifications to the page template using
tools such as Microsoft Office FrontPage 2003. Once a user modifies a page template and
saves the changes, a customized version of the page is stored on SQL Server for that particular
site. In Windows SharePoint Services 2.0, this is often referred to as unghosting a page.

Windows SharePoint Services 3.0 still supports page templates that live on the Web server as
well as customized versions of those page templates that are stored on SQL Server. However,
the Windows SharePoint Services team and their documentation have stopped using the
terms ghosting and unghosting because they do not translate well into other spoken lan-
guages. In Windows SharePoint Services 3.0, the term “uncustomized page” refers to a page
template used directly from the local file system of the Web server, and the term “customized
page” refers to a modified version of the page template that has been written to the content
database for a particular site.

Another change to be aware of is that Microsoft Office FrontPage 2003 has been renamed in
its new release as Microsoft Office SharePoint Designer 2007. Like the previous versions of
FrontPage, Office SharePoint Designer 2007 is targeted more toward users than developers.
However, it’s nonetheless a handy tool to have in your bag of tricks as a Windows SharePoint
Services developer.

Office SharePoint Designer 2007 provides a code editor and WYSIWYG designer for custom-
izing .aspx pages within Windows SharePoint Services 3.0 sites. You can also create new
pages within a Windows SharePoint Services site that have no corresponding page template
on the Web server. Office SharePoint Designer 2007 supports creating lists and document

Microsoft Windows SharePoint Services 3.0 5

libraries and even supplies a new wizard for creating custom workflows on a Windows Share-
Point Services site. Workflows in Windows SharePoint Services 3.0 will be discussed in more
depth later in this chapter.

Working with Master Pages

One of the most tedious aspects of customizing and branding sites in Windows SharePoint
Services 2.0 is creating a consistent look and feel across pages. This is because ASP.NET 1.1
does not provide any suitable page templating technique that can be used across the pages
within a Windows SharePoint Services 2.0 site. As a result, many developers and designers
have resorted to copying and pasting HTML layouts from page to page. As you can imagine,
this makes it very hard to customize and maintain a site whose layout requirements differ
from the out-of-the box experience with a standard Windows SharePoint Services 2.0 site.

As you're probably aware, ASP.NET 2.0 has introduced a powerful page templating feature
known as master pages. A master page is a template that allows you to define a standard page
layout for an entire site with elements such as a banner, navigation controls, and menus. The
pages that link to a master page are known as content pages.

The key concept is that each content page links to the master page to get the shared layout,
and then extends the master page by adding customized content to replaceable named
placeholders. For more information about how master pages work in ASP.NET, read
“Master Your Site Design with Visual Inheritance and Page Templates”
(http://msdn.microsoft.com/msdnmag/issues/04,/06,/ASPNET20MasterPages/ default.aspx).

Windows SharePoint Services 3.0 was designed from the ground up to embrace the master
page infrastructure of ASP.NET 2.0. Every Windows SharePoint Services 3.0 site is provi-
sioned with a special catalog known as the Master Page Gallery containing a master page
named default.master. This master page defines a common layout for every site’s home page
(Default.aspx) as well as all the standard Windows SharePoint Services form pages associated
with lists and document libraries (for example, Allltems.aspx, Newltem.aspx). The master
page layout includes standard Windows SharePoint Services menus and navigation controls.
An example of a page based on the standard layout defined by default. master is shown in
Figure 1-2 on the next page.

The definition of default. master includes several different named placeholders such as Place-
HolderPageTitle, PlaceHolderMain, and PlaceHolderLeftNavigation. This makes it relatively sim-
ple to create a new custom content page that has the same layout as the other pages in a site.
Take a look at the simplicity of the content page definition shown in the following code.

<%@ Page language="C#" MasterPageFile="~masterurl/default.master" %>

<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">
<h3>Welcome to customization with WSS Vv3</h3>
This is so much easier than it was in wsS v2!

</asp:Content>

6

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

2l Home - Litware Sales - Microsoft Intermet Duplorer

Be ER Yew Fgwodes Took el "

Qfack «) - (o] (2] (0| S search i Favorktes £ + b 2] - O 6
L T ————— = B s »
Litware Sales me B | H Send Fendback =
a Litware Sales

Homed] orlhenn Sdes | Soulliern Ssles

\iew Al Ske Corkent |

Armuncements -
Documents
5 mew Pinball Table in Libware Rec Room | 1w

= Sales Presentions Eris "

- Gl Proprssls

» Statements of work

LD Tmpurlant Clients AL Litware This Msth Links

» Calendar by Patricia Doyl

- Tt o | Liwasre CO2ratons

Litwaare Lxec Dashbosrd

® Sales Figures

o & Add new bk

- Sellg Tralegy

Calendar -

Sites

® Northem Seles Liware Al B8O

» Smphern Salos Honth Erd Sales Menting

Peeuple and Griups u Add new avent

& Recyrle Bin

[&] Do T T T T N ucaibae !

Figure 1-2 The standard layout of pages within a Windows SharePoint Services site is controlled
through default.master.

The content page definition shown in the code could not be any simpler. It does nothing other
than add a minimal fragment of HTML content inside PlaceHolderMain. However, it produces
the standard Windows SharePoint Services page layout with site icons, menus, and navigation
bars, as shown in Figure 1-3. Once you learn how to use the standard set of placeholders
defined in default. master, you can easily swap out standard Windows SharePoint Services ele-
ments like menus and navigation bars and replace them with your own ASP.NET controls and
Web Parts. This can be done for pages at the scope of a site, a site collection, or even on a farm-
wide basis.

Master pages and content pages are stored and loaded using the same concepts of page
templates and page customization discussed earlier. There are page templates defined for the
master page as well as for content pages that reside on the local file system of the front-end
Web server. Each site initially uses an uncustomized (that is, ghosted) version of the master
page template and content page templates. However, once a user customizes and saves one of
these pages for a particular site using a tool such as Office SharePoint Designer 2007, a cus-
tomized (unghosted) version is saved in the SQL Server database.

It’s possible to customize the master page for a site while leaving the content pages uncus-
tomized. Likewise, it’s possible to customize one or more content pages while leaving the
master page uncustomized. Furthermore, if you customize either the master page or a content
page and later wish to undo your changes, both the browser-based Ul of Windows SharePoint
Services 3.0 and Office SharePoint Designer 2007 provide simple menu commands to discard
customization changes from the SQL database and revert back to the original page template.

Microsoft Windows SharePoint Services 3.0 7

2l http:/ Mitwareserver] MyLustomPage. asps - Microsoft Intermet Euplorer

F ey T N T —— | Beo |k ™
Litwdre Sales welcome Brisn Cox = | My Site | My Links = | Help | Send Feedback =)
a Lirware Sales
Momea toethem Sales Southem Sales [“Site Actions - |
Wiews All ke Corkent . ; .

Documents Welcome to customization with WSS v3

o Sales Fresantions

» Chent Propessls

» Statemerts of Weork

Lists

+ Calsndar

. Tasks

* Sales Figuees

Disrussions

+ Seli Strategy

Sites

» Northerm Ssles

» Southern Sales

Prople and Groips

o Recycle Bin

=]

8| core | N Ld et P

Figure 1-3 It's easy to create custom content pages that use the standard Windows SharePoint
Services layout.

You might have noticed in the code on page 5 that the content page shown in Figure 1-3 links
to the master page using a special syntax in the form of ~masterurl/default.master. This is a
tokenized reference to a master page that can be changed programmatically on a site-wide
basis. You can accomplish this by acquiring an SPWeb reference to the current site and then
updating the MasterUrl property.

using System.Windows.Forms;
using Microsoft.SharePoint;

namespace MyHandyPageCustomizer {
public partial class frmmain : Form {
void cmdSetMasterurl_Click(object sender, EventArgs e) {
SPSite SiteCollection = new SPSite(@"http://Tocalhost™);
SPweb TopLevelSite = SiteCollection.Openweb();
TopLevelSite.MasterUrl = txtMasterurl.Text;
TopLevelSite.Update();
}
}
}

Note that each site has its own Master Page Gallery with a default. master and its own Master-
Url property. That means all the sites in a site collection do not automatically use the same
master. However, with the use of recursion it’s pretty easy to write some code against the Win-
dows SharePoint Services 3.0 object model to synchronize a top-level site and all the child
sites in a site collection to use the same master pages.

void cmdsynchronizechildren_cClick(object sender, EventArgs e) {
SPSite SiteCollection = new SPSite(@"http://Tocalhost");
SPweb TopLevelSite = SiteCollection.Openweb();

8 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

UpdateMasterurlRecursive(TopLevelSite, txtMasterurl.Text);
}

void UpdateMasterurlRecursive(SPweb site, string url) {
site.Masterurl = Url;
site.Update(Q);
foreach (SPweb child in site.webs) {
UpdateMasterurlRecursive(child, url);
}
}

In addition to ~masterurl/default. master, there is another dynamic token for master pages in
the form of ~masterurl/custom.master. This dynamic token works in conjunction with the
CustomMasterUrl property of a site and provides a secondary target master page that can be
redirected programmatically. There are also two static master page tokens that start with
either ~site or ~sitecollection. These static tokens allow you to hard-code a relative path to a
master page from either the root of the current site or the root of the current site collection.

Web Parts in Windows SharePoint Services 3.0

One of the most popular ways for developers to extend Windows SharePoint Services 2.0
sites has been to create custom Web Parts. Web Parts are great because they add the extra
dimensions of user customization and personalization. As a consequence, many teams at
Microsoft and third-party companies alike have built custom Windows SharePoint Services
2.0 solutions using Web Parts.

Because of the popularity of Web Parts in Windows SharePoint Services 2.0, Microsoft
decided to add support for custom Web Part development to ASP.NET 2.0. This strategy to
reach a wider audience of developers was accomplished by creating a new Web Part infra-
structure for ASP.NET 2.0 that is similar yet distinct from the Web Part infrastructure created
for Windows SharePoint Services 2.0.

Consequently, there are now two different styles of Web Parts. The older WSS-style Web
Parts depend on Microsoft.SharePoint.dll and must inherit from the WebPart base class
defined by the Windows SharePoint Services 2.0 teams in the Microsoft.SharePoint. Web-
PartPages namespace. The newer ASP-style Web Parts depend on System.Web.dll and must
inherit from a different base class also named WebPart defined by the ASP.NET 2.0 team in the
System.Web. UL WebControls. WebParts namespace.

It is an important design goal for Windows SharePoint Services 3.0 to run both the older
WSS-style Web Parts as well as the newer ASP-style Web Parts. This has been accomplished
by building the Windows SharePoint Services 3.0 support for Web Parts on top of the
ASP.NET Web Part infrastructure, and then making changes to Microsoft.SharePoint.dll so

Microsoft Windows SharePoint Services 3.0 9

that WSS-style Web Parts written for the Windows SharePoint Services 2.0 environment
would be forwardly compatible with the Windows SharePoint Services 3.0 run-time
environment.

To explain how Web Parts are loaded and run in Windows SharePoint Services 3.0, this sec-
tion discusses how the Windows SharePoint Services 3.0 architecture was redesigned to layer
on top of the ASP.NET 2.0 Web Part infrastructure. First, I will cover how Web Part Pages are
laid out in Windows SharePoint Services 3.0, and then I get into the details of how to develop
custom Web Parts for a Windows SharePoint Services 3.0 environment.

To run Web Parts in an ASP.NET 2.0 application, you must create an .aspx page that contains
exactly one instance of the WebPartManager control and one or more WebPartZone controls.
The WebPartManager control is responsible for serializing Web Part-related data as well as
storing and retrieving it from the tables in the ASP.NET services database.

The .aspx page serving as a Web Part Page can also contain Editor Parts, which allow users
to customize and personalize persistent Web Part properties. Web Part Pages can also
contain Catalog Parts, which allow users to add new Web Parts to zones. To acquire

more background about how the ASP.NET 2.0 Web Part infrastructure works, read
“ASP.NET 2.0: Personalize Your Portal with User Controls and Custom Web Parts”
(http://msdn.microsoft.com/msdnmag/issues,/05,/09,/WebParts/).

The Web Part infrastructure of Windows SharePoint Services 3.0 is built on a control named
SPWebPartManager that is derived from the ASPNET 2.0 WebPartManager control. The
SPWebPartManager control overrides the standard behavior of the WebPartManager control to
persist Web Part data inside the Windows SharePoint Services content database instead of the
ASP.NET services database. In most cases, you don’t have to worry about dealing directly with
the SPWebPartManager control because the one and only required instance is already defined
in the standard default. master page. When you create a content page that inherits from
default.master, the SPWebPartManager control is already there.

The other controls that appear on a typical Windows SharePoint Services 3.0 Web Part Page
are shown in Figure 1-4 on the next page and include Web Part zones, Editor Parts, and Cat-
alog Parts. Note that Web Part zones for a Web Part Page in Windows SharePoint Services 3.0
should be created using the WebPartZone control defined in the Microsoft.SharePoint. Web-
PartPages namespace and not the standard WebPartZone control from ASP.NET 2.0.

Instances of the WebPartZone control are usually defined in content pages. The following code
shows a simple example of creating a content page designed to act as Web Part Page in a Win-
dows SharePoint Services 3.0 site. As you can see, this .aspx file links to default. master just
like the example you saw earlier. However, it also explicitly inherits from the WebPartPage
base class and adds two WebPartZone controls into PlaceHolderMain.

10

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

SPWebPartManager
Web Part Zone (Left) Web Part Zone (Right) Editor Zone
Web Part 1 Web Part 3 Editor Part 1
Web Part 2 Web Part 4 Editor Part 2

Web Part 5 Catalog Zone

Catalog Part 1

Catalog Part 2

Figure 1-4 A Web Part Page in Windows SharePoint Services 3.0 requires the SPWebPartManager
control and one or more WebPartZone controls. If you create a content page that inherits from the
WebPartPage class, you also get the benefit of Windows SharePoint Services 3.0 supplying Editor
Parts and Catalog Parts.

<%@ Assembly Name="[Fully-qualified name for Microsoft.Sharepoint.d11]" %>

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.webPartPages.webPartPage" %>

<%@ Register Tagprefix="webPartpPages"
Namespace="Microsoft.SharepPoint.webPartpPages"
Assembly="[Fully-qualified name for Microsoft.Sharepoint.d11]" %>

<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">
<h3>My Custom web Part Page</h3>
<table border="5" cellpadding="5" cellspacing="0">
<tr>
<td valign="top">
<webPartPages:webPartzone runat="server" ID="Left"
Title="Left zone" />
</td>
<td valign="top">
<webPartPages:WebPartzone runat="server" ID="Right"
Title="Right Zone" />
</td>
</tr>
</table>
</asp:Content>

When you create a Web Part Page for a standard ASP.NET 2.0 application, you are required to
add logic that interacts with the WebPartManager control to manage the Web Part display
mode. Typically, you also need to explicitly add Editor Parts and Catalog Parts to the page
along with the HTML layout to accommodate them. Fortunately, you don’t have to do these
things when creating content pages for a Windows SharePoint Services 3.0 site. Instead, you

Microsoft Windows SharePoint Services 3.0 11

inherit from the WebPartPage class that’s defined in the Microsoft.SharePoint. WebPartPages
namespace and let it do all this work for you behind the scenes.

Figure 1-5 shows a screen shot of a custom Web Part Page in action. This is the display gener-
ated by the custom Web Part Page definition shown in the previous code when the user has
entered edit mode. Notice that the page allows users to add Web Parts into zones and to mod-
ify existing Web Parts using standard Editor Parts.

Bhipmg rcusmoneay MyCusonwebPartPage | Northarn Seks Southern Sales m
Veersivns Vou are st tse Shared Version of this page Lok Gt Mode
= = My Custom Web Part Page mnauRComIEE
ezl List Views =
= Sales Prseciicen:
! You can edit the current view or solect
= Cherk Proposal r o another view.
= Seatements of Work 43 A & Wels Part £l Add a Wel Par Selected View
Lists [ail iterns -
e Announcements - —
» Calerai it the current view
= Taks Mew Pinbiall Talde in 00 6 PM
Libware Rer oo Toolbar Type
DE LT by et Cone Surmmary Toulbar =

Discusssons

= Seling Steateqy + Appesrsnce

i a0
+ Layout

Sibes
Tmparkant Clieats AF 362006 247 P S
= Morthwemn Sabes Litware This Month Advanced
= Southerr Sales by Patricta Daovle

People and Lroups

2 Recyche Bin

canced | apply

Figure 1-5 Custom Web Part Pages that inherit from the WebPartPage class provide automatic
support for managing display mode as well as providing Editor Parts and Catalog Parts.

Developing Custom Web Parts

The preferred approach for creating Web Parts for Windows SharePoint Services 3.0 sites is to
create ASP-style Web Parts. At a minimum, this involves creating a class that inherits from the
WebPart base class defined in the System. Web. UL WebControls. WebParts namespace and over-
riding the RenderContents method. If you want to add persistent Web Part properties, you use
the same technique that is used in ASP.NET, as shown in the following code.

using System;
using System.web.UI;
using System.web.UI.webControls.webParts;

namespace LitwarewebParts {
public class SimplewebPart : webpPart {

// backing field for caching property value
protected string _ZipCode;

[// persistent web Part property
Personalizable(),
webBrowsable(true),
webDisplayName("zip Code™),
webDescription("used to track user zip code")

12 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

]
public string zipCode {
get{ return _zipCode; }
set{ value = _ZipCode; }
}

protected override void RenderContents(HtmlTextwriter writer) {
writer.write("You live at " + _zZipcode);
}
}
}

The Web Part definition shown in this code has no dependencies on Microsoft.SharePoint.dll
so it can be used in either a standard ASPNET application or a Windows SharePoint Services
3.0 site. In many cases, you will want to add a reference to Microsoft.SharePoint.dll with a
Web Part library project so the code behind your Web Parts can program against the Win-
dows SharePoint Services 3.0 object model.

In addition to supporting ASP-style Web Parts, Windows SharePoint Services 3.0 was also
designed to support Web Parts created for the Windows SharePoint Services 2.0 environ-
ment. These older WSS-style Web Parts inherit from the WebPart base class from
Microsoft.SharePoint.dll that is defined in the Microsoft. SharePoint. WebPartPages namespace.

The WebPart class in the Windows SharePoint Services 2.0 version of Microsoft.SharePoint.dll
was designed to inherit from the ASP.NET Control class as shown in Figure 1-6. However, you
can also see that the WebPart class in the Windows SharePoint Services 3.0 version of
Microsoft.SharePoint.dll has been modified to inherit from the ASP.NET WebPart class
instead. This versioning technique of changing a base class in a later version of an assembly is
known as rebasing. The rebasing of the WebPart base class in Microsoft.SharePoint.dll is one
of the keys to supporting older WSS-style Web Parts in a Windows SharePoint Services 3.0
environment.

If you look at the standard Web.conlfig file for a Windows SharePoint Services 3.0 Web appli-
cation, you'll see that it contains configuration elements to redirect references from the Win-
dows SharePoint Services 2.0 version of Microsoft.SharePoint.dll to the Windows SharePoint
Services 3.0 version. This redirection in combination with the rebasing of the Windows Share-
Point Services WebPart base class allows Web Part DLLs written for the Windows SharePoint
Services 2.0 environment to run in the Windows SharePoint Services 3.0 environment with-
out any need for recompilation.

If you decide to move a Windows SharePoint Services 2.0 Web Part project to Microsoft

Visual Studio 2005, you can continue to evolve your code using the same style as you have in
the past and things will still work. However, you have another option once you have moved to
Visual Studio 2005 and switched the project reference to Microsoft.SharePoint.dll to the new
Windows SharePoint Services 3.0 version. Since the ASP.NET WebPart base class is now a part

Microsoft Windows SharePoint Services 3.0 13

of the inheritance hierarchy, you can change some aspects of your WSS-style WebPart class as
if it were an ASP-style Web Part. This is known as a hybrid Web Part.

| Control | System.Web.dll
A f
| WebControl |
1
| Panel |
1
| Part |
1
| WebPart |
rF 3
| WebPart | | WebPart |
Microsoft.SharePoint.dll 2.0 Microsoft.SharePoint.dll 3.0

Figure 1-6 The Windows SharePoint Services WebPart class has been rebased on Windows Share-
Point Services 3.0 to inherit from the ASPNET WebPart class.

Enhancements in Content Storage

One criticism that developers have had with Windows SharePoint Services 2.0 is that several
valuable features supported with document libraries do not extend to lists. For example, doc-
ument libraries support versioning and events, but lists do not. To address this criticism, the
Windows SharePoint Services teams worked hard to extend the functionality of lists and
bring them up to par with document libraries. With Windows SharePoint Services 3.0, lists
support many of the same features as document libraries including versioning, events, and
folders. There are also some new features in Windows SharePoint Services 3.0 supported by
both lists and document libraries such as exposing data through automatic RSS feeds.

Performance with large lists and document libraries has also been another concern with Win-
dows SharePoint Services 2.0. For example, lists often start showing degraded performance
when the number of items exceeds 2000. Document libraries have similar performance con-
cerns. However, the rule of thumb for not exceeding 2000 documents applies to each folder
within a document library as opposed to the document library itself. Therefore, coming up
with a scheme to partition documents across multiple folders within a document library has
come to be a popular approach in Windows SharePoint Services 2.0 for dealing with a large
number of documents.

Windows SharePoint Services 3.0 introduces a new column indexing feature to alleviate some
of the performance problems just mentioned. From a list settings page or a document library
settings page, you can add an index to any column. Doing this does not actually create a

14

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

physical index in SQL Server. Instead, it creates a table with the integer ID of the list item or
document and the value of the indexed column. Windows SharePoint Services then uses this
table to improve the performance of data returned from views, especially a view with a filter
based on the indexed column.

Many developers have expressed a desire to work with Windows SharePoint Services fields at
a lower level to obtain more control over field rendering and validation. The Windows Share-
Point Services team responded by adding extensible field types in Windows SharePoint Ser-
vices 3.0. You can create an extensible field type by writing a class in C# or Visual Basic NET
that inherits from one of the built-in Windows SharePoint Services field types such as SPField-
Text, SPFieldNumber, or SPFieldUser. An extensible field type can also utilize an ASP.NET User
control that contains your favorite Web Controls. This allows you to use the same techniques
for control initialization and validation that you have used in ASP.NET applications.

Another nice innovation added to Windows SharePoint Services 3.0 is custom site columns.
A site column is a reusable definition that can be used across multiple lists. A site column
defines the name for a column, its underlying field type, and other characteristics such as its
default value, formatting, and validation. Once you have defined a site column, you can then
use it as you define the structure of your user-defined lists. An obvious advantage is that you
can update the site column in a single place and have that update affect all the lists where the
site column has been used.

A'site column is defined within the scope of a single site, yet it is visible to all child sites below
the site in which it has been defined. Therefore, you can create a site column that is usable
across an entire site collection by defining it in the top-level site.

One convenient technique made available with the introduction of site columns is the ability
to perform field lookups across sites. For example, you can create a site column in a top-level
site that performs a lookup on a list in the same site. Then you can create other lists within
child sites that use this site column to perform lookups on the list in the top-level site. There
was no way to accomplish this task in Windows SharePoint Services 2.0 short of writing cus-
tom code.

Imagine you want to store several different types of documents in the same document library.
For example, say you need to store customer presentations, customer proposals, and cus-
tomer reports. What if you want each of these document types to have its own unique set of
custom columns and its own unique event handlers? In Windows SharePoint Services 2.0,
you can add extra columns and event handlers only to the document library itself, which
always affects every document in that document library. Furthermore, a Windows SharePoint
Services 2.0 document library can have only one associated document template. Windows
SharePoint Services 3.0 introduces a powerful new storage mechanism known as content
types to solve this problem.

A content type is a flexible and reusable Windows SharePoint Services type that defines the
shape and behavior for an item in a list or a document in a document library. For example,

Microsoft Windows SharePoint Services 3.0 15

you can create a content type for a customer presentation document with a unique set of col-
umns, an event handler, and its own document template. You can create a second content
type for a customer proposal document with a different set of columns, a workflow, and a dif-
ferent document template. Then you can create a new document library and configure it to
support both of these content types. The introduction of content types is significant to Win-
dows SharePoint Services 3.0 because it provides an ability that did not exist in Windows
SharePoint Services 2.0 to deal with heterogeneous types of content in lists and document
libraries.

Event Handlers

While Windows SharePoint Services 2.0 provides support for event handlers, this support is
fairly minimal and has generated a number of complaints from the developer community.
Events in Windows SharePoint Services 2.0 are supported for document libraries but not for
lists. Furthermore, Windows SharePoint Services 2.0 supports only asynchronous events that
fire after the user’s action has been committed to the SQL Server database. This means there
is no way for the developer to cancel a user’s action inside an event handler.

Support for event handling improves in Windows SharePoint Services 3.0 by an order of mag-
nitude. In addition to supporting the asynchronous events that exist in Windows SharePoint
Services 2.0, there is now also support for synchronous events, which enables the developer

to cancel the user’s action. For example, you can stop a user from deleting a document once

it has been approved or from creating an order with an order date in the future. Furthermore,
events are supported on list items as well as documents in a document library.

You create an event handler by writing a custom class that inherits from one of the Windows
SharePoint Services receiver classes and overriding methods to handle events. For example,
to handle insert events for items in a list, you should create a class that inherits from the
SPItemEventReceiver class and override the ItemAdding method, as shown in the following code.

using System;
using Microsoft.SharePoint;

namespace Litware {
public class MyReceiver : SPItemEventReceiver {
public override void ItemAdding(SPItemEventProperties properties) {
SPweb web = properties.openweb();
Guid ListId = properties.ListId;
int ListItemId = properties.ListItemId;
SPListItem Orders = web.Lists[ListId].GetItemById(ListItemId);
// check to make sure order date is not day in future
DateTime OrderDate = Convert.ToDateTime(Orders["OrderDate"]);
if (orderDate.CompareTo(DateTime.Today) > 0) {
string msg = "You cannot enter orders for future days";
properties.ErrorMessage = msg;
properties.Cancel = true;
return;

16

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

3
}
}
}

Now that you have seen how to write the code for a simple event handler, you'll learn how to
bind it to a particular list or document library. You can accomplish this either through writing
code against the object model or by defining an event receiver in a Windows SharePoint Ser-
vices feature. For example, you can bind this event receiver to a list using the following code.

SPList Tist = web.Lists["Orders"];

Tist.EventReceivers.Add(SPEventReceiverType.ItemAdding,
"[Fully-qualified Assembly name]",
"Litware.MyReceiver");

Windows SharePoint Services receiver classes use a naming convention for overridable meth-
ods that differentiates synchronous and asynchronous events. For example, the ItemAdding
event is a cancellable, synchronous event that fires before the change is made to the content
database. These synchronous events provide a great way to validate column values as shown
in the preceding event handler code on page 15.

There is a complementary asynchronous event named ItemAdded that occurs after the change
has been written to the content database. Unlike synchronous events, asynchronous events
do not support cancelling the user’s actions. Instead they provide the means to perform a
required operation after a change has been made to a document or list item such as assigning
the value of a calculated column or sending an e-mail notification.

In addition to supporting events on list items and documents, Windows SharePoint Services
3.0 supports many other types of new events that were not available in Windows SharePoint
Services 2.0. There are list events that fire when someone changes a list definition. For exam-
ple, you can cancel the user’s action whenever someone tries to remove or rename a column
in one of your custom lists. There are also events that fire whenever someone deletes or moves
a site or an entire site collection.

Workflows in Windows SharePoint Services 3.0

Workflow applications have been getting quite a bit of attention at Microsoft lately. The
WinFX run-time components to be released in fall 2006, named the Windows Workflow
Foundation (WinWF), add a complete infrastructure for building workflow-style applica-
tions. The WinWF infrastructure includes a workflow engine, pluggable components to per-
sist workflow state, and a Visual Studio designer that makes it easy to create custom
workflows by dragging components known as activities onto a workflow design surface.

Windows SharePoint Services 3.0 builds on WinWF to provide a foundation for attaching
business logic to list items and documents. Windows SharePoint Services 3.0 extended the
basic workflow model of WinFX by associating a task list and history list with each workflow.

Microsoft Windows SharePoint Services 3.0 17

Windows SharePoint Services 3.0’s extensions to WinFX add a degree of responsibility and
accountability to workflows that are human-oriented in nature such as a workflow for review-
ing or approving a document.

Both Windows SharePoint Services 3.0 and Office SharePoint Server 2007 ship with work-
flows that are installed and ready to use out of the box. Windows SharePoint Services 3.0
includes some simple routing workflows for things such as moderation and approval. Office
SharePoint Server 2007 supplies workflows that are more complex and are used to support
features such as its Web Content Management approval process.

The creation of custom workflows represents an obvious extensibility point for developers
creating business solutions with Windows SharePoint Services 3.0 and Office SharePoint
Server 2007. In addition to the standard support of the Visual Studio Extensions for WinWF,
the Office team also plans to ship a Windows SharePoint Services—specific workflow SDK and
a workflow starter kit including Visual Studio project templates for creating custom work-
flows targeted at Windows SharePoint Services 3.0 sites.

Office SharePoint Designer 2007 also provides support for creating custom workflows in
Windows SharePoint Services 3.0 sites. This support is designed more for the power user than
developers because it provides a wizard to attach ad hoc business logic to list items and doc-
uments in a production Windows SharePoint Services 3.0 site.

Site Definitions, Features, and Solutions

Developers and companies that have used Windows SharePoint Services 2.0 as a platform to
build business solutions have found that working with low-level site definitions provides the
greatest amount of control and reusability. A site definition is a directory on the front-end
Web server containing XML files and .aspx page templates that define a blueprint for a site,
including list schemas and page layouts. The XML-based language that is used inside many
site definition files is called Collaborative Application Markup Language (CAML).

Developers who have worked with Windows SharePoint Services 2.0 site definitions have
voiced several criticisms. First, the XML files inside Windows SharePoint Services 2.0 site def-
initions are poorly factored, making them unwieldy. Second, Microsoft doesn’t support evolv-
ing a site definition in production once it has already been used to create sites. That means
there isn’t a supported technique for site definitions to be used to add functionality to an
existing Windows SharePoint Services 2.0 site. Third, site definitions and the custom assem-
blies they depend on create deployment issues, because the files have to be pushed out to
each front-end Web server in the farm without any assistance from the Windows SharePoint
Services infrastructure. Finally, Windows SharePoint Services 2.0 provides no means to local-
ize a site definition. This has been frustrating for companies that have wanted to internation-
alize the business solutions they have built on top of Windows SharePoint Services 2.0.

18

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The first significant enhancement in this area is the introduction of features. A feature is like a
site definition in that it is a directory containing CAML-based XML files and page templates.
However, features offer a much more modular approach because they are not required to
define the blueprint for an entire site. Instead, a simple feature can define a single site element
such as a custom list definition or a custom menu command that is to be displayed in one of
the standard Windows SharePoint Services menus.

A very attractive aspect of features is that they can be activated on an existing site. For exam-
ple, you can create a feature that defines a custom list type, an instance of that list type, and an
event handler or a workflow on that list instance. Once the feature has been installed, it can be
activated in any site within a farm. Feature activation can be accomplished through the Win-
dows SharePoint Services user interface, from the command line, or through custom code
written against the Windows SharePoint Services object model. Once the feature has been
activated, the site will have your new custom list and any behavior you want to attach to it. The
key point is that features now allow you to add new types, storage, and functionality to exist-
ing sites.

Features also serve to make developing site definitions less unwieldy. In Windows SharePoint
Services 2.0, each list definition had to be defined inside the context of a site definition. Now
every list definition can be factored out into its own feature. Site definitions are now easier to
create, as they can be composed using feature references. This is the approach that the Win-
dows SharePoint Services team has taken with all the list types that ship as part of their collab-
oration services.

Windows SharePoint Services 3.0 introduces a new deployment mechanism called a solution.
A Windows SharePoint Services solution is similar to Web Part packages from Windows
SharePoint Services 2.0 in the sense that it is an aggregate CAB file containing XML instruc-
tions and files that need to be deployed on each front-end Web server. However, Windows
SharePoint Services solutions go beyond Web Part packages to support the deployment of
features, site definitions, and related assemblies used for event handlers and workf{lows.

Windows SharePoint Services 3.0 support for solutions also assists in pushing deployment
files to each Web server in a farm. An administrator adds a solution to a Windows SharePoint
Services farm, which copies the solution CAB file into the configuration database. Next, the
administrator runs a command to deploy the solution, at which time Windows SharePoint
Services starts a timer job to push the solution CAB file out to each front-end Web server and
install it.

One of the most welcome changes in Windows SharePoint Services 3.0 for developers is the
new support for localization. Windows SharePoint Services 3.0 support for localization has
been built on the localization infrastructure of ASPNET 2.0. It is now possible (and recom-
mended) to create site definitions and features in a language-neutral fashion and to maintain
string literals in .resx files. Within the XML files and .aspx page template files of a feature or

Microsoft Windows SharePoint Services 3.0 19

site definition, you can acquire the value for a named string that has been localized into a .resx
file using standard ASP.NET syntax.

<%$Resources:Litware,MyString%>

Internet-Style Security

Authentication in Windows SharePoint Services 2.0 is based on Windows accounts and their
associated Security IDs (SIDs). In a practical sense, this means that Windows SharePoint
Services 2.0 is tightly coupled with Active Directory when used in anything but the smallest
deployments. This dependency hasn’t been a problem for companies that have already
deployed Active Directory when they started using Windows SharePoint Services 2.0 and
Windows SharePoint Portal Server 2003 for building Intranet-based solutions.

Using Windows SharePoint Services 2.0 and Windows SharePoint Portal Server 2003 has
been more challenging for companies building extranet-based solutions. The tight coupling of
Windows SharePoint Services 2.0 to Active Directory forces companies to create and maintain
domain accounts for external users such as vendors and customers. It can also be said that
Windows SharePoint Services 2.0 has gained a reputation as a product that isn’t appropriate
for Internet-facing sites because most companies refuse to create Active Directory accounts for
unknown users coming to the site for the first time from across the Internet.

All this changes with Windows SharePoint Services 3.0 because authentication has been rede-
signed on top of the new authentication provider infrastructure introduced with ASP.NET 2.0.
If you don’t want to maintain user accounts for Windows SharePoint Services 3.0 and Office
SharePoint Server 2007 sites inside Active Directory, you can build or acquire an ASPNET
authentication provider that's been designed to store and manage user accounts in a different
identity repository.

For example, ASPNET 2.0 ships with the forms authentication provider that allows you to
maintain user accounts in a SQL Server database. This authentication provider can be config-
ured for use in a Windows SharePoint Services 3.0 site. With little effort on your part, you can
put a Windows SharePoint Services 3.0 site on the Internet that allows unknown users to reg-
ister themselves as members. ASP.NET 2.0 provides you with convenient support for creating
and maintaining user accounts and even allows users to change and reset their passwords.

Summary

This chapter covered many of the significant advancements to Windows SharePoint Services
3.0 that were targeted at developers. Once you to begin to dig in and work with Windows
SharePoint Services 3.0, you will discover there are even more that could not be covered here.
However, it should be clear that the Windows SharePoint Services 3.0 team has done a great
job of listening to the criticism and feedback from developers about Windows SharePoint
Services 2.0 and responding with some really significant advancements.

20

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The next chapter takes a similar pass through new the developer-centric features introduced
in Office SharePoint Server 2007. As you will see, there is a great deal of synergy between Win-
dows SharePoint Services 3.0 and Office SharePoint Server 2007. The more you know about
Windows SharePoint Services 3.0 development, the more power and control you will have
when building custom solutions of top of Office SharePoint Server 2007.

Chapter 2

Building Solutions with Office
SharePoint Server 2007

By Ted Pattison
With permissions to reprint from MSDN Magazine

In this chapter:
Building Office SharePoint Server

2007 Portal Sitesttt e e 23
Web Content Managementc.oiiiiiiiiiiiiii i, 30
Business Intelligence Features i, 35
Managing Documents and Business Processesccovviun... 37
Enterprise Content Management i ... 39
SUMIMaAIY .« it e e e et ettt et e et 40

Microsoft Office SharePoint Server 2007 provides portal and search features that represent
the next generation of Microsoft Office SharePoint Portal Server 2003. However, Office Share-
Point Server 2007 is much more than that. The Office team has made significant investments
in many other areas to give Office SharePoint Server 2007 extra dimensions in Web content
management, business intelligence, business process management, and enterprise content
management, as shown in Figure 2-1 on the next page. This chapter describes the basic archi-
tecture of Office SharePoint Server 2007 and explores the various opportunities for develop-
ers building portal sites and business solutions.

One of the most appealing aspects for developers is that Office SharePoint Server 2007 is built
on top of Windows SharePoint Services 3.0 and ASP.NET 2.0. Office SharePoint Server 2007
portal sites are created using Windows SharePoint Services features and site definitions, and
familiar ASP.NET building blocks such as master pages and Web Parts. This means that Office
SharePoint Server 2007 solutions can easily be extended with ASP.NET components such as
server-side controls and custom Web Parts as well as custom Windows SharePoint Services
features containing things like custom list definitions, document libraries, event handlers, and
workflows.

It’s important to understand the extent of the synergy that exists between Office SharePoint
Server 2007 and Windows SharePoint Services 3.0. Many of the new features in Office

21

22

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

SharePoint Server 2007 are made possible by new Windows SharePoint Services innovations
described in Chapter 1, such as master page integration, content types, versioning, and
workflows.

Microsoft Office SharePoint Server 2007

Portal Features and Web Content Business Business Process |[|Enterprise Content
Search Services Management Intelligence Management Management

User Profiles Content Publishing Excel Services Open File Formats Information Policies

Audience Targeting Page Layouts Report Center Document Generation || IRM Support

Personal Sites
Office Server Search
Business Data Catalog

Document Converters
Variations
Output Caching

SQL Reporting Services
SQL Analysis Services
Dashboards and KPIs

Office InfoPath 2007
Office Forms Server

Records Repository

Single Sign-On

| Shared Service Provider (SSP) |

Windows SharePoint Services 3.0

ASP.NET 2.0

Windows Server 2003

Figure 2-1 Office SharePoint Server 2007 builds its functionality on top of ASPNET 2.0 and Win-
dows SharePoint Services 3.0.

As a developer, it’s also important to set your expectations accordingly about what you’ll need
to do to get an Office SharePoint Server 2007 solution up and running. Unlike many other
development projects, you don’t usually start by firing up Microsoft Visual Studio. In some
scenarios you can get an entire business solution up and running without ever writing any
custom code. This is quite different from developing directly on the ASPNET platform by
itself where you need Visual Studio to put together the simplest site with a couple of pages
and a navigation infrastructure.

The Office team promotes a philosophy in which you begin building an Office SharePoint
Server 2007 business solution with an “assemble and configure” mentality. Once you deter-
mine the Office SharePoint Server 2007 features and services you want to utilize, you create a
new portal site and do as much as possible by configuring services through browser-based
administrative pages. If you are going to succeed at building Office SharePoint Server 2007
solutions, it’s important to embrace this “assemble and configure” mindset to get as far as you
can using out-of-the-box features.

However, there will inevitably be times when you determine that the out-of-the-box experi-
ence provided by Office SharePoint Server 2007 doesn’t cut it for a particular business solu-
tion. Then you can put your developer’s hat back on and crank up Visual Studio 2005 to
create many of the custom component types that are discussed throughout this chapter.

Building Solutions with Office SharePoint Server 2007 23

Building Office SharePoint Server 2007 Portal Sites

Companies and developers can expect to find all the portal features in Office SharePoint
Server 2007 that they have become accustomed to in SharePoint Portal Server 2003, such as
user profiles, audience targeting, personal sites (that is, My Sites), search, and single sign-on.
Office SharePoint Server 2007 also includes several new portal features, like the Business
Data Catalog.

If you have a background in building portal solutions on top of SharePoint Portal Server 2003,
you will find that Office SharePoint Server 2007 is different in many ways. For example,
SharePoint Portal Server provides its own separate administrative Web application for provi-
sioning and configuring portal sites. Office SharePoint Server 2007, on the other hand,
doesn’t require its own separate administrative application. Instead, Office SharePoint Server
2007 integrates its administrative features and configuration links into the Windows Share-
Point Services Central Administration application using the light-up features of Windows
SharePoint Services 3.0.

Office SharePoint Server 2007 is also quite different from SharePoint Portal Server under the
hood. SharePoint Portal Server builds its portal site infrastructure around the concepts of
“areas” and “listings.” However, areas in SharePoint Portal Server 2003 represent a strange
and undocumented layer on top of Windows SharePoint Services 2.0 that has proved hard for
developers to extend using standard Windows SharePoint Services development techniques.
The concepts of areas and listings from SharePoint Portal Server 2003 have been eliminated in
Office SharePoint Server 2007 and replaced with a portal infrastructure that was designed and
implemented much more in line with Windows SharePoint Services best practices.

An Office SharePoint Server 2007 portal site is a Windows SharePoint Services site collection
containing a top-level site along with several child sites below it. Unlike SharePoint Portal
Server 2003, a portal site does not have to be created at the root of an IIS Web site. This pro-
vides more flexibility because you can host hundreds of portal sites inside a single IIS Web
site. Remember that in Windows SharePoint Services 3.0 terminology, an IIS Web site
extended with Windows SharePoint Services functionality is known as a Web application.

You create a new Office SharePoint Server 2007 portal site the same way that you create any
other new site collection through the Windows SharePoint Services Central Administration
application, the Stsadm.exe command-line utility, or through custom code. When creating a
new Office SharePoint Server 2007 portal site, you use one of the portal site templates created
by the Office team. Here are some examples of site templates that can be used to create a new
Office SharePoint Server 2007 portal site:

m Corporate Internet Site
m Internet Presence Web Site

m Publishing Site

24

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The Office team has provided new site templates to create child sites within a portal site col-
lection such as Report Center and Search Center. The Office team has also evolved some of
the older SharePoint Portal Server 2003 site templates for use within Office SharePoint Server
2007 portal site collections such as News, Topics, and the Sites Directory.

Shared Service Providers

The architecture of Office SharePoint Server 2007 is based on Shared Service Providers
(SSPs). An SSP represents a set of services that can be configured a single time and shared
across many different Office SharePoint Server 2007 portal sites and Windows SharePoint
Services sites. Understanding SSPs is critical to being able to take advantage of Office Share-
Point Server 2007 features and services.

After you have finished installing Office SharePoint Server 2007 in a farm, you must explicitly
create and configure one or more SSPs to take advantage of Office SharePoint Server 2007
features such as user profiles, audiences, personal sites, Excel Services, the Business Data Cat-
alog, and search. After you have initially created an SSP through the Windows SharePoint Ser-
vices Central Administration pages, you can then configure the individual Office SharePoint
Server 2007 services you need from the main SSP administration page shown in Figure 2-2.

P : _
L] LitwareSharedServices

e | e ALTNS <)
-\.) Home

Wiew 4l Sie Conrkent

Back Lo Central , Audieners, and

Administration

shared Servic s

Business Data Catalog

Figure 2-2 An SSP allows you to configure Office SharePoint Server 2007 services.

This new SSP architecture was designed to replace the Shared Services infrastructure of Share-
Point Portal Server 2003 to provide greater flexibility in deployment and configuration. For
example, it’s possible to create two different SSPs within the same farm and configure them
differently, as shown in Figure 2-3.

Building Solutions with Office SharePoint Server 2007 25

Web Application 1 Web Application 2

Portal 1 m Portal 3 Team Site 1 | Team Site 2

Shared Service Provider A Shared Service Provider B
User Profiles, Personal Sites, Search Search, Business Data Catalog, Excel Services

Farm

Figure 2-3 Each Web application is associated with a Shared Service Provider.

Each Web application in an Office SharePoint Server 2007 farm along with its Office Share-
Point Server 2007 portal sites and Windows SharePoint Services sites is associated with
exactly one SSP. One Web application can be associated with one SSP while a different Web
application can be associated with a second SSP. The search results from within one portal
site might be very different from the search results within another portal site if they are asso-
ciated with different SSPs that have been configured to have different content sources.

User Profiles

User profiles are an Office SharePoint Server 2007 feature that has been carried over from
SharePoint Portal Server 2003 to track information about the users within an organization.
User profiles allow users to discover and learn more about the people they work with and to
see how everyone fits into their company’s organization chart. User profiles also provide the
foundation for other Office SharePoint Server 2007 features such as audience targeting and
personal sites.

Once you have configured the user profile service through an SSP, Office SharePoint Server
2007 stores the data for user profiles in Microsoft SQL Server. Office SharePoint Server 2007
makes it possible to import and synchronize user profile data from external sources such as
an Active Directory domain as well as other LDAP-based identity management systems.

Office SharePoint Server 2007 provides several standard pages and Web Parts out of the box
to display the information tracked within user profiles. Figure 2-4 on the next page shows an
example of how Office SharePoint Server 2007 displays a graphic representation of an organi-
zation chart on a personal site from user data imported from Active Directory. Note also that
the Office SharePoint Server 2007 object model provides an API to read and modify user pro-
file data from components such as Web Parts, event handlers, and custom workflows.

As with SharePoint Portal Server 2003, user profiles can be extended with custom properties
to track user data for domain-specific business solutions. However, Office SharePoint Server
2007 enhances custom properties by allowing for multivalued properties and properties
defined with open or closed vocabularies.

26 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Organization Hierarchy

Patricia Dovle,

Pregident and Chief Executive Officer
4 Chris Prestan, Chief Technology Gfficer
4+ Andreas Berglund,

Director of Computer Services
4 Luis Bonifaz,

Technalogy Sclutions Manager

Brian Cox, Solutions Developer

David Yalovsky, Solutions Developer

Sandeep Katyal, Solutions Developer

Figure 2-4 A user profile can be used to show a company’s organization chart.

Audience targeting is another valuable Office SharePoint Server 2007 feature that has been
carried over from SharePoint Portal Server 2003. You can define an audience by specifying cri-
teria to define a subset of users. For example, you can create a Sales audience that is defined
as all the users who are members of an Active Directory group named Sales. You could define
another audience named Carpool as the set of users with the custom Carpool property’s value
set to True.

Once you have defined an audience, you can then configure a Web Part to conditionally dis-
play its content only when the current user is a member of that audience. This makes it
straightforward to target content to those users who need it while hiding that content from
users who would find it distracting. Audience targeting is also a great way to show privileged
users links to secured pages while hiding these links from unprivileged users who would
receive Access Denied errors when attempting to follow them.

One more feature carried over from SharePoint Portal Server 2003 that is built on top of user
profiles is personal sites. When personal sites are enabled within an SSP, Office SharePoint
Server 2007 will provide each user with their own personal site (that is, a My Site) that is pro-
visioned on demand the first time it is used. Personal sites enable users to edit certain aspects
of their user profile to better describe themselves to their coworkers. A personal site has a pub-
lic aspect, which makes it easy for a user to share data and documents with other users within
the organization. A personal site also has a private aspect, allowing a user to store data and
documents that are not meant to be shared.

Office SharePoint Server 2007 Search

Many people feel that the search feature is one of the most valuable aspects of Office Share-
Point Portal Server 2003. Office SharePoint Portal Server 2003 Search makes it possible to
search through not only content and documents within Office SharePoint Portal Server portal
sites and Windows SharePoint Services team sites but also through external content such as
Windows file shares, public Microsoft Exchange Server folders, and standard Web sites.
Office SharePoint Server 2007 Search was designed to give you these same features in a man-
ner that is more performance-oriented and easier to configure.

With the previous version of SharePoint Technologies, Windows SharePoint Services 2.0 and
SharePoint Portal Server 2003 each used a different underlying infrastructure to support

Building Solutions with Office SharePoint Server 2007 27

indexing and search. This created problems as companies upgraded from Windows Share-
Point Services 2.0 to SharePoint Portal Server 2003. These upgrade problems have been
addressed, as the Windows SharePoint Services Search Service and Office SharePoint Server
Search Service are now based on the same underlying indexing and search infrastructure,
which is an evolved version of what was provided by SharePoint Portal Server 2003.

So what are the most significant differences between Office SharePoint Server 2007 Search
and Windows SharePoint Services 3.0 Search? Office SharePoint Server 2007 Search makes it
possible to search external content across the network such as Windows file shares and BDC
data while Windows SharePoint Services 3.0 Search is limited to searching through content
and documents within the current site collection. Also, Office SharePoint Server 2007 Search
can be configured to run the indexing service and search service on different servers within a
farm to increase scalability and throughput. Windows SharePoint Services 3.0 Search is lim-
ited to running the indexing service and search service on the same physical server.

Configuring Office SharePoint Server 2007 Search is an administrative exercise in creating
and configuring content sources within the scope of a particular SSP. A content source defines
a set of searchable content. When you create a new SSP, Office SharePoint Server 2007 auto-
matically creates a content source to search through user profile data as well as the content
and documents within Office SharePoint Server 2007 portal sites and Windows SharePoint
Services sites within the Web applications associated with the current SSP. However, the SSP
administrator must explicitly create and configure additional content sources to support
building indexes and searching through external content such as documents in a Windows
file share or content from a public Web site.

Windows SharePoint Services 3.0 and Office SharePoint Server 2007 provide a rich user inter-
face for searching by adding search boxes and search result pages to each Windows Share-
Point Services site and each Office SharePoint Server 2007 portal site. Office SharePoint
Server 2007 goes even further to supply a dedicated child site named Search Center within a
portal site collection that provides a specialized user interface for searching, as shown in Fig-
ure 2-5 on the next page.

From what you have just seen, you could conclude that companies can take full advantage of
Office SharePoint Server 2007 Search facilities without ever writing any custom code. How-
ever, Office SharePoint Server 2007 makes it possible for you customize how search results
look by modifying the XSLT transforms it uses to display search results. Office SharePoint
Server 2007 also exposes its search engine through a programmable API that enables devel-
opers to extend either the Windows SharePoint Services 3.0 Search Service or the Office
SharePoint Server 2007 Search Service using custom code.

For example, you can write a server-side component such as a Web Part or a custom workflow
that queries the Office SharePoint Server 2007 Search Service programmatically and deals
with the returned search results in a customized fashion. Likewise, you can create a Windows

28

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Forms application that queries the Office SharePoint Server 2007 Search Service from across
the network through a built-in set of Web Services that ship as part of Office SharePoint
Server 2007.

Al Sites Peaple

IA\I Content | IBrlan Coe Advanced Search

Results by Relevance | Yiew by Modified Date | & Alert Me | [‘ERSS Feed
Results 1-10 of 12, Your search took 0.36 seconds, 1 2 Mext=

Brian Cox
Solutions Developer, IT {425) 555-0129

Brian Cox
Brian Cox, Solutions Developer ... Brian Cox ... Brian Cox
https/flibwareserver1:900/personal/brianc - Author: Brian Cox - Modified: April 06, 2006

=] DispForm.asps

1 Brian Cox Profile Pictures Profile Pictures 0 1.0 1 Profile Pictures personalfbrianc/Shared Pictures/Profile Pictures Brian Cox
ST5_ListItem_PictureLibrary 2409aa53-2827-4F9a-5865-ef6ed 1 546409

http:/flibwareserver1: 900 personal/brianc/Shared Pickures/Forms/CispForm, asps? 10=1&RootFolder={personal/brianciShared
- &uthor: Brian Cox - Modified: April 06, 2006

| itware software Development Guidelines
Litware Software Development Guid & lines

https/flitwareserver1fDocument Library/Libware Software Development Guidelines,docx - 17KE - Author: Brian Cox - Modified:
2006

= Mewy Pinball Table in Litware Rec Room

2 Brian Cox 1.0 Mew Pinball Table in Libware Rec Room Mew Pinball Table in Litware Rec Room We are pleased to announce tha
Management has sprung For a refurbished Pinball Table. We certainly hope it boosts morale and increases productivity, Litware :
STS_LiskItem_Announcements

httpe/flitwareserverl fsitesiSales Listsfannouncements/DispForm. aspx?ID=2 - Author: Brian Cox - Modified: March 09, 2006

Figure 2-5 Search Center provides a sophisticated Ul for user-initiated searches.

The Business Data Catalog

The Business Data Catalog (BDC) is a new innovative framework created by the Office team to
provide Office SharePoint Server 2007 portal sites and standard Windows SharePoint Ser-
vices 3.0 sites with integration into back-end line-of-business systems such as those created by
SAP, Siebel, and PeopleSoft. The BDC additionally provides the means to integrate data
directly from database systems such as SQL Server and Oracle.

While SharePoint Portal Server 2003 makes it possible to integrate portal sites with back-end
systems, it requires you to write custom code to manage connections and retrieve the data you
need to display. Furthermore, the code you must write changes significantly as you switch
between back-end systems from vendors such as SAP and PeopleSoft. The Office team
designed the BDC to make things much easier.

The BDC enables you to integrate data from back-end systems without requiring you to write
custom code for managing connections and retrieving data. The design of the BDC is based
on standardized metadata that describes the location and format of a back-end system and
data entities defined inside. The BDC also provides an execution component capable of read-
ing BDC metadata that is able to retrieve external data from any back-end system and return
it to Office SharePoint Server 2007 in a standard format.

Building Solutions with Office SharePoint Server 2007 29

Figure 2-6 shows the high-level architecture of the BDC. As you can see, connectivity between
the BDC and traditional line-of-business systems is achieved using standard Web services.
Connectivity between the BDC and database systems is achieved using ADO.NET providers.

BDC . . Custom
Web Parts Lists Search User Profiles Components

Business Data Catalog 4>
BDC
Metadata

| WS Proxy | | ADO.NET |
y 3 y 3
v v

| Web Service |

Database System
SQL Server, Oracle, etc.

Line-of-Business System
SAP, Siebel, PeopleSoft, etc.

Figure 2-6 The BDC provides seamless access to data in back-end line-of-business systems and
databases.

The first step in using the BDCis to author an XML file containing the metadata to connect to
a back-end system. When you author metadata for the BDC, you define the data you want to
retrieve in terms of entities. For example, you might define a customer as one entity and an
invoice as another entity. The BDC metadata format also lets you define associations between
entities in scenarios when there is a one-to-many relationship such as one that might exist
between customers and invoices.

The definition of a BDC entity contains identifiers, properties, and methods. The methods
define how the BDC interacts with entry points exposed by the back-end system. For a back-
end system accessible through Web services, methods define the names of the Web service
operations and the parameters required to call them. For a back-end system that is a database
such as SQL Server or Oracle, methods define the names of stored procedure and SQL
statements.

Entities can also define actions. A BDC action is used to dynamically parse together the URL
behind a hyperlink that allows a user to navigate from a page in an Office SharePoint Server
2007 portal site to another location. For example, an action defined on a BDC customer entity
could be written to redirect users to a Web page in an SAP application that supports updates
to customer information. Actions were designed to support scenarios where the BDC is used
to display read-only data and to bootstrap the user into another application when updating or
some other type of external operation is required.

30

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Once you have authored or acquired the XML file with the required BDC metadata for a back-
end system, you must import it into the BDC within the scope of a particular SSP to create
what is known as a “BDC application.” You can accomplish this importing process using the
SSP administrative Web pages. You can alternatively import an XML file with BDC metadata
using custom code written against the BDC administrative object model.

Once you have imported the required metadata to create a BDC application, there are several
out-of-the-box techniques to leverage and display its data within a portal site. Office Share-
Point Server 2007 ships with a set of Business Web Parts that can be quickly added to pages
to query and display BDC data. You can also add new columns to lists and document libraries
based on an entity defined in a BDC application. A user editing a column based on a BDC
entity is automatically presented with a user interface making it possible to query the back-
end system.

The BDC has been designed to integrate with the Office SharePoint Server 2007 Search Ser-
vice. For example, a back-end system and its entities can be defined as a content source so that
the Office SharePoint Server 2007 indexing service will crawl through its data and build
indexes for the Office SharePoint Server 2007 search engine. This becomes a powerful feature
because it allows users to discover data from back-end systems about things like customers
and invoices when running standard search queries through both Office SharePoint Server
2007 portal sites and standard Windows SharePoint Services 3.0 sites.

The BDC provides convenient features to map data from a BDC entity to properties in a user
profile and to synchronize this data at periodic intervals. For example, if your company has an
SAP system that contains employee data you like to include in user profiles, such as phone
numbers or social security numbers, you can configure this type of data importing without
writing any custom code.

Finally, BDC entities can also be accessed programmatically using custom code written
against the BDC object model. This makes it possible to write custom Web Parts as well as
other server-side components and services that run their own BDC queries. One nice aspect of
writing code to query BDC entities is that you don’t have to worry about managing connec-
tions or whether you are accessing the back-end system through Web services or ADO.NET.
All those details are abstracted away by BDC metadata and the BDC execution engine.

Web Content Management

Over the past few years, Microsoft’s strategy for publishing content on the Web has been
based on Microsoft Content Management Server 2002 (CMS). CMS provides a structured way
for content authors to add content to a company’s public Web site using professionally for-
matted layout pages. CMS also provides a formalized scheme where a privileged user must
approve any page modification before it can be seen by the Web site’s visitors.

Building Solutions with Office SharePoint Server 2007 31

In the past, many Microsoft customers have had to choose between CMS and SharePoint
Portal Server 2003. While there is a connector that provides a certain degree of integration
between CMS and SharePoint Portal Server 2003, these two products are built on very differ-
ent architectures. This has resulted in frustration because you cannot build a site that fully
benefits from both the CMS Web content management features and the SharePoint Portal
Server 2003 portal features.

Microsoft made an important decision to discontinue evolving CMS as a stand-alone product
and to migrate CMS Web content management features and the CMS customer base over to
Office SharePoint Server 2007. This will obviously have a significant impact on customers
who have already become familiar with CMS development. However, the good news is that
Microsoft’s Web content management strategy is now built on Windows SharePoint Services
3.0 and Office SharePoint Server 2007. That means you can mix Microsoft’s best-of-breed
Web content management features with its portal features in an Office SharePoint Server
2007 portal site.

If you have worked with CMS in the past, it’s important to note that the CMS concepts of
channels and postings are not used in the Office SharePoint Server 2007 Web content man-
agement infrastructure. Instead, the infrastructure has been designed using basic Windows
SharePoint Services 3.0 building blocks such as child sites, page templates, content types, doc-
ument libraries, and security groups. This newer approach lends itself to building custom
solutions that extend the basic Web content management infrastructure using standard Win-
dows SharePoint Services components such as custom event handlers and workflows.

When you need to brand an Office SharePoint Server 2007 portal site, you can modify a single
ASP.NET master page to customize the basic look and feel of the entire Web site just as you
would in a standard Windows SharePoint Services 3.0 site collection. However, Office Share-
Point Server 2007 extends Windows SharePoint Services 3.0 by introducing a publishing
scheme based on page layouts. A page layout provides a structured approach to collecting
content from content authors and displaying it on a page within a portal site.

Examples of some of the page layouts provided by Office SharePoint Server 2007 out of the
box include welcome pages, articles, and news items. An example of a page layout as seen by
a content author in editing mode is shown in Figure 2-7 on the next page. As you can see, page
layouts are designed to make it fairly straightforward to add and modify content from within
the browser. You might also notice in Figure 2-7 that Office SharePoint Server 2007 provides
a toolbar within the browser to give content authors and approvers a convenient way to move
content pages through the editing and approval processes.

Each page layout is based on a Windows SharePoint Services 3.0 content type and an associ-
ated .aspx page template. By layering page layouts on top of content types, Office SharePoint
Server 2007 makes it possible to add custom fields for storing different types of structured

content such as HTML, links, and images. Once a custom field is defined inside the content

32

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

type associated with a page layout, it can be data-bound to the associated .aspx page template
using another new Office SharePoint Server 2007 component known as a field control.

D Litware Man of the Year Amard - Microsoft Intemet Explorer

[l Lot Wew Favorkes [ook el >

Qosck - O - (4] 3 | Poech rrvoms & 0 - L) B R ks |

adress [{€] itp:i Raneses vur 1 Pasgesfimards s B8

Litware Portel Welcome Litwareing Administrstor= | My Site | My Uinks= | Help | Send reedback =1

a Litware Portal [ali Corrers i | Adancad Saarch

BEEmREeRORtalY N Reports ¢ sewchienter | Shes Topes | Site Actione - |

wersion: Chacked Out - Stabus: Orly you can see and modfy this pege. Publication Start Diate: 6/1/2006 12:00 44

Page = | Workflow = | Touls = | | 5] Checkinta Shaen Ceaft | | (3] Subm for appeoneal | | @ Publish

Litware Portsl > Pages > Litware Man of the Tesr Award > Cdit ftem
Litware Man of the Trar Award

View A Site Conkent

Mo, Brir

= Company News . T— P

[sauszone T [mike ritzmaurice named Litware Man of the Tear -

= resusarchive. aspe Cloar

Reports

= Sample

Search Center

Sites

Topics

Z Recyche Bin =

3 et content
Litreare's H
=]

0] T T Auocalitranet 4

Figure 2-7 Page layouts provide an editing mode for content authors.

Office SharePoint Server 2007 ships with several field controls such as a rich HTML editor as
well as others field controls for editing custom fields based on images and links. Many field

controls also support adding extra declarative constraints to keep portal content within a
highly structured format.

Note that the page layout infrastructure is very extensible because Windows SharePoint Ser-
vices content types support inheritance. It’s fairly straightforward to take one of the built-in

page layouts and customize it by extending its underlying content type or .aspx page tem-
plate.

In addition to field controls, an .aspx page template for a page layout can also contain
ASP.NET server controls and Web Part zones. A page layout with Web Part zones provides the
content author with the flexibility to add Web Parts displaying content outside the schema of
the current page layout. In addition, Office SharePoint Server 2007 provides several Web

Parts that have been designed for use in portal pages including the Table of Contents Web
Part and the Content Query Web Part.

The .aspx page templates associated with page layouts are stored along with the portal site’s
master page in the Master Page Gallery. The Master Page Gallery also contains a metadata col-
umn to associate each .aspx page template with a content type. Note that it is possible to have
multiple page layouts, each with its own .aspx page template, that are all associated with the

Building Solutions with Office SharePoint Server 2007 33

same content type. This is useful when you want to create several different views for the same
set of structured content.

Whenever a content author creates a new content page from a page layout, Office SharePoint
Server 2007 creates a new instance of the associated content type and stores it in a document
library named Pages. When a content author updates content for custom fields within a page
layout, Windows SharePoint Services stores the data within a structure defined by the under-
lying content type. The fact that content page instances are stored in a Windows SharePoint
Services document library means that the Office SharePoint Server 2007 Web content man-
agement infrastructure can take advantage of basic document library features provided by
Windows SharePoint Services 3.0 such as versioning, auditing, approval, and workflows as
well as per-document security configuration and security Ul trimming.

By default, Office SharePoint Server 2007 uses the basic document approval features of a Win-
dows SharePoint Services document library to control when the updated content is shown to
the site’s visitors. However, the infrastructure was designed to make it straightforward to asso-
ciate custom workflows with the Pages document library for scenarios where you need some-
thing more sophisticated than the Office SharePoint Server 2007 content approval
functionality that comes out of the box.

Note that an instance of a content page stored in the Pages document library does not repre-
sent a copy of the page template. Instead, it contains redirection logic to link it to the .aspx
page template at run time. That means updating the .aspx page template will always affect
content pages that have already been created from the associated page layout.

A number of other Office SharePoint Server 2007 features focus on Web content manage-
ment. [will conclude this section by quickly exploring what these features are and why they
are valuable.

Office SharePoint Server 2007 provides a framework for document converters. A document
converter is a component designed to read content from an external format such as a
Microsoft Word document and convert it into a format that can be displayed within an Office
SharePoint Server 2007 content page. Several document converters will ship with Office
SharePoint Server 2007 as well as a framework for building and integrating custom document
converters.

Office SharePoint Server 2007 provides content deployment features that allow you to trans-
fer content from one site collection to another. This is valuable for companies that prefer to
author content in a staging environment before moving it into their production environment.
You take advantage of Office SharePoint Server 2007 content deployment features by config-
uring paths and jobs.

A path defines one site collection as a content source and another site collection as a content
destination. Once you have defined a path, you can define one or more jobs to move content

34

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

from the source to the destination. Jobs can be run on demand or they can be scheduled to
run at a future time or on a periodic basis.

Office SharePoint Server 2007 also supports a feature known as site variations for companies
that need to duplicate a site’s content for translation into multiple spoken languages or for
targeting different types of rendering devices. For example, imagine you have configured
Office SharePoint Server 2007 variation support for German and French in addition to Span-
ish. Office SharePoint Server 2007 maintains a parallel structure across these three different
sites with respect to pages and child sites.

When a content author adds a new page to the master variation site maintained in Spanish,
Office SharePoint Server 2007 automatically adds the same page into the structure of the
other sites as well. Office SharePoint Server 2007 can also be configured to create a Windows
SharePoint Services task marking the required translation as a to-do item for a language trans-
lator. While Office SharePoint Server 2007 will not actually convert your content from one
spoken language to another, it does keep multiple sites in sync with respect to their content
structure, which provides a good deal of value.

Office SharePoint Server 2007 provides several caching options. While Office SharePoint
Server 2007 doesn’t allow you to use ASP.NET output caching directives the same way you
do in a standard ASP.NET page, it provides a more sophisticated framework to reach the
same end.

You can enable Office SharePoint Server 2007 output caching at the site collection scope.
When using these caching features, you configure caching profiles to control caching page
items and complete pages in memory. Developers should take note that Office SharePoint
Server 2007 supplies dedicated caches for navigation nodes and content returned from poten-
tially expensive retrieval operations such as standard Windows SharePoint Services queries
run using an SPQuery object and cross-site queries run using a SharePoint Portal Server
SPSiteDataQuery object.

Office SharePoint Server 2007 also supports Web front-end (WFE) disk caching. If you enable
the WFE disk cache, Office SharePoint Server 2007 will begin writing the large files it retrieves
from the SQL Server database into a special cache on the local file system of the front-end Web
server. This eliminates the need to continually move .jpg, .png, .gif, .css, and .js files from the
SQL Server database server to front-end Web servers on a per-request basis.

Finally, it’s important to note that Office SharePoint Server 2007 publishing sites benefit from
Windows SharePoint Services 3.0 security advancements. In particular, Windows SharePoint
Services 3.0 is built on top of the ASPNET 2.0 authentication provider infrastructure. Unlike
SharePoint Portal Server 2003, which is tightly coupled to Active Directory, you can configure
an Office SharePoint Server 2007 portal site to use forms-based authentication. That means
you can store the user credentials in a SQL Server database or another LDAP identity manage-
ment system of your choosing.

Building Solutions with Office SharePoint Server 2007 35

Business Intelligence Features

In the past, the Office team has provided its customers with business intelligence (BI) features
in SharePoint Portal Server 2003, the Office 2003 Web Parts and Components Add-in, and
Microsoft Office Business Scorecard Manager 2005. Over the past few years, many developers
have used these BI products as a platform for building dashboard-style applications that pro-
vide upper-level management with up-to-date data that reflects the health of a business and
flags potential problems in a timely matter.

Leveraging their previous experience with these earlier BI components, the Office team has
designed Office SharePoint Server 2007 to include a next-generation platform for building
dashboards and integrating with other technologies in the greater Microsoft BI picture such as
Microsoft Office Excel 2007, Microsoft SQL Server Reporting Services, and Microsoft SQL
Server Analysis Services. As with all other aspects of Office SharePoint Server 2007, its BI plat-
form builds on top of ASPNET and Windows SharePoint Services 3.0 and provides many
opportunities for extending what comes out of the box.

The Office team has heard consistent customer feedback telling them that a large percentage
of corporations maintain a significant amount of business logic in Excel spreadsheets and that
this business logic has been hard to leverage and reuse across a large organization. This feed-
back led the Office team to create Microsoft Office SharePoint Server 2007 Excel Services.

Excel Services represents a server-side version of the traditional Excel calculation engine that
has been rewritten from the ground up on top of Windows SharePoint Services 3.0. Excel Ser-
vices doesn’t suffer from the same types of scalability problems that occur when you run the
desktop version of Microsoft Excel on the server.

Excel Services also provides a sever-side rendering engine that can display spreadsheets in the
browser as HTML. That means a company can store all its Excel spreadsheets in a centralized
document library and make them viewable by users who don’t even have Excel installed on
their desktop. Furthermore, users can see the numbers displayed by a spreadsheet within the
browser without having any access to the business logic behind it that represents a company’s
intellectual property.

A key observation is that the Microsoft Office 2007 system introduces a new paradigm that
recognizes that companies maintain business logic within Excel spreadsheets just as they
maintain business logic within managed code inside compiled assemblies and within stored
procedures in a SQL Server database. To support this new paradigm, the Office team has
added many new features to Office 2007 products designed to expose and update this busi-
ness logic as well as to protect its intellectual property from prying eyes.

The new desktop version of Office Excel 2007 has been enhanced to allow information work-
ers with Excel expertise to publish and update their spreadsheets in a document library on an
Office SharePoint Server 2007 portal site or a Windows SharePoint Services team site. Users

36

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

running a version of Excel can view these spreadsheets through a rich client experience while
other users can rely on Excel Services to view the same spreadsheet inside the browser.

Note that this new spreadsheet publishing metaphor allows a company to maintain a single
master copy of its critical spreadsheets. It also allows the spreadsheet author to post updates
without the need to involve the development staff or the IT staff.

It's important to note that the use of Excel Services isn’t restricted to the browser. You can cre-
ate a Windows Forms application that leverages the server-side Excel calculation engine but
doesn’t use the rendering engine. For example, a Windows Forms application can use out-of-
the-box Web services from Excel Services to load a spreadsheet on the server, enter input
data, perform calculations, and return a result. This example furthers the analogy that Excel
Services exposes the business logic defined in a spreadsheet just as SQL Server exposes the
business logic defined in a stored procedure.

Office SharePoint Server 2007 provides a special site template named Report Center for com-
panies that want to build dashboard-style applications. Report Center was designed to make
the new BI features of Office SharePoint Server 2007 easy to discover and use. A Report Cen-
ter site contains a document library named Reports Library that is tuned for storing and dis-
playing BI reports such as Excel spreadsheets and reports built for SQL Reporting Services.

Another important aspect of Report Center is the built-in support for creating and importing
Key Performance Indicators (KPIs). A KPI is a common term used in the BI space to describe
a visual indicator that tells a manager how some aspect of the business is doing. For example,
the KPI for a product inventory level might display a green light when there is enough inven-
tory to supply all the orders for the coming week.

However, the light might turn from green to yellow when the inventory level drops below
some predefined threshold such as the amount of inventory required to supply orders for the
next four days. The light then might change from yellow to red when the inventory level drops
to a point where it will run out within the next 48 hours. The main idea is that a KPI flags busi-
ness problems that require immediate attention.

Office SharePoint Server 2007 provides out-of-the-box support for creating several different
types of KPIs. For example, you can create a KPI whose indicator changes automatically
depending on data it dynamically reads from a Windows SharePoint Services list or an Excel
spreadsheet. Office SharePoint Server 2007 also provides integration support for KPI in SQL
Server 2005. That is, if you have already created KPIs with SQL Server Analysis Services, you
can import and display them on a Report Center site alongside other types of supported KPIs.

The last aspect of Report Center I want to discuss is the builtin framework for filtering data
before it’s shown to the user. This is a key component of the Office SharePoint Server 2007
dashboard framework because it makes dashboard pages more relevant to the user.

When a manager visits a Report Center site, the experience is enriched if the dashboard views
have been customized with data that is relevant for that user. For example, a sales manager for

Building Solutions with Office SharePoint Server 2007 37

the Eastern region can be presented with a different view of sales figures than the sales man-
ager for the Western region. Furthermore, managers like to be able to see high-level data at
first and then be able to drill down into more specific categories on demand.

Filtering support is built into Office SharePoint Server 2007 dashboards at the page level
using Web Part connections. Office SharePoint Server 2007 supplies Web Parts out of the box
that allow page designers and users alike to specify criteria such as the name of the current
user, a date range, or a product category. There are also many out-of-the-box Web Parts that
can be configured to consume the filtering criteria supplied by other Web Parts such as the
standard Windows SharePoint Services List View Web Part as well as the Web Parts designed
for use with the Business Data Catalog, Excel Services, SQL Reporting Service, and SQL Anal-
ysis Services.

Managing Documents and Business Processes

In past versions of Microsoft Office Word, Excel, and PowerPoint, Microsoft has relied on a
default file structure that is based on binary files written in a proprietary format. These for-
mats have been very hard to read and modify unless you go through the object model of the
hosting Office application such as Word or Excel. As a result, companies have tried to run
Office desktop applications on the server, which poses serious problems with scalability and
robustness.

Office 2000 and Office 2003 added some modest capabilities for creating Excel spreadsheets
and Word documents using XML. In the 2007 Microsoft Office system, Microsoft has taken
this idea much further by adopting the Open XML Formats for Word, Excel, and PowerPoint
documents. The Open XML Formats is a new file standard for creating composite documents
containing multiple inner XML files that factor out content from other aspects of the docu-
ment such as formatting instructions, data, and code.

The top-level file in the Open XML Formats is known as a package and it is structured using
standard ZIP file technology. The internal files contained within a package are known as parts.
Many parts within Word, Excel, and PowerPoint files contain XML structured in accordance
with published XML schemas. Other parts within a package can consist of binary files for
items such as graphics, audio clips, and videos.

A major goal of the Open XML Formats is to provide a standard approach for reading, manip-
ulating, and generating documents in server-side scenarios where using the object model of a
desktop application such as Word or Excel isn’t a viable option. Think about a scenario in an
Office SharePoint Server 2007 portal site when you have created and configured an event han-
dler to fire whenever someone uploads a new Word document. The new Open XML Formats
make it significantly easier to exact data or to perform hygiene on the document such as

removing comments and personal information. You can also leverage Open XML Formats to
develop server-side components that generate Office documents on the fly using data pulled
from content sources such as a Windows SharePoint Services list or the Business Data Catalog,.

38

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

To get started working with the Open XML Formats, you need to learn how to program
against the new WinFX packaging API. This is the recommended API to use when opening
and creating packages. You must also learn the specific package structure and XML schemas
for the type of Office document you are working with. These details will change as you move
among Word, Excel, and PowerPoint documents. Microsoft has started a developer commu-
nity effort around the Open XML Formats at http.//openxmldeveloper.org.

Office Forms Server 2007

Since the introduction of Microsoft Office 2003, many companies have found that Microsoft
Office InfoPath provides a quick and efficient solution for creating electronic input forms to
collect XML-based data from users. The InfoPath 2003 forms designer provides high levels of
productivity because it significantly reduces or eliminates the need to write custom code
when developing forms. InfoPath also creates a very reliable way to collect data because
InfoPath forms are built on top of XML schemas, allowing them to automatically validate the
user’s input.

InfoPath 2003 provides a convenient integration point with Windows SharePoint Services 2.0

where a form designer can publish an InfoPath form on a Windows SharePoint Services site,

creating what is known as a forms library. A forms library is a hybrid Windows SharePoint Ser-
vices document library that uses an InfoPath form template as its underlying document tem-
plate and acts as a repository for XML documents containing form data entered by users.

One common complaint that Microsoft has received about this forms-based technology is that
it requires a full version of InfoPath to be installed on the user’s desktop. This is true not only
for those designing forms but also for any users who need to read or modify data in an
InfoPath form. The problem is that the features of InfoPath 2003 do not extend to users for
whom deploying Office 2003 on their desktop isn’t an available option. Office SharePoint
Server 2007 introduces Microsoft Office Forms Server 2007 to solve this problem.

Office Forms Server 2007 has been designed to render InfoPath forms within the browser to
reach users who are not running InfoPath. In fact, Office Forms Server 2007 doesn’t even

require users to be running a version of Microsoft Internet Explorer or the Windows operat-
ing system. The Office team is testing Office Forms Server 2007 for compatibility with brows-
ers such as Firefox, Safari, and Netscape as well as several other HTML-enabled mobile devices.

You can use the Office InfoPath 2007 forms designer to create Web-enabled forms, which can
then be deployed to Office Forms Server 2007. This forms designer provides a compatibility
checker to ensure that your forms contain only controls and elements that are compatible
with what Office Forms Server 2007 can render to the browser. It’s also possible to create and
deploy InfoPath forms intended for dual use. Such a form is downloaded to the desktop and
loaded into the rich client environment when InfoPath is available on the desktop or other-
wise rendered through the browser when necessary.

Building Solutions with Office SharePoint Server 2007 39

Enterprise Content Management

Over the past few years, governments and other regulatory organizations have placed increas-
ingly restrictive requirements on companies that generate and store large numbers of docu-
ments. The Sarbanes-Oxley Act and emerging privacy laws within the U.S. have made it much
harder for companies to stay within acceptable levels of compliance. Office SharePoint Server
2007 provides several enterprise content management features to address these problems.

Many of the Office SharePoint Server 2007 features for enterprise content management are
built on top of the new information policy feature. An information policy is a Windows Share-
Point Services component that can be enabled and configured within the scope of a list or doc-
ument library. Out-of-the-box examples of information policies that ship with Office
SharePoint Server 2007 include those for document expiration, auditing, and the automatic
generation of bar code labels to identify physical documents and associate them with elec-
tronic copies maintained in a document library.

The Windows SharePoint Services framework for information policies was designed with
extensibility in mind. For example, you can create a custom policy that checks the integrity of
a digital signature on every document within a document library. You can create another pol-
icy that promotes document hygiene and privacy by removing all the comments and personal
information from documents as they are uploaded to a document library.

Office SharePoint Server 2007 provides a dedicated site template named the Records Reposi-
tory to assist with records management. A Records Repository site provides archiving support
for companies that are required to keep certain types of business documents as official
records of the company’s activities. While archiving requirements vary across different regu-
lated industries, keeping records is required to provide evidence of a company’s activities in
the event of a litigation dispute or an audit.

The Single Sign-On Service

The final topic I would like to cover is the Single Sign-On (SSO) Service. The SSO that ships
with Office SharePoint Server 2007 is an enhanced version of the credential-mapping service
that ships with SharePoint Portal Server 2003. The SSO is used to map the identity of a user
who has logged on to an Office SharePoint Server 2007 portal site with another identity for
the same user in a back-end system.

For example, imagine a user named Bob has two user accounts. First, he has a Windows
account in Active Directory that he uses to log on to the local network and to authenticate
against the Office SharePoint Server 2007 Web server. Bob also has a second user account
with different credentials he needs to use when accessing the company’s back-end SAP
application.

SSO solves the problem of allowing server-side code running on behalf of Bob to seamlessly
access the SAP system using his secondary account once he has logged on to the Office Share-

40

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Point Server 2007 portal site using his primary Active Directory account. SSO accomplishes
this by providing a credential-mapping database to store his SAP user name and password in
an encrypted format. SSO also provides the means for custom Web Parts and other Office
SharePoint Server 2007 services such as the BDC, Excel Services, and Office Forms Services to
retrieve user credentials that are required when accessing various back-end systems.

Summary

The chapter has provided a broad survey of the most significant services and features pro-
vided by Office SharePoint Server 2007. You have seen that the Office team has invested
heavily to provide Office SharePoint Server 2007 functionality in areas such as portal and
search, Web content management, business intelligence, business process management, and
enterprise content management.

You have also seen that Office SharePoint Server 2007 promotes an “assemble and configure”
philosophy that enables you to construct rich business solutions without ever starting Visual
Studio or writing a line of managed code. However, you should always remember that Office
SharePoint Server 2007 is built on top of ASP.NET 2.0 and Windows SharePoint Services 3.0,
providing ample opportunities for extending standard functionality with custom components
such as Web Parts, event handlers, workflows, page layouts, document converters, and server-
side forms.

Chapter 3
Building a Basic SharePoint Site

In this chapter:

Creating a Site Collection and a Top-Level Site 41
Creating a List for Tracking Project Profiles 46
Creating a Document Libraryo ittt 48
Customizingthe Home Pageot iiiiiiiiiiiiiiininnnnnn. 49
Creating Child Sites i i i it 51
Creating a "Hello World" Web Part o it 52

This chapter serves as a bridge to the chapters that follow, in which you’ll see examples that
illustrate some of the features, architectural underpinnings, and development possibilities
related to Microsoft Windows SharePoint Services 3.0 and Microsoft Office SharePoint
Server 2007.

In this chapter, we’ll walk through how to set up and build a basic SharePoint site. The exam-
ple will let you see some of the administrative pages and other elements of the user interface
in the latest version of Windows SharePoint Services. In the example, we'll create a site collec-
tion and a top-level team site, a list for tracking projects, and a document library for storing
files related to projects. The site will also include two child sites. You'll see how to change the
look and feel of a SharePoint site and, in the last section of the chapter, you'll see some sample
code for a custom Web Part.

Creating a Site Collection and a Top-Level Site

The first step in creating a site collection and a top-level site is to open the SharePoint Central
Administration page. (Choose Start, Administrative Tools, SharePoint 3.0 Central Administra-
tion.) On the Central Administration home page, click Application Management at the top of
the page, and then, on the Application Management page, under SharePoint Site Manage-
ment, click Create Site Collection.

After the Create Site Collection page appears, the Select Web Application dialog box (shown
in Figure 3-1 on the next page) opens and prompts you to select the target Web application
(formerly known as a virtual server) that will be used to provision the new site collection.
Choose the default Web site as the target Web application or a different target if necessary.

41

42 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

-2 Select Web Application — Web Page Dialog x|

@ Select Web Application

flame URL
Defaul Web Site httpiffoss1]

SharePaint Central Administration w3 http:ffoss1:57137)

Concel_|

Figure 3-1 Use the Select Web Application dialog box to specify the Web application that will
provision the site collection.

Back on the Create Site Collection page, fill in the information required to create a new site
collection, using settings similar to the following. When filled in, the Create Site Collection
page would look something like Figure 3-2.

B The new site collection’s URL (http://oss1/sites/projectmanagement).

B The primary site collection owner (litwareinc\administrator, with an e-mail address of
administrator@litwareinc.com).

The Quota Template option set to No Quota, the default setting.

m The site template that will be used for the sites in the site collection. (Blank Site is

used in this example as the site template for the new top-level site that is automatically
created.)

After you click OK to create the site collection and top-level site, you'll see a page confirming
that the site has been created. You can then navigate to the top-level site by using the browser.
Figure 3-3 shows the bare-bones site.

Building a Basic SharePoint Site 43

A Create Site Collertion - M

It Inteenet Euplorer

Bl BB Wew Fgeordes Jook Help

| &
Qs - O - (8 [3) (0 S sowch CcPvertes €0 3+ 9] - [01
wlﬂmn:mel:wluff advenfcrestesite. aspc B |uh w
| Central Admmatrston

1 Welcurns Liwarelne Admmstrstor = | Hy Sita | My Litks = | Hel | Send Fasdback |
#'2% Central Administration

Home Cpmr atiorns, Pl ation Management. E- "‘ "i i Tm
Central Administration > Applicati > Create Site Collection
Create Site Collection
View all Ste: Contont .
Use this pags to create & new Lo-level Wal site,
Documents These settrgs sophy to web Agphestion hetp:foas)] Change
Pichirrs
Web site Address 17 Crnate ste under this UL
Lists Specify the AL name and LRL path b crmate a nes s, o chonse b ersate a site ab 2 specific path. URL e
Discussivn -’
= To 52 & vy URL Pt o b Ure Dol Merssgend Paths paye orojectmanagement
Surveys
AL path:
Peaple and Groups
. sites i
&l Recyele Rin

LRL: http:/fossl
Jailims, fppraje vt

" Creste she 8t thes LRL:

LRL path:
(root) = I
il Culle Lion Dvner T
Spaafy the cwnar For this Wb e colection, [Mwaremcvademstrater
Examphe: Domaniname
E-mad address:
|sdeninistrator@litwarsing
Example: someonadiexample. com
Secondary Owaer User name:
Specfy the secondary cwner for thes Web ste collection. ,—
Examphe: Domaniname =l
Bone T N uscdintranet
istort| | (3 & |[&) ceeate s colleetion... | W wited - sk | [1saem
Figure 3-2 You specify information such as this to define a site collection.
(B B few Fgordes Tk Hen | &y
OF - O - (&) @ G Psewch ©chovorios €8] (30 B (3]~ L)
Abess [] a5 =] B [uns >
| Team site 1 el Wararecadaumistrator = | Hy Sita | My Links = | Helg | Send Fesduack |~
3'#* Team Site [aCortent =l
Team Site
\@ Home
WView 4l Sibe Content.
Documents
Pictures
. Windons
Diaoatons ShlarePolnrsem
survers
Praple and Geoups
&l Recyele Rin
|
istort| [(3 & |[@)Home - Team site -+ Y witled - sk | |9 z00em

Figure 3-3 The top-level site of the site collection

44

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

At this point, we’ll make a few straightforward changes to the settings and appearance of the
top-level site. For example, we’ll change the site’s title and add our own graphics.

Start by clicking Site Settings on the Site Actions menu. On the Site Settings page, in the Look
And Feel section, click Title, Description And Icon. On the General Settings page, enter the
title for the new site: LW Project Management.

We can also use this page to point to different graphics files to replace the standard Microsoft
graphics. For example, you can modify the site icon to use a custom graphic. The graphics
files you want to use for a site should be located within the Windows SharePoint Services
_layouts directory so that the graphics files are accessible to all SharePoint sites within a farm.
In particular, copy the graphics to the following location:

C:\Program Files\Common Files\Mictrosoft Shared\web server extensions\12\
TEMPLATE\IMAGES

Note Windows SharePoint Services configures the IMAGES directory with Internet Informa-
tion Services so that it is a child virtual directory of the _layouts virtual directory. This configu-
ration means that your graphics files should be accessible within any SharePoint site using a
relative URL that looks like the following:

/_layouts/images/LitwareGraphics/LitwareLogo.png

While still on the General Settings page, we can modify the address for the logo image file,
entering a value something like /_layouts/images/LitwareGraphics/LitwareLogo.png. Click
OK on the General Settings page, and you can then confirm that pages within the site now dis-
play the new title and the new site icon, as you can see in Figure 3-4.

We can also change the look and feel of the site by modifying the Site Image Web Part on the
site’s home page so that it displays a custom graphic instead of the default Microsoft graphic.
To do this, we place the home page of the site in edit mode by choosing Edit Page from the
Site Actions menu. After the page is editable, select Modify Shared Web Part from the Site
Image Web Part’s action menu. You'll then see a task pane in the browser that allows you to
modify the Image Link property. Assign the Image Link property a value such as /_layouts/
images/LitwareGraphics/LitwareSlogan.png, and then click OK. Figure 3-5 shows the site’s
home page displaying the new site graphic.

Building a Basic SharePoint Site 45

A Home - LW Project M Microsalt Internet Explorer

B ER e Fperie Twis e | &
Qe+ O - =) [F] (| seanch cFaverkns £ | (0 fa 3 - L) B

WE] — =] EJoa s »
L' Project Management

Welcome lbwareinchadrmimstrator = | Hy Site | My Links = | Hls [Seid Fasdtach) <

@ L\ Project Management [ad Cortent Bl

Heme

ite Actions ~ |
LW Projert Management
\@) Home

Wiew Al Sbe Content
Ducuments

J
Windows
e SharePoint
People and Groups
& mecycle bin

|
one T N uscdintranet
Bistort| | (3 & |[@)Home - 1w project M. W wiltled - Paik

| S ziatios wesaerr | [z0sem

Figure 3-4 Simple customizations to the titles and graphics of the top-level site

AjHome - 1W Peojrct Manag

nent - Micensoft Inteenet Euploree

Bl Bl e Fgoedes Twk Heb | &y

Qoo » 3 -) [b P sewch SoRavertns | (- f (9] -)W,

agbess | 2] =] B [uns >

LW Project Management Waluume hlwaremciadnmmsteator = | My Site | My Links = | Help | Send Feedback -

@ L\ Project Management [ad Cortent Bl
Home:

ite Actions ~ |
LW Projert Management
\@) Home

Wiew Al Sbe Content
Ducuments
Piclures

=l
@_m

T T M toceindranet

Figure 3-5 A custom graphic can be used in the Site Image Web Part.

46 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Creating a List for Tracking Project Profiles

In this example, we'll create and modify a custom SharePoint list that will be used to manage
information about consulting projects. Start by clicking Create on the Site Actions menu to

open the Create page. In the Custom Lists section, click Custom List to open the page shown
in Figure 3-6 that you use to name the list. We’ll name the list Projects, and then click Create.

A htipe/ foss1 fsibes /projectmanagement,/_layouts,/new.aspsFeatureld= [00hieaT 1 -de22-43h2-aB48-c05 704 - Microsolk Internet Esplon

===
Bl EB Yew Fgordes Jook Help | M]
Qoo » O - [[} (0] Search oPovertns | (3 S (3] - [
adbess [] bero: floss1 . aspoct de{OlbFesTL-dez2 4 b — B :mlu »
LW Project Managerment Welvwme ilwaremcuadommstrator = | My Site | My Links = | Help | Send Fesdback ;I
@ LW Project Management
LW Prajock Management » Crrate > New
New
Mame and Descriplion
s
IFruJ!L‘.s
Description:
List of current consulting projects, x|
with coritract status, contract
armounts, and engagement dates.
k.
Navigation
1] Disgalery Eiks sk o Uhoer sich Lowcle?
& Yox T o
| . |
[&] Com [W ocalintranet

Figure 3-6 This page is used to create a custom list.

Now we want to modify some properties of the Projects list. On the list’s Allltems.aspx page,
click List Settings on the Settings menu to open a page with the helpful title Customize
Projects. On this page, click Advanced Settings in the General Settings section. On the
Advanced Settings page for the Projects list, shown in Figure 3-7, take note of the different
modifications you can make to the list, such as enabling item-level permissions, allowing
attachments to list items, and so on. The one change we’ll make to the Projects list is to disable
attachments because the structure and purpose of the list doesn’t require them.

Building a Basic SharePoint Site 47

ARt ist Advanced Settings - Mirensalt Internet Fuploees Jﬂﬂ
B B Yew Faordes Twk b |

Qtock - - [a) [7) G|l Sowrch i Favertos 0] (3 5 O] - [i1 '
addess [] s Liste o TR T] B s »|

L¥ Project Managerment

@ LW Project Management

warsinchadiministrator =

| My Site | My Links = | Help | Send Fesdback 2]

Content Types

ot

Opening Bocuments

artachments

Todders

LW Projeck Management 3

Prajacts » Settings » Advanced Settings

List Advanced Settings: Projects

hern Iewe] Permissians

e by thekr ovm

Ao nvtiphe cortent Lypes?

s & jo

Read access: Speciy which kens users can read
£ al e

Edit access: Spechy which kems users can edt
= al ems
£ Cirby thesr cwn
Mot

Specky how to npen documents
& Cpen in the dhert. F avalsble
€ Open inthe browser

Artachments to kst Rems are:
1" Erabled [
% Osnbind

llows fokdérs o be crested in this ket
= yas (o™

=|

[&] Com

T Mnest

Figure 3-7 Use this page to set properties for a list.

We'll next use the List Settings page to add and modify the columns that will make up the
Projects list. Using the links in the Columns section of the List Settings page, we’ll structure
the Projects list with the columns shown in the following table.

Column Name

Type

Notes

Project Single Line of Text You do not need to create this column. Instead,
you can rename the Title column (one of the
default columns) as Project.

Client Single Line of Text This is a required column.

Contract Signed

Yes/No

The default value is set to No.

Contract Amount

Currency

Currency formatting can be set to whatever seems
most appropriate.

Begin Date Date and Time This column is formatted to show only the date.

End Date Date and Time This column is formatted to show only the date.

Created By Person or Group You do not have to create this column. It is created
when you create a new list.

Modified By Person or Group You do not have to create this column. It is created

when you create a new list.

48 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Figure 3-8 shows the Projects list with some test data entered.

AjProjecrs Micensalt Inteenet Fuploeee == x]
| |
=] Eco |unis)
LW Project Managerment Welvwme ilwaremcuadommstrator = | My Site | My Links = | Help | Send Fesdback ;I
@ LW Project Management [aa Cortent B
[5] LW Prooct Management » Projects
_) Projects
Wit Al ke Content List of current consulting propects, with contract status, contract armounts, and engagement datss.
Ducuments Mew = | actions= | Settings = e | Al Thems =
Piclures
Lists B wing0o1 ! rew WingTip Toys, Inc. Yes $250,00000 L1jExr Rl
* Projects 1 adwhsod Drew dveriuen Works Mo $120,000.00 1JI5[006 Ef1 2008
Discussinns B Haethwind Traders Yes $1,200,000.00 412008 1007
Sorveys 0 Cohine [475,000.00 §/1/2005 3112006
Peaple and Groups
& mecycle Uin
. |
[&] Com [W ocalintranet

Figure 3-8 The Projects list with its column definitions and some test data

Creating a Document Library

In the following example, we’ll add a document library to the Project Management site that
can be used for storing and managing documents.

We start by clicking Create on the Site Actions menu to open the Create page. In the Docu-
ment Libraries section, click Document Library to open the page on which you provide a
name for the document library. We’ll name the library Project Documents. Now that we've
created the document library, we can make the use of it more particular by adding a column
to associate custom metadata with each document that is added to the library.

On the document library’s Allltems.aspx page, on the Settings menu, click Document Library
Settings. This command takes you to a page named Customize Project Documents. We’ll add
a column named Project to the document library that is a lookup column. The source for this
column will be the Project column from the Projects list. In creating this column, we also
select the option to make the Project column required. Figure 3-9 shows the settings for the
Project lookup column.

Building a Basic SharePoint Site 49

2 Create New Cahamn - Microsalt Internet Exploree NI |
B BB Yew Fgardes Jok Hep | A
Qoo -) - =) (3) b S sewch o Paverkos @] 00 B -) 0]
A [] bero:floss1 fsresibrolectnanagement]_layouts/T tiewd . a5y Lt = s A SAOCE-DF PU-¥50E-ALO0-AOGLATI UUS 7dai wid | ypeP arsmel cobLpDispisytismeraramet 7| [Ed 60 ks |
T=Taln and Tae 0|

 Lockup (mlormation skesdy on i site)

£ vsites check bo)

£ Person or Group

" byperdink oe Picture

" Csuabend {cslstion bused on other coas)

£ Full ITML corkant with optional Farmatting snd cankent constraints
£ picture with display attrbutes and optionsl congtrants

£ & yporink vath desplavy attributes and optional constraints

' Susremary Links data

" Parge Layout Varistions
£ Content type [0
£ uxdercn Taronting

Addetional Lolumn Settings Destription:

Fequire that this column containg nformation:
Cves & o
Get indormalion from:
£ this cokma:
[Fraject =] T Ao e vabss
¥ addto defak v
(o e
[&] Com T T T S el mtranst

Figure 3-9 Settings for a document library column that looks up project names

We can now upload a few documents to test out the Project Documents document library. As
you might expect, whenever a document is uploaded to the Project Documents document
library, Windows SharePoint Services displays a page that prompts a user to assign a value to
the Project column. Windows SharePoint Services forces users to associate each and every
document that is stored in this document library with a specific project.

Customizing the Home Page

One of the steps you'll often want to take when designing and developing navigational
aspects of a SharePoint site is to specify the items that appear on the Quick Launch toolbar on
the left side of the home page.

To customize this control, start by clicking Site Settings on the Site Actions menu. On the Site
Settings page, click Quick Launch in the Look And Feel section. On the Quick Launch page,
you can add, edit, and delete links and headings from the Quick Launch control. In this case,
we’ll remove the headings for Pictures, Discussions, and Surveys. After these modifications,
the Quick Launch toolbar looks like Figure 3-10 on the next page.

Next we’ll add two Web Parts to the home page, one to display the Projects list, and a second
to show the Project Documents document library. To add these Web Parts, we place the site’s
home page in edit mode by choosing Edit Page from the Site Actions menu. Next we click Add
A 'Web Part at the top of the left Web Part Zone. In the Add Web Parts dialog box, select the
items for the Projects list and the Project Documents document library, and then click Add.

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

After you have added Web Parts to a page, as shown in Figure 3-11, you can experiment by
moving them between zones and changing some of their Web Part properties.

=10l x|
[

a Home - LW Project Management - Microsoft Internet Explorer

Eile Edit “iew Favorites Tools Help

QBak ~) - [[&] n |) Search 7 Favorites 42 ‘ v @ - L) R
tetress [] htpijjoss1 stes{projectmanagementjdefaul. aspx Sl B |uns >
Welcome litwareinchadministrator+ | My Site | My Links= | Help | Send Feedback ;I

LW Project Management

@ LW Project Management [l Content e

Harme

@ LW Project Management
Home

Wiew All Site Content
Documents

= Project Documents

Lists

= Projects

People and Groups
2 Recycle Bin

-l
BET T e,

Figure 3-10 The customized Quick Launch toolbar

AjHome - LW Peoject y »
Bl Bl e Fgoedes Twk Heb | &y

Qbok » 3 - W (3 b Ossarch Paverkns £ | (30 a3 - [

agiess [& s »

LW Project Managerment Welvwme ilwaremcuadommstrator = | My Site | My Links = | Help | Send Fesdback | =
[8 Cortent =l

@ L\ Project Management

| Site Actions - |

Hame:
m LW Project Management
Home
Wiew Al e Content .
Project Documents -
= Froject Exxunents Tves__Home Sis;ified b
] wingtio Saes Froposal 1 nra Iwarsing sdvinetrator
Lists B wingtip Sales Presentation | rew Eevwaersine] acdminkstrator
® Projocts B Corkoso Sakes Presenation | new Woveareien sbvinishr ator
Peaphe and Groups B adverburs Works Sebes Presertation | new P sckninishr alor
2 Recycle tin # add new docurnent
Projects -
Hew = | Actions = | Settings = i | - |
B winga1 { rew wWingTip Toys, Yes AE0,000.00 1JIfF00E 4152006
Ine.
B Btwibstin) | e Bveriurn [FULO0000 JISE00E &]1A006
works.
) newoon teew horthwand s $L20,000.00 Af0e
Trasders
o CoerL Drrw [] F000.00 1A WLz

|

| s Localintranet

5ED [
Figure 3-11 The home page with the document library and list Web Parts

Building a Basic SharePoint Site 51

Creating Child Sites

We'll continue building the Project Management team site by adding two child sites that are
used to track departmental or divisional information within the organization. Keep in mind
that when you create child sites, you want to make it easy for users to navigate between the
top-level site and a child site, between child sites, and back again. To handle this need, you can
create a top link bar that appears on the parent site and on child sites, similar to the one
shown in Figure 3-12.

a Home - LW Project Management - Microsoft Internet Explorer - E||5|
File Edit Wew Favorites Tools Help | |','
QBack ~ 3~ [x] [2] o |) Search 7 Favorites 42 ‘ v ea (D] - B
Adress [{&] hetp fjoss1 fstesprojectmanagament/def ault aspx Sl B |uns >
LW Project Management Wwelcome litwareinchadministrator= | My Site | My Links= | =]
N .
@ LW Project Management [Contert =
Hurne: MorthDivision SouthDivsion
ﬁ‘ LW Project Management
Home
Wiew All Site Content ;
CoCiEnenE Project Documents A
P e —— Type | Mame @ modified By au
] wingtip Sales Prapasal ! W litwareinchadministr stor
Lists BH wingtip Sales Presentation | Hew litwareinchadministrator
Frojects E¥| Contoso Sales Presentation ! new libyeareinchadministr akor
People and Groups EH] adventure warks Sales Presentation | vew litwareincladministrator
R le Bi
4 Recycle Bin = Add new document
Projects -
Mew = | Actions v | Settings = g El
Type Project Client iZonkract Signed | Contract Amount BeginDate | End Date
| 1 wina001 ! vew WinaTio ‘fes $250,000,00 1/1/2005 | 4/15/2006 52
4 »
|&] Done [[[N3 cocalintranet 4

Figure 3-12 The top link bar is used to navigate between sites in a collection

Start by clicking Create on the Site Actions menu. On the Create page, under Web Pages, click
Sites And Workspaces. This link takes you to a page on which you can create a child site. In
our example, we’ve named the first child site North Division. The site’s URL is http://oss1/
sites/ProjectManagement/NorthDivision. We've used the Blank Site as the site template. In
the Navigation section of the New SharePoint Site page, select Yes for the option Use The Top
Link Bar From The Parent Site. Also select Add To Top Link Bar. As we did with the Project
Management home page, we can modify the Site Image Web Part for the North Division site
so that it displays a custom graphic instead of the default Microsoft graphic.

Setting up the child site for the South Division follows the same steps. At this point, you
should be able to navigate between the top-level site and either child site with a single click on
the top link bar.

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Creating a “Hello World” Web Part

In this section, you'll see how to develop a simple custom Web Part in Microsoft Visual Studio
2005. Figure 3-13 shows a view of the class library DLL project that we’ll work with, which is
included in a solution named LitwareWebPartsLab.

20 LitwarewebPartsLab - Microsoft visual Studio =10 x|
Bin Et Wew Belactor Brojed Bl Delug Daba Ted Took Widee Qooemedy Help
-l % Gam 90| b oy | ERerEO.

3 b e RS2 OP® BN AR R,
5 | RevermeWeiortax St Poge - x|
| e —— =l g || e O
g uning Syamem: T LrwarewebrartsLob

- Ll Properties
" namespace LitvareVebPastsLak - [References
i o Liwaresnkh,
4] Revveruednhiort o5
; publie class AevenuedebPare
t

Properties RS

|
b ([

J o]

| ch oo i
Ready inl Coll hl NS i

Figure 3-13 The LitwareWebPartsLab solution

The LitwareWebPartsLab project is a class library project that is configured to build an assem-
bly DLL with a strong name. Here is the code from the AssemblyInfo.cs file that describes the
format for the name of the output assembly DLL:

using System.Reflection;

// If needed, copy Assembly format name from below to paste elsewhere
// LitwarewebPartsLab, version=1.0.0.0, Culture=neutral,

// PublicKeyToken=d4e5777b16a5749f

[assembly: Assemblyversion("1.0.0.0")]

// this was used to get around a beta 1 bug for importing web Parts
[assembly: System.Security.AllowPartiallyTrustedcallers()]

The file RevenueWebPart.cs contains a class named RevenueWebPart. We'll transform this
standard class into a Web Part for use with the Project Management site we’ve been working on.

The first step is to add a reference to System.Web.DLL. This system assembly has types that are
required to write ASP.NET-style Web Parts. Next we modify the RevenueWebPart class so that
it inherits from the WebPart class defined within the System. Web. UL WebControls. WebParts
namespace. Then, inside the RevenueWebPart class, we override the RenderContents method
with a minimal “Hello, world” implementation. Here’s the code:

using System;
using System.web.UI;

Building a Basic SharePoint Site 53
using System.Web.UI.webControls.webParts;

namespace LitwarewebPartsLab {
public class RevenuewebPart : webPart {
protected override void RendercContents(HtmlTextwriter writer) {
writer.write("Hello, world");
}
}
}

A Web Part DLL must be placed in a location where the Windows SharePoint Services run
time can find it. When you deploy a Web Part DLL, you have the option of putting it in the
local \bin directory or the Global Assembly Cache (GAC). In this example, we’re going to
compile the assembly DLL output for the LitwareWebPartsLab project directly to the \bin
directory of the default Web site. To do this, we can modify the Output path for the Litware-
WebPartsLab project as shown in Figure 3-14. Now we can build the LitwareWebPartsLab

project, and after compiling the project, we can verify that the assembly DLL has been created
in the C:\InetPub\wwwroot\bin directory.

20 LitwarewebiartsLab - Microsoft Visual Studio =10] x|
Fin Eit ¥ew Project [kl Delug Daba Ted ook Wiedew Comome iy Hedp
G- | & B [9-0 - b |0y | ERerEO.
e ahe | T 5| St Poge | IR <ckition Exploeer - LbwarsWebPartsiah = B %0
g |G| 7 &
¥ Akdlion LimareWebPartsLab
= | Configuration: |acthve (Debag) E T L Properties
kd® = [l References
| fatfoem At oy 7] -3 System
Duld Cvents = System.Dats
REETE I - <2 Sy Web
bebuy Tresk v &5 arrors) l:»ae.mtm
Resournes & hone] RewerosWrbiar o5
Seltings ™ Sosch warrings: |
- L -
saference Paths &
st
] . -
Cukput pathe estreputitysmenatipa | = [21
ok Anabysts Il
I . documment stion Fike: |
I Rgister for COM irkeron
Gegren e sevishantion assentdy: |40 = |
4 | _-I_I ‘
| b Grror L
Ready &

Figure 3-14 Setting the Output path in the project’s properties window

We also need to modify the Web.config file in the C:\InetPub\wwwroot directory by adding
a SafeControl setting for the new Web Part. The setting uses the following format:

<Safecontrol Assembly="[assembly name]" Namespace="[namespace]" TypeName="*"/>

In this example, the namespace is LitwareWebPartsLab and the four-part assembly format
string looks like this:

LitwarewebPartsLab, version=1.0.0.0, Culture=neutral, PublicKeyToken=d4e5777b16a5749f

54

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

After compiling the Web Part DLL to the \bin directory and configuring it in the SafeControls
list of the default Web site, we can add the Web Part to the Web Parts gallery of the top-level
site.

To do this, go to the Project Management site home page and click Site Settings on the Site
Actions menu. Click the Web Parts link in the Galleries section to navigate to the Web Part
Gallery page. Click the New button on the toolbar to open the page that allows you to add
Web Parts to the gallery. Click the check box to the left of LitwareWebPartsLab.RevenueWeb-
Part to select it, and then click the Populate Gallery button at the top of the page.

You can now add the Web Part to any page in the current site collection. Navigate to the home
page of the Project Management site, and then add the Web Part to a Web Part zone. Figure
3-15 shows the home page with the Web Part added above the Litware slogan graphic.

TjHome 1W Penject Management - Micensoft Inteenet Euplneer | =]
Bl BB ew Fgordes Jook Help | e
Qeack » () - W 2] | S seaech CoPavertns £ 0w fn 0] - [
Aefes [1] besp: lossfomssiprotectmanagementide sut. st =) B de |k =
L Project Managerment “Welcwme itwareinchadrministrator = | Hy Site | My Links = | Hls [Seid Fesdtack) < |
@ LW Project Management [aa Cortent B
Home MerthDnvision outhOvsion .
o LW Projert Management
_) Home
Wit A e Content .
e Project Documents * RevenuewebPart -
Fraject £ ! . [T Hella, world
] wingtio Saes Froposal 1 nra s sing] sdvinestrator
Lists B wingtip Sales Presentation | rew Eevwaersine] acdminkstrator
® Projocts B Corkoso Sakes Presenation | new Woveareien sbvinishr ator
Peophe and Groups W) Adverkure Works Sses Presentation | nes R sbvinistr ator
2 Recycle tin # add new docurnent
Projects -
Mew = | Adtions = | Settings = M | -
B wingnn1 I rew wWingTip Toys, Yes F250,000.00 112006 4/15/2006
.
B Btwibstin) | e Bveriurn Mo FUAO000.00 JISEA006 &712006
Works
] newoin Leew Hcrthwind e $1,20,00000 41006 GiLE00r
Traders
] Corinl Trew [L SPLO0000 1A LR
|
[&] Com [W ocalintranet

Figure 3-15 The top-level site with the custom Web Part

The Revenue Web Part could be modified in a number of ways. For example, you could add
code that provides for a persistent Boolean personalizable property named ShowTextAsBold.
The property would give a user the ability to toggle bold text on or off. When the user has the
property disabled, the Revenue Web Part renders its output using a standard font. When the
property is enabled, the Revenue Web Part renders its output using a bold font with a larger
size. If you're in the mood, you could also change the color of the font.

The Revenue Web Part could also be modified to generate some helpful business information
from a SharePoint list. In the code you've seen to this point, the Web Part has been written as
a standard ASP.NET Web Part that can run on any ASP.NET site. To enable the Web Part to

Building a Basic SharePoint Site 55

access data within a SharePoint list, you need to add Windows SharePoint Services—specific
code to the DLL.

First you need to add a reference to Mictrosoft.SharePoint.dll. Next, in the RenderContents
method, you would write code to acquire a reference to the current site (an SPWeb object) and
then obtain a reference to the Projects list (an SPList object). Next the code would enumerate
through the list items one by one and add together the contract amounts to calculate a total.
The sum of the contract amounts will be displayed as the total revenue.

Code you could use to make modifications such as these is as follows:
npublic class RevenuewebPart : WebPart {

protected bool _ShowTextAsBold = true;

[
pPersonalizable(),
webBrowsable(true),
webDispTayName("show Text As Bold"),
wWebDescription("Enable to turn on bold font output")
]

public bool sShowTextAsBold {
get{ return _ShowTextAsBold; }
set{ value = _ShowTextAsBold; }

protected override void onPreRender(EventArgs e)

{

this.Title = "Litware Project Revenue";

protected override void RenderContents(HtmlTextwriter writer)
{
SPWeb ProjectManagementSite = SPContext.Current.web;
SPList Projects = ProjectManagementSite.Lists["Projects"];
decimal TotalRevenue = 0;
foreach (SPListItem Project in Projects.Items) {
TotalRevenue += Convert.ToDecimal(Project["Contract Amount"]);

if (_ShowTextAsBold) {
writer.AddstyleAttribute(HtmITextwriterStyle.Fontweight, "Bold");
writer.AddstyleAttribute(HtmlTextwriterStyle.FontSize, "12pt");
writer.AddstyleAttribute(HtmITextwriterstyle.Color, "Red");
writer.RenderBeginTag(HtmlTextwriterTag.Span);
writer.write("Total Revenue: " + TotalRevenue.ToString("$#,###"));
writer.RenderendTag(); // </Div>

}

else {
writer.write("Total Revenue: " + TotalRevenue.ToString("$#,###"));

Chapter 4

Organizing Lists and Documents
with Site Columns and
Content Types

In this chapter:

Content TYPES . ..ottt e e e 57
Site Colums ... 66
Working with Site Columns and Content Types oL, 67

Large enterprises often encounter problems managing the volume of content they produce
and store. Information workers create and rely on many different types of documents, but
their organizations have no clear way to enforce standards with respect to the templates on
which users base a document or the properties that are used to identify a document or classify
the content it contains. In addition, an organization’s content management applications
should be able to tie the list of actions that are available to users to the type of content or doc-
ument. Finally, organizations need to store different types of documents in a central location
rather than parcel out documents according to type or file format.

This chapter provides an overview of two features in Microsoft Windows SharePoint Services
that organizations can use to store and manage documents and other content: site columns
and content types. The first sections of the chapter provide background about these features,
and in the last part of the chapter we’ll demonstrate some examples using a sample
SharePoint site. We'll look at content types first and then review site columns, which have
much in common with content types.

Content Types

In Windows SharePoint Services 2.0, a list was defined by a single set of data requirements (or
schema) that applied to each item in the list. Having a single set of requirements meant that a
list item was tied to its location. All the items in that location had to adhere to the columns
defined for the list or document library. In Windows SharePoint Services 3.0, lists can include
multiple schemas, in the form of content types. Content types provide the means to encapsu-
late a data schema and make it independent of a location on a SharePoint site.

57

58

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Content types help users organize the documents and other material stored on a SharePoint
site. For developers, a content type provides a way to define and use metadata to distinguish
one type of list item from another. A content type is a collection of settings and metadata that
is applied to a certain category of content. For example, a content type named Specifications
might include columns that record metadata such as Project, Priority, Developer, and Test
Lead. A content type named Contract might use columns such as Approver, Signed (Yes/No),
and Amount. Even with these differences, specifications and contracts can be items in the
same list or document library within a SharePoint site.

Because content types are independent of a specific list or document library, a content type
can be used in lists on multiple SharePoint sites, which enables the types of content stored in
a site collection to be defined and managed more centrally. For example, the Specification
content type could be applied to a number of relevant lists, even if specification documents
are stored on multiple SharePoint sites, to ensure that an organization keeps track of the same
metadata for all software and other project specifications. A content type can be extended by
including in its definition settings such as a workflow or custom attributes that are applied to
the items on a site.

More Info For more information about using workflows on a SharePoint site, see
Chapter 7, "Creating Workflows: The Missing Piece of Office Productivity.”

Content types can be defined through the Windows SharePoint Services user interface, by
using the Windows SharePoint Services object model, or by deploying a feature that installs
the content type based on an XML definition file.

More Info For more information about features, see Chapter 5, “Working with Features in
Windows SharePoint Services.”

Content Type Settings

A content type can include the following information:

B Metadata, or properties, assigned to the type. These properties are represented by the
columns added to the list or document library.

A template on which to base documents of this type.
Custom New, Edit, and Display forms to use with the content type.

Event handlers.

Workflows available for items of this content type. A workflow can be initiated automat-
ically, based on a selected event or condition, or through a user’s action.

Organizing Lists and Documents with Site Columns and Content Types 59

B Retention policies.

® Information necessary for custom solutions associated with the content type. You can
store this information in the content type as one or more XML documents.

File Formats

&

Content types are independent of file formats. In document libraries, a document template
can be specified for a content type. Windows SharePoint Services uses this template when a
user creates a document of this type. Users can still upload into the document library a docu-
ment based on a different template or a file of a different file type.

Suppose, for example, that you create a content type that will be applied to the documentation
required for a project. The Project content type can be applied to any file format, including a
Word document that contains project planning information, goals, risk assessments, and
similar information; an Excel workbook that contains the project budget; a Microsoft Project
document used for scheduling; and SharePoint list items that store the names and roles of
team members, tasks, and the like. All these files and list items can be assigned the Project
content type.

Note You can assign content types to SharePoint items that do not have a file format at all,
such as list items or folders. A content type created for documents can be applied only to doc-
ument libraries; likewise, a content type created for list items can be applied only to lists. A
content type created for folders can be applied to either document libraries or lists.

Site and List Content Types

A content type that you create at the site level is called a site content type. A site content type is
a template that is independent of any specific list or library. Any child site can inherit a site
content type. If a site content type is created at the root site of a site collection, any site in that
site collection can inherit the site content type.

Site content types are inherited by reference. When a child site inherits a site content type,
Windows SharePoint Services includes a reference to the site content type locally in the child
site. The site content type is then available to provision lists within the child site.

When a site content type is added to a list, Windows SharePoint Services stores a local copy of
the site content type in the list itself. This local instance, called a list content type, is applicable
only to the list it is copied to. Because Windows SharePoint Services stores a copy of the site
content type as a list content type in each list the content type is added to, changes to list-
specific instances can be made without affecting the site content type itself. Changes to a list
content type are limited to that list and do not affect the parent site content type or any other
list content types that inherit from that site content type.

60

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Creating Content Types Based on Other Content Types

You can create content types based on other content types. Using this relationship, you can
create general site content types that contain attributes for several different types of content
and then derive more specific site content types from them. At the site level, you can create site
content types based on other site content types. At the list level, you can create list content
types based on site content types, provided that the site content type is within the scope of the
site or list.

You can edit the attributes of a site content type that you derive from another site content type
by adding, altering, or removing columns; specifying different New, Edit, or Display forms; or
specifying a different document template.

Note The content type of an item is set explicitly by selecting the content type for that item.
However, even items that haven't been assigned a specific content type must comply with the
metadata requirements of the list or document library in which the items are located. The list
schema functions as the default content type of the list itself.

Figure 4-1 shows an example of the scope of content types created for a SharePoint site collec-
tion. Site content types created at the root site of the collection, the Project Management site,
are available for its direct child sites (North Division and South Division) and also for sites
lower in the site hierarchy, such as North Region 1, North Region 2, and the Assignments list.
Site content types created within the North Division site are available for the regional sites and
the Assignments list, but these content types are not available in the South Division site
because it is not a child of the North Division site. In addition, any content types created for
the Assignments list are list content types and available only to that list.

The base content type hierarchy included in Windows SharePoint Services corresponds to
the types of lists that you can create. The base content type hierarchy includes types such as
Document, Event, Issue, Contact, Task, Announcement, and so on. When you create a list,
Windows SharePoint Services creates a list content type based on the appropriate base site
content type. For example, when you create an announcement list, Windows SharePoint
Services copies the Announcement content type locally to the list.

Organizing Lists and Documents with Site Columns and Content Types 61

[Project Management J
4[North Division J

Ve

North Region 1 J

North Region 2 J

4[Assignments list]
4[South Division J

Figure 4-1 An example of content type scope

Controlling Changes to Content Types

You can prevent users from making changes to content types in two ways: specify a content
type as read-only or define it as sealed. (There is no way, however, to prevent users from cre-
ating content types based on a specific site content type.)

Read-Only Content Types

Aread-only content type prevents users from making changes to the content type through the
user interface in Windows SharePoint Services. The content type can still be altered program-
matically, using the Windows SharePoint Services object model. Specifying that a content
type is read-only also affects how changes made to the parent content type can be pushed
down. You’ll learn more about updating content types and propagating changes in “Updating
Content Types” on the next page.

Sealed Content Types

Defining a content type as sealed provides more control of the content type. Sealed content
types cannot be changed through the Windows SharePoint Services user interface or the
object model. To change a sealed content type, you need to change the definition of the

62

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

content type that is specified in the XML file used to provision the content type. Sealed con-
tent types are not updated through push-down operations.

Controlling Access to Content Types

One way to control access to a content type is to specify that it be hidden. Hidden content
types are not displayed in the Windows SharePoint Services user interface, so users are pre-
vented from selecting or editing the content type. This approach is useful when defining site
content types that will be used as the base for other content types that users can alter. Hidden
content types can be accessed through the Windows SharePoint Services object model.

Content types can also be added to a built-in content type group, named _hidden. This group
is not displayed in the group lists from which users select content types to apply to lists or to
use as the basis for other content types. Users also cannot select content types from this group
to use as a parent for new content types. An administrator can choose to add a content type
from this group to a list.

Updating Content Types

Each content type contains a reference to the site content type on which it is based. This ref-
erence enables Windows SharePoint Services to push down changes that are made to a parent
content type to site and list content types that are derived from it. Push-down operations are
optional so that users who consume a content type can make their own customizations and so
that an administrator can seal a content type to prevent others from making changes.

When you choose to push down changes to a content type to all of its children, the operation
does not overwrite the entire content type. The scope of what is overwritten depends

on whether the changes and push-down operation are executed through the Windows
SharePoint Services user interface or through the Windows SharePoint Services object model.

If a push-down operation fails on a given child content type, Windows SharePoint Services
continues propagating changes to other child content types. Windows SharePoint Services
also returns a list of errors it encounters during a push-down operation.

Note To create or manage a site content type on a site, you must have access rights to that
site. If you do not have the appropriate access rights to a child site, push-down operations to
content types contained in that child site will fail.

Updating Content Types Through the User Interface

When editing a site content type by using the Windows SharePoint Services user interface, all
the settings contained on the content type settings page are overwritten during a push-down
operation. The level of detail of the changes that can be pushed down is defined within the

Organizing Lists and Documents with Site Columns and Content Types 63

following areas. Each time you make a change in an area, the entire area is overwritten when
changes are propagated:

® Document template settings This area contains the following settings:
Q Document template URL

QO The actual document template file, if you selected an existing template on the
Web site or uploaded a template file

Q Read-only attribute

B New column settings This area involves adding a new column to the site content
type.

m Column settings This area contains the following settings:
QO Status
Q Order

0 Removing a column from the site content type

Updating Content Types Through the Object Model

The Windows SharePoint Services object model provides more control for propagating
changes made to a content type to the children of that type. Changes to a site content type
made through the object model affect the in-memory representation of the site content type,
but Windows SharePoint Services doesn’t commit those changes to the site database until a
program using the object model calls the Update method.

The following code example adds two columns to a site content type named SalesPresenta-
tion and then pushes down those changes to the content types based on SalesPresentation.

SPWeb web = GetSPweb();

SPContentType myCT = web.ContentTypes["SalesPresentation"];

myCT.Fields.Add(Fieldl);

myCT.Fields.Add(Field2);

myCT.Update(SPUpdateType.ListsAndTemplates);

The following example changes the document template associated with the site content type.
SPweb web = GetSPweb();

SPContentType myCT = web.ContentTypes["SalesPresentation"];

myCT.DocumentTemplate = "SpecTemplate.doc";

myCT.Update(SPUpdateType.ListsAndTemplates);

Updating Custom Information in Content Types

You can push down custom settings defined for a content type in an XML document by using
the Windows SharePoint Services object model. Each content type has an XML document col-
lection that a third-party solution can use to store custom settings information. Specific XML
documents can be overwritten when changes to a content type are propagated. Windows
SharePoint Services does not attempt to determine whether an XML document is currently

64

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

being used or is needed for a process before overwriting it. XML documents can also be
deleted entirely as part of a push-down operation.

Considerations for Pushing Down Changes

The following list summarizes some considerations to keep in mind for push-down opera-
tions:

m Propagating changes to a site content type will overwrite modifications that have been
made to one or more child content types if the changes to the child content type fall
within the scope of the push-down operation. For example, suppose you made a change
to a column in a child content type. If you make changes to that column in the parent
content type (or delete the column altogether) and then push down the changes,
Windows SharePoint Services overwrites the changes that you made to that column in
the child content type.

m Each push-down operation propagates only the changes made to the parent content
type at that time. If you do not push down the changes at the time you make them, you
cannot easily push down those changes later. In most cases, you would need to reinstate
your previous changes, make the changes again, and then push down that set of
changes. For example, suppose that you deleted a column from a parent content type
but did not push down this change when you deleted the column. A push-down opera-
tion that occurs later would not delete that column from child content types. To remove
the column from the child content types through a push-down operation, you would
need to add the column to the parent content type, delete it again, and then push down
the change.

m If you push down changes that are no longer applicable to a child content type, those
changes are ignored. For example, if you push down column settings changes for a
column that has been deleted from a child content type, those changes are ignored.
Windows SharePoint Services does not add the column to the child content type.

m If you push down changes to the column order of a content type, and the child content
type has more or fewer columns than its parent, Windows SharePoint Services does the
following:

Q Ifacolumnisn’tincluded in the child content type, the column is skipped in the
column order of the child content type.

Q Ifachild content type includes a column that isn’t included in the parent,
Windows SharePoint Services places that column at the end of the column order.
If a child content type includes more than one column that the parent does not
have, these columns are placed at the end of the column order and sorted by their
order number prior to the push-down operation.

Organizing Lists and Documents with Site Columns and Content Types 65

m Ifyouattempt to perform a push-down operation on a child content type that is marked
as read-only, the push-down operation fails unless you set the template to be read-write
as part of the push-down operation.

m Ifa child content type is defined as sealed, the push-down operation fails on that con-
tent type.

$ Note You cannot delete a site content type if it is being used as the basis for other site or list

contant fypnc Vou muct firct ramove thic contant +-\’/pn from all lictc ||cir\g it and dalate all child

site content types. Windows SharePoint Services does not consider items sent to the Recycle
Bin when making this determination. If those items are restored after their content type has
been deleted from the list, those items are assigned the default content type for that list.

Extending Content Types

Developers can extend the definition and functions of content types by using XML docu-
ments. These documents can conform to any given schema; they only need to be valid XML.
XML documents included in a site content type are also copied to any child types. If you make
a change to an XML document and then perform a push-down operation, the entire XML doc-
ument is overwritten in any child content types.

The XML file that defines a content type must adhere to the content type definition schema.
The following XML shows the structure of the content type schema:

<Elements>
xmins:"http://schemas.microsoft.com/sharepoint/"
<contentTypes>
<ContentType>
ID as CTID, required
Name as string
Group as string
Sealed as boolean
Version as integer
Readonly as boolean
Hidden as boolean
Description as string
<Fieldrefs>
<FieldRef>
ID as GUID, required
Name as string
DisplayName as string
Required as boolean
Hidden as boolean
Sealed as boolean
Readonly as boolean
ReadonlyClient as boolean
<RemoveFieldRef>
ID as GUID, required
Name as string

66 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

<DocumentTemplate>
TargetName as path
<XMLDocuments>
<XMLDocument>
NamespaceURI as string, required

To see an application of this schema, here is the XML that defines the Document content type
in Windows SharePoint Services:

<?xml1 version="1.0" encoding="utf-8" 7>
<!-- _1cid="1033" _version="12.0.3008" _dal="1" -->

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

<ContentType ID="0x0101" Name="$Resources:Document"
Group="$Resources:Base_Content_Types" Sealed="TRUE" version="0">

<Fieldrefs>
<RemoveFieldRef ID="{67df98f4-9dec-48ff-a553-29bece9c5bf4}"
Name="Attachments" /> <!-- Attachments -->

<Fieldref ID="{5f47e085-2150-41dc-b661-442f3027f552}"
Name="SelectFilename" /> <!-- SelectFilename -->

<FieldrRef ID="{8c06beca-0777-48f7-91c7-6da68bc07b69}" Name="Created"
Hidden="TRUE" /> <!-- Created -->

</FieldrRefs>

<XmlDocuments>

<XmlDocument NamespaceURI=
"http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
<FormTemplates>
<Display>DocumentLibraryForm</Display>
<Edit>DocumentLibraryForm</Edit>
<New>DocumentLibraryForm</New>
</FormTempTlates>
</XmTDocument>
</XmlDocuments>
</ContentType>
</Elements>

Site Columns

A site column is a column definition that can be used in multiple lists on multiple SharePoint
sites. Site columns have much in common with content types. For example, like a content
type, a site column can help keep metadata about an item consistent across sites and lists.
Also like site content types, you define a site column at the site level, independent of any
actual list or content type, and child sites inherit site columns by reference. When you add a
site column to a list, the site column is copied locally to the list as a list column.

Site columns are scoped in the same manner as site content types. The site column is available
to the site on which it is created and on any child sites. At the site level, the site column collec-
tion contains definitions for or references to the definitions for each site column available on
the site, whether or not is has been added to a content type or list.

Organizing Lists and Documents with Site Columns and Content Types 67

Site Column Properties

A site column has several properties that define it, including its name and its data type. A site
column is also a member of a column group, which is a user-defined group that organizes col-
umns into categories.

A site column’s name must be unique among all column groups in the scope at which you cre-
ate the site column. A site column can be defined with one of the data types supported by
Windows SharePoint Services, including Single Line of Text, Multiple Lines of Text, Number,
Date and Time, Lookup, Currency, and others.

When you add a site column to a specific list or content type, you can set properties for the

column to define its behavior within that list or content type. For example, you can specify

whether the column information is required, whether the column is read-only, and whether
the column is hidden.

Each element manifest that defines a site column must follow the column definition schema.
The column definition schema for Windows SharePoint Services 3.0 builds on the schema
used in Windows SharePoint Services 2.0, retaining all its elements. The following XML
shows the schema:

<elements>
xmIns="http://schemas.microsoft.com/sharepoint/"
<fields>
<field>
ID as guid, required
Group as string, required
Name as string, required
DisplayName as string, required
Type as fieldtype, required
Sealed, as boolean
Readyonly, as boolean
Hidden, as boolean
RowOrdinal, as integer

Working with Site Columns and Content Types

In the following sections, you'll see examples of how content types and site columns are used
to manage and store information. First, we’ll create a site column definition on a top-level site
(the Project Management site created in the previous chapter) that performs a lookup in the
Projects list. We’ll use that site column to define a column in a list on a child site within the
same site collection. Next we’ll create several content types. As mentioned earlier, content
types provide an additional layer of organization and access to the content that is stored in a
document library, and offer a mechanism by which users can store documents in a document
library in a more structured way.

68 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Creating a Site Column for Project Lookups

The site column we create in this section is used to look up items in a list. To start, on the top-
level site, click Site Settings on the Site Actions menu to open the Site Settings page. Under
Galleries, click Site Columns, and then click Create on the Site Column Gallery page, which
lists the built-in site columns and their types. When you click Create, the New Column page,
shown in Figure 4-2, opens.

/3 Create New Column - Microsoft Internet Explorer 1=

J Ele Edit View Favortes Tools Help ‘ .'f
J QsBack - & - [\] @ |) Search <'; Favorites 44 | =R e
JAQdTESS I@‘I http:foss1fsitesiProjectManagement)_lavouts/Fldnew. aspxrweb=1 j Go

Lwi Project Management Welcore litwareinchAdrministrator = | My Site | My Links> | Help | Send Feedback =]

@ LW Project Management

Home Torth Division South Division

LW Project Management > Create Mew Column
ED New Column: LW Project Management
Use this page to add a column ko this list.

Name and Type Column name:

Type a name For this column, and I
select the type of information waou
wiant bo store in the column, The: type of infarmation in this column is:

% Single line of kext

€ Multiple lines of text

™ Choice {menu ta choose From)

€ Mumber (1, 1.0, 100)

€ Currency (§, ¥, €)

€ Date and Time

™ Laokup (information already on this site)
€ Yes/Mo (check box)

(™ Person or Group

€ Hyperlink ar Picture

™ Caleulated {ealculation based on other calumns) LI

@1 pore [T M tecairanet
Figure 4-2 The New Column page

We'll name the site column Project and specify that its type is Lookup. We also add the col-
umn to a new group, named Litware. In the Additional Column Settings section, we can add
a brief description and modify the site column so that it requires information. We assign the
Projects list as the source of information for the lookup column and designate the Project col-
umn as the column to be used in the lookup. When we’ve finished filling out the New Column
page, the Group and the Additional Column Settings sections include the information shown
in Figure 4-3.

Organizing Lists and Documents with Site Columns and Content Types 69

R Create New Colamn - Microsalt Inteenet Exploeer =1l]
_Ue Gt Wew Faeorkes Look o |T
Qo = O - (5] (3} [S sewch SiPovorkes €| - L - L))
s [Jopcutall Wiewtc asprraeh me o z] o _|nks *

T T |

% Lok (infoemation already o this ste)

e M (chech b

£ parsen or Group

£ pyperdek.or Ficture

€ Caloulated {calrulation based on other eolmns)

' Full HTHL corient mth optional formatting and content constysirks
' A pictures with display sltribubes and optionsl coretraints
£ & hiyperink with deplay sttributes and optionsl constraints
£ Sumamary Links data

£ Piage Layat Variations

 Conbent Lype [0

£ ausderve Tarptng

Group Put this ske column inbo;

1= New groun:

[titweare

Auddivnal Calusn Settings Desurptan:
oecky detaded cptons for the type of fe ou s S e e |p.-..,e..u.u culuarmn il

Require thal this cobumn contsins information:
@ ves T ho

et information from:
[Frojects -

B R ek

[Project =] I o muibpe vk

=

(S iecalintranst

[E] vore
dfslnlle || @] ceeate wew Column - . B:24 AN
Figure 4-3 Information needed to create a lookup column

We can now use the Project site column in a list. We create a list that uses this site column on
the North Division child site created in the previous chapter. The list will be used for tracking
consultant time sheet information. This scenario demonstrates how a site column can easily
enable lookups across sites within a site collection.

On the North Division site, click Create on the Site Actions menu to open the Create page. In
the Custom List area, click Custom List, which takes you to a page that you use to name the
new list. Name the list Timesheets.

When the Timesheets list is created, its Allltems.aspx page opens. On this page, click List Set-
tings on the Settings menu to open the Customize Timesheets page. Click Versioning Settings
in the General Settings section. On the Versioning Settings page, modify the list by selecting
Yes for the option Create A Version Each Time You Edit An Item In This List? With this
option, you can track changes made to time sheet items in the list by time and user.

The next step is to define columns for the Timesheets list, which are listed and described in
the table on the next page.

70

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Column Name

Type

Notes

TimesheetID Single Line of Text ~ Renamed the Title column to TimesheetID.

Consultant Choice To simplify this example, this is a choice column with
three choices for the consultant: Britta Simon, John
Rodman, and Mike Fitzmaurice.

Project Lookup This column should be based on the Project site col-

umn created earlier in this example. It was created by
clicking the link Add From Existing Site Columns.

Submitted On

Date and Time

This column is formatted to show the date only. It is
also a required column. The default value is the current
date.

Hours Number This is a required column. The minimum value is set to
1 hour and maximum to 24 hours. The maximum rep-
resents the fact that each time sheet item will account
for one specific day.

Hourly Rate Currency This is a required column.

Created By Person or Group This column is automatically created when you create
a new list.

Modified By Person or Group This column is automatically created when you create

a new list.

Figure 4-4 shows the Timesheets list with some test data entered. You can see that the Project
column has performed lookups using project names in the Projects list from the parent
Project Management site.

A} Timesheets - Micrnsnft Tnbernet Buplarer == x]
| B ER e Faerdes Tooe Hen | '
Qeok =) - (=] (2] 0| Soawch iPaverkns £ | (- Pa (2 - [
| address [] Timeshasts|altens. a5 =l Eoo
L¥ Project Managerment wnchdrmstrator = | My Site | My Links = | Help | Send Fesdtack =]
@ North Division [al Coverne =)
Home Hoeth Division Souith Divtsion
= LW Praject Management » North Division » Tumeshests
\) Timesheaets
Wiew Al e Conkent Mew = | Actions~ | Settings v | Al ttemns ~
Ducuments]
Pictures] Temestpt 1 [e Bt Semon Ftwhs001 112008 L] $su.m
Lists 1 Tenashatis | e Uit Simon Adwhsi1 s B A
Tim B Timeshentd [rew Fritta Simon Wingii | 1afannd & $50000
Discussions B Tissdwerd 04 L it Briltia S AeWs001 15008 4 $50.00
Rarere 0 Timestreet05 ! rew Brilka Sinon Wing0i1 162006 3 $50.00
Praple and Geoups
=l mecycle Bin
=l
] Done: . Local ntranet

Figure 4-4 The custom Timesheets list includes the site column named Project.

Organizing Lists and Documents with Site Columns and Content Types 71

Creating Custom Content Types

In this section, you’ll see how to implement custom content types and use them within a
document library. First, we’ll create a content type named LitwareDocument. This content
type serves as a base content type. We'll also create two content types, LitwareProposal and
LitwarePresentation, that derive from LitwareDocument.

Start on the Project Management site’s home page by clicking Site Settings on the Site Actions
menu. On the Site Settings page, under Galleries, click Site Content Types to open the Site
Content Type Gallery page, shown in Figure 4-5. Like the site column gallery, the site content
gallery lists the standard document, folder, list, and other content types that Windows
SharePoint Services provides.

A} Site Content Type Gallery - Marensoft Internet Euploeer | =]
| B BB few Faeces Tod b | a |
[Qeact +) -)) (b S soweh wentes 0] e o 0]+ 43 _
| s [£] s ERE
L¥ Project Managerment Welowne MwarendAdommstrator = | My Site | My Links = | Help | Send Fesdback]

@ LW Project Management

Heme oeth Division Ssuith [itstsion

LW Project Managemant > Site Settings > Site Content Type Gallery
Site Content Type Gallery
create Show Graup: | [all Groups =]
Custorm Conbenl Types
1w Converted Formeontent Type Dooument LW Project Mansgement
Document Content Types
Cocument Ttem LW Projert Management
Form Crooument LW Project Management.
Master Page Cuoument. LW Project Management.
Ficture Dooument LW Project Mansgement
wiks Page Dorument LW Projert Management
Fulder Contend Types
Discussion Fidar L Project Mansgement
Folder Item LW Project Mansgement
InfoPath Content Types
Infoiath Form Template Dorument LW Projert Management
List Content Types
ARRGUNCETEE Item LW Project Mansgement
Conkact Item LW Project Mansgement
Event Ttem LW Projert Management
Tesus Tem LA Projeck Managemmenk |
Ttem System LW Project Management.
Lnk Ltem LW Project Mansgement
Mesaye Ttem LW Projert Management
Tak e [TT S —. =)
] Done [| | [duncalintranet

Figure 4-5 The Site Content Type Gallery page

Next, click Create to open the page used to create a content type. To create the LitwareDocu-
ment content type, fill in the page with the information shown in Figure 4-6. Notice that the
content type was added to a new group, named Litware.

72

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

T Mew Sibe conkent bype - Micensolt Inteenet Euploeee | =]
| B B Yew Faordes Tok B |T
[Qbock +) - (=) (3 (o) Sowch - Poortes 9] (3 i (0] =) ,
| s [£] s ERE
L¥ Project Managerment Welowne MwarendAdommstrator = | My Site | My Links = | Help | Send Fesdback]

@ LW Project Management

Home keth Dhvision Soukh Dwvtsion

LW Praject Managemant > Site Settings > Sibe Content Type Gallery > New Site content type

New Site content type

Marve and Description Harre
Type & fiame and description for th LitwareDocurnent

Desaription:

Rase content typa for Litwars documents <]

=

Parent Conberk Type:
Select parent conberk tpe from:
Docurnent Content Types =
Parent Content Type:
Docurment 'i
Desoription

A genaric document and the ancestor For ol document content
types.

Grnup Pt this site content bype inkne

€ Extsting group:

% Mew group:

Ltwiarer
ok || coms
] oone [|| N3 tocal intranat

Figure 4-6 The LitwareDocument content type serves as a base content type.

To continue defining the LitwareDocument content type, we added three columns from

the set of custom and built-in site columns: Author, Project, and Append-Only Comments.
The Author column and the Append-Only Comments columns are provided as standard Win-
dows SharePoint Services site columns. The Project column is the custom column created in
the previous example. The Add Columns page is shown in Figure 4-7.

Note To get this example to work in beta 1, the Project column had to be configured as an
optional column.

Next we created two derived content types: LitwareProposal and LitwarePresentation. These
content types inherit from LitwareDocument, which means that they automatically contain
the columns defined for the base content type. We can extend the derived content types by
associating a document template with each of them.

Figure 4-8 shows the information used to define the content type named LitwareProposal.
The settings for LitwarePresentation are essentially the same. As you can see, the derived
content type contains the same columns that were defined in the base content type,
LitwareDocument.

Organizing Lists and Documents with Site Columns and Content Types 73

2} add Columins to Content Type - Microsoft Inbernet Bxplorer

B ER e Fparie Twi teb | &
QBack + &) - (=) (2] | S Seareh o Faverkns £ | (e fa (9] ¢ [0
advess [£] DA ALLLS T = B

LW Project Managamant Welouime bwsrmncddemmstrator = | My Site | My Links = | Helg | Send Fesdback | ~|
@ L\ Project Management
Hame Harth Division Seath Divtson [site Actions - |

Add Columns to Site Content Type: LitwareDocument

Lises this puage bo add sk eokmng o this sk conkent bype.

Select Culumns Seack cohsane friom:

Froem the kst of svalable ste columns to add them to thes all Groups =]
B Avallble columrs: Columr o i
Author
Project

Assigned To Append-Cnly Comments
Business Phone
Category @
Catedory e |
Cateyory
Cornments ﬂ
Column Descriphion:

Update Lists and Templates Updste al content types inhanbing from this type?
('™
[l ™

S =
(1o | L S3uocintranet

Figure 4-7 The LitwareDocument content type includes built-in and custom site columns.

B ER e Fparie Twi teb | &
Otk - O - (&) @) G Psowch chovorios 8] (30 B (3])3
Agdress |{] pe. S LELF TG e —— = E
L Project Management Weloae wsremcddrmstrator = | Hy Site | My Links = | Help | Send Fasdback]
@ L\ Project Management

Home | MeethOhision South Division ke Actions |

LW Projeck Managemant > Site Sextings > List Content Type

Site Content Type: LitwareProposal

Site Lontent Type Informatian

Narne Fa———
DIESCription: Content type For Liware proposals

Pt Libwarefoaumens
Groupi Liware
Settings

W Hame, descriplion and group

B advanced settings

B iworkflow settings

8 Duednte this sk content bype

8 Tharge Dooument Information Panel setlings
W irformatacn mansgiek pokcy sellings

Cobanms
Hame Tree Status Source
Hame e Rerauared Dncument 1
Titke Sawghe e of Lext St Ttem
Auther Single bne of text Dptionsl Litwareliocumen:
Frofect Lookup Cptond Litwaraliocument:
#ppend Crly Comments gl Ines of tet Cptional UnuareDocumert
=l
|Eone A T

Figure 4-8 The LitwareProposal content type is derived from LitwareDocument.

74

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

By clicking the Advanced Settings link, we open a page that’s used to upload a document tem-
plate for this content type. In this example, the template file for proposals is named Litware-
ProposalTemplate.dotx, as you can see in Figure 4-9.

AR Site Content Type Advanced Settings - Miceasodt Tnbeenet Buplorer | =]

| B BB e Fperdes Took bel |

[Qe = 3 - (#) [F (0| Seanch i Paverkns | (- Fa (2] - ()]

| Adress [{2] herpeifoss 1 istesrometmansasninnd ayoutsihangelankent TyoaOptonaettings. S50 ctyde)L DA SR TEL: T LAV TS AL SS0AGLF I B> E |
LW Project Managerment Weluome MwsremdAdommstrator = | My Site | My Links = | Help | Send Fesdback LI

@ LW Project Management

Sousth Dibstsion

LW Project Managemant > Site Settings > Site Content Type Advanced Settings
Site Content Type Advanced Settings: LitwareProposal
Docusnent Template € Ener the URL of an existing documerk: template:
= Uplnad & resw document bemplabe:
fruest Termplatistl twareProposal lemplite dots] Browse
Rl Mnly el this conbent bype b read onky?
- e
= o
Updabe: Sites and Lists Upette ol comkent types inherting from Hes ype
- g . & Yo
[ad™Y
I
=l
&) oone [| [8duncal intranet

Figure 4-9 The LitwareProposal content type is associated with a particular document template.

After completing these steps, there are two content types that can be used within the Project
Documents document library.

Before this set of content types can be used, we need to configure the Project Documents doc-
ument library so that it allows multiple content types. We do this by opening the Document
Library Settings page and then clicking the Advanced Settings link. Figure 4-10 shows the Doc-
ument Library Advanced Settings page and the option that allows for multiple content types.

We also use the Document Library Settings page to add the content types LitwareProposal
and LitwarePresentation to the document library. In the Content Types section of the page,
click Add From Existing Site Content Types, and then add LitwareProposal and Litware-
Presentation.

Now we can go back and examine the files that are already in the Project Documents docu-
ment library by choosing Edit Properties in the drop-down menu for each individual docu-
ment. This command opens a page that allows you to change the content type for each
document. When we’ve finished with the test data, there should be no documents still
assigned to the standard content type named Document. Figure 4-11 shows the properties for
a sales presentation with the LitwarePresentation content type specified. Notice that the con-
tent type columns—Author, Project, and Append-Only Comments—are included in the docu-
ment’s properties.

I} Dncument |iheary fuly

Organizing Lists and Documents with Site Columns and Content Types

Srttings - Micrasodt Inbernet Explorer
Help

| &

3 | P sonech o Pavertns €0 | (e P 3] -)

FListe "t TUOGUT 7T 41T 204 D LTI R T

=)

L' Project Management

Welcome bwaremcAdirunistrator = | My Site | My Links = | Help | Send Fesdback | =

@ L\ Project Management

Heme Herth Division Seath Divtson

Upening Documents

— T

Custor Send To Destination

LW Prajeck Managemant > Project Documents > Seetings > Advanced Seetings

Document Library Advanced Settings: Project Documents

Alkow ks corkent ypes?
&5 Cho

Templste URL:

[Froject Dosumenss/Farmsitemplste do

Specky how bo open documants:
12 Open in the chert € avalstie
£ pen inthe Erowser

Destingtion name: (For xample, Team Librsry)

] Done

|

] Done

LW Projeck Managemant > Project Documants » Adventure Works Sales Presentation.ppts > Edit Tbem

Project Documents: Adventure Works Sales Presentation
=

[o | o |

¥ Delete Mam * kol eepied ekl
Lontent Type [Litwarerresentation =
Cantent type for Litware presentations
Hame [Adventure Warks Seles Pressmabon | ppte
Title [eiide 1
Author I

A core Office document property.

Project [1..001)
Append-Unly Comments AAIBIYU EFEE|ICEFF AN N

v warsinchadminitrator o Cancel I
16 P by Bwsaeeineduiminestratos

[I

B ER e Fparie Twi teb | &

Qe - -9 3 (i || Soarch o Favortns 71| (- --.Q-'.-n

e [] ormsfEde b MK i 0551 Rl StaSTREY Froftianagement st Prieetiiibocs = | [6o

L Project Management Welcoine waremcAdmimstratar = | Hy Sita. | My Linke =) [HEIAN) Send Fasauack) =]

@ L\ Project Management [ad Cortent Bl
Home: Morth Division Sonith Division

‘Site Actions - |

[8:d tncal intranet

|

75

Figure 4-11 Document properties now include the columns defined for the LitwarePresentation

content type.

You can test whether a particular content type has been specified for each file in a document

library by opening the Document Library Settings page for the document library and

76

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

removing the original content type named Document. You will not be able to remove the Doc-

ument content type if one or more documents in the document library still are assigned to this
content type.

Users of the Project Management site can now use the New menu in the Project Documents
document library to create a Litware proposal or a Litware presentation based on the tem-
plates assigned to these content types, as shown in Figure 4-12.

AjProject Dncuments - Miressoft Internet Fuploees

B ER few Frode Tk b | & |
Qbok +) - (&) (3] ([S sowech SiPavorkes €| (3 N (3] - [
advess [£] e EEE
LW Project Management el e Aty slor = | Hy Sita | My Links = | Helg || Send Fesdback =]
@ LW Project Management [aa Cortent B

Home: Korth Division Souith Dtsion
S
= LW Project Management > Project Documents
\9 Project Documents

View Al ste Content wew v |uplosd v | actions v | Settings v Vs | All Documents =
Ducuments T e Uiwarepresentsion rodfied B ——
= Project Docunants] nisw LiwornProposal FUFD006 10:99 AM Rarewi st sor Audertaon
Lists . Mew Folder I 100 A Wwareirc|adnmetraton ConkDul
* Projects L= ke o nesn Foleer b this document Bbeary. 3[R{2006 10:50 AM Wwarrine) Admministratos Wingi1
Peaple amd Groups EME{A006 10:50 AM Bvaireine | Adiminidrabor Wingl
2l Recycle Bin

] tone || [Sduncalintranet

Figure 4-12 The New menu includes commands for creating documents of particular types
using a specific template.

Chapter 5

Working with Features in
Windows SharePoint Services

In this chapter:

Implementing Features oottt i 78
Feature Elements oottt i it it 78
Element SCope . ..o ot 79
Activation Dependencies and Scope it i i i e 79
The Structure of Featurexml i 80
Features and the Windows SharePoint Services Object Model 82
Designing Windows SharePoint Services Applications Using Features 84

Microsoft Windows SharePoint Services features are collections of logically related items and
operations that can be added to and used repeatedly across site definitions. Features are a way
to enhance the modular provisioning of SharePoint sites and help lessen the work required to
make simple site customizations. For example, features eliminate the need to copy large
blocks of code to change simple functionality. They reduce versioning and inconsistency
issues that can arise among front-end Web servers, and they make activating or deactivating
functionality in the course of a SharePoint deployment easier. An administrator, for example,
can transform the template or definition of a site by toggling a particular feature on or off in
the Windows SharePoint Services user interface.

Features provide the following capabilities :

Scoping semantics for determining where custom code runs
Pluggable behavior for installing or uninstalling features within a deployment
Pluggable behavior for activating or deactivating features at a given scope

A scoped property bag for storing data required by a feature within its scope

Versioning and upgrade semantics that enhance code consistency and safeguard cus-
tom code within a deployment

m A framework for distributed deployment of SharePoint solutions

77

78

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

This chapter touches on the basics of working with Windows SharePoint Services features,
including how to implement a feature, the structure of the XML file that defines a feature, and
the Windows SharePoint Services classes that are used to work with features programmati-
cally. The last main section of the chapter demonstrates how to create and implement a sim-
ple feature on a SharePoint site.

Implementing Features

To implement a feature, you need to add a subfolder that contains the feature’s definition to
the Features setup directory at the following location:

\Program Files\Common Files\Microsoft Shared\web server extensions\
1I2\TEMPLATE\FEATURES

The subfolder for a feature includes a file named Feature.xml, which defines the base proper-
ties of the feature and lists elements that are bound to the feature, such as XML files that con-
tain element manifests and other supporting files. The folder for a feature might contain only
the Feature.xml file, or it might contain Feature.xml and any number of supporting element

files, including other XML files or .aspx, .htm, .xsn, .resx, .dll, or other file types.

After creating the feature’s folder, you can install and activate the feature through the Win-
dows SharePoint Services user interface, command-line operations using stsadm.exe, or the
Windows SharePoint Services object model. (You'll see examples of batch files that use
stsadm.exe later in this chapter.) Installing a feature makes the feature definition and its ele-
ments known throughout a server farm. Activating a feature makes the feature available at a
particular scope.

Feature Elements

As mentioned previously, a feature includes the Feature.xml file and any number of files
describing elements of the feature. The Feature element is used in Feature.xml to define a fea-
ture and to specify the location of assemblies, files, dependencies, or properties that support
the feature. The Feature element can also be used in an Onet.xml file to specify that a feature
be included within a site definition.

A Feature.xml file usually points to one or more XML files whose top-level Elements tag con-
tains definitions of elements that support the feature. Elements in Windows SharePoint Ser-
vices 3.0 correspond to what were discrete nodes in the Onet.xml or Schema.xml file in the
previous version.

A feature can include several types of elements, such as a custom menu item, an event han-
dler, a content type, a list instance, and so on. The collective operation of these elements and

Working with Features in Windows SharePoint Services 79

their relationship defines the functionality of a feature. For example, a feature named “My
Favorite Items” might provide its functionality by including the following elements:

B A custom list that stores each user’s favorite items. The list is created as a single hidden
list per workspace when the feature is enabled.

B A custom menu item named Add To Favorites that is attached to all lists.

m A Web Part that implements usage and link tracking to display the user’s top 10 favor-
ites as the first items in the list.

Element Scope

Features can be scoped at the level of a site, site collection, Web application (virtual server), or
server farm. A particular feature can be activated for a single scope. The scope of a feature is
determined by the value of the Scope attribute of the Feature element.

m Site and site collection scope A site feature is scoped at the individual site level. A site
collection feature contains items that apply to the site collection as a whole (Web Parts
or item protfiles that apply to the site collection, for example) in addition to items that
can be activated per site. Elements with a site or site collection scope include list defini-
tions (templates, views, and instances), modules (file sets), and item content type
behaviors (for example, per-item custom menu options and per-item events).

B Web application scope A feature scoped for a Web application, or virtual server, can
be activated or deactivated and can contain the elements for virtual server assemblies
and virtual server administrative links.

m Server farm scope A farm feature is scoped for an entire server farm and, unlike a fea-
ture with site or site collection scope, is always activated by default in the farm. A farm
feature contains a number of elements that are required for implementing applications
and logic anywhere within a deployment of SharePoint. A farm feature can contain links
to _layouts pages and files, _admin pages, and other elements.

Activation Dependencies and Scope

A feature can be defined so that it is dependent on another feature or features for activation.
Activation dependencies can be expressed for features of the same scope, or a feature at a par-
ticular scope can be dependent on a feature at a different scope (a cross-scope activation
dependency). For example, a feature at the site level can be dependent on a feature that is
scoped for the site’s site collection. Cross-scope activation dependencies cannot be formed if
the dependent feature has a more restrictive scope. In other words, a feature scoped for a site
collection cannot have an activation dependency on a feature scoped at the site level.

80 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

A feature can have an activation dependency on either hidden or visible features. (A hidden
feature is determined by the setting of the Hidden attribute of the Feature element.) Hidden
features themselves, however, cannot have any activation dependencies.

Note Windows SharePoint Services 3.0 deactivates a dependent hidden feature if the last
visible feature at the same scope that has an activation dependency on the hidden feature is

deactivated.

Scope and Feature Globalization
Two types of resources can be implemented in features for support files:

m Local resources that are stored in a subdirectory within the Features folder in the
\TEMPLATE\FEATURES directory.

m Shared application feature and site definition resources that are stored in \web
server extensions \12\Resources and are designed to be used across features and
site definitions.

The Localeld attribute of the Feature element specifies the language of the feature. This
attribute can be set to 0, which makes the feature available to all languages and cultures.
The developer of a feature can declare a feature to be culture-neutral, even if the feature
contains potentially localizable resources, which will be displayed in all languages.

The set of language support files plus the default language of the feature constitute the
set of available languages for a feature. A feature scoped at the farm or Web application
level does not activate if the feature does not support the language of the administrative
user interface. A feature scoped at the site collection level always activates because a site
collection is assumed to be inherently multilingual. A feature with a site scope is not
available for a site if it does not support the language of the site.

The Structure of Feature.xml

In the Feature.xml file, the Feature element defines a feature and specifies the location of
assemblies, files, dependencies, or properties that support the feature. A Feature.xml file can
contain the following elements:

Feature
ActivationDependencies
Activationbependency
ElementManifests
ElementFile
ElementManifest

Working with Features in Windows SharePoint Services 81

The ActivationDependencies element specifies a list of the features on which this feature
depends for activation. The ElementManifests element specifies a list of element container files
that include definitions for the operations that make up the feature.

The following table lists and describes the attributes for these elements.

Name Data Type Description

Feature Attributes

Id Guid The unique identifier for the feature.

Title Text Returns the title of the feature; limited to 255
characters.

DefaultResourceFile Text Optional. By default, if a developer specifies a resource

in the Feature.xml file, Windows SharePoint Services
looks in FeatureName\Resources\Resources.Cul-
ture.resx. However, through DefaultResourceFile, you
can specify an alternative file from which to grab

resources.

Description Text Optional. Returns a description of the feature's
function.

Version Version Specifies a System.Version-compliant representation

of the version of a feature. This value can be up to
four numbers, delimited by decimals, that represent a
version.

ReceiverAssembly Text Optional. If this attribute is set along with Receiver-
Class, it specifies the assembly from which to load a
receiver to handle feature events.

ReceiverClass Text Optional. If this attribute is set along with Receiver-
Assembly, it specifies the class that implements the
feature event processor.

ActivationDependency Attributes

Featureld Guid The ID of the feature that a dependency refers to.

Title Text Optional. Title of the feature on which this feature is
dependent. This field is usually localized.

Description Text Optional. Description of the feature on which this fea-
ture is dependent. This field is usually localized.

Url Text Optional. A URL that contains more information about
the feature in question. This field is usually localized.

ElementFile Attributes

Location Text Specifies the relative file path to the root element
manifest file.

ElementManifest Attributes

Location Text Specifies the relative file path to the root element
manifest file.

82

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The following example shows a Feature.xml file that specifies installation dependencies, spe-
cial fields, and relative paths to element definition files.

<Feature

Id="1111111-11111-11111-11111"
Title="Location Services"
Description="This feature contains lists and parts that let you 1link
location data to your customer lists."
Scope="web">
<InstallationDependencies>
<InstallationDependency
Id="FEEDBADA-11111-111111"
Title="Portal Search"
Description="This feature contains portal search functionality"
url="http://www.microsoft.com/sharepoint">
</InstallationDependency>
</InstallationDependencies>
<PropertySchema>
<Fields>
<Field
Type="Text"
Name="ProjectName"
DisplayName="Project Name">
</Field>
</Fields>
</PropertySchema>
<ElementManifests>
<ElementManifest Location="Location\LocationPart.xml"/>
<ElementManifest Location="CustomerLocation\CustomerLocationList.xml1"/>
<ETementFile Location="test.aspx"/>
</ElementManifests>

</Feature>

Features and the Windows SharePoint Services
Object Model

Windows SharePoint Services provides an object model that can be used to determine the list
of installed features within a given scope and for controlling whether features are enabled at
the farm and site levels. The following sections summarize the classes used in working with

features.

Feature Classes

The following are the main classes you use to work with SharePoint features programmatically:

B SPFeature (SPFeatureCollection). This class returns an object that represents the state of

a feature at its corresponding level. The presence of a feature in a collection at the virtual
server, site collection, or site level scope means that the feature is activated. The absence
of an SPFeature object indicates that the object is not added. The SPFeature class is
included in the Microsoft.SharePoint namespace.

Working with Features in Windows SharePoint Services 83

SPFeatureProperty (SPFeaturePropertyCollection). Objects of this class represent a single
feature property. The SPFeaturePropetty class is included in the Microsoft.SharePoint
namespace.

SPFeatureScope. This class provides an enumeration of the possible scopes that can be
specified for a feature, including Farm, WssWebApplication, Site, and Web. The SPFeature-
Scope class is included in the Microsoft.SharePoint namespace.

SPFeatureDefinition (SPFeatureDefinitionCollection). This class contains the base defini-
tion of a feature, including its name, type, and the version of the feature. Also, you can
store properties about the feature globally per feature. For example, a feature could be
associated with a central administrative page for setting configurations for a feature. The
SPFeatureDefinition class is included in the Microsoft.SharePoint. Administration
namespace.

SPElementDefinition (SPElementDefinitionCollection). This class represents an element to
be provisioned when the feature is activated or used. The SPElementDefinition class is
included in the Microsoft.SharePoint. Administration namespace.

Accessing Feature Collections

You can get the collection of features for a Web application, farm, site collection, or site by
using one of the following properties to access the collection:

Microsoft.SharePoint. Administration. SPWssWebApplication. Features returns a list of
features activated at the virtual server level for the Windows SharePoint Services Web
application.

Microsoft.SharePoint. Administration. SPWssService. Features returns the administrative fea-
tures that have been activated at the server farm scope.

Microsoft.SharePoint. Administration. SPFarm. FeatureDefinitions returns the list of all
installed features in the server farm.

Microsoft.SharePoint.SPSite. Features returns the list of features for the site collection.

Microsoft.SharePoint. SPWeb.Features returns the list of activated features for a site.

The following example demonstrates how to use several of these classes and properties to dis-
play the list of names and the GUIDs of the features that are activated on a specified site:

SPSite siteCollection = SPControl.GetContextSite(Context);

SPWeb site = siteCollection.Allwebs["Site"];

SPFeaturecCollection siteFeatures = site.Features;

System.Globalization.CultureInfo cultureInfo = new System.Globalization.CultureInfo(1033);

foreach (SPFeature siteFeature in siteFeatures)

{

Response.write("Title:

+ siteFeature.Definition.GetTitle(cultureInfo) +
"
ID:" + siteFeature.DefinitionId.ToString() + "

");

84 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The next example uses information returned through the previous example to add a feature
to a subsite:

SPWeb subSite = site.webs[""];
System.Guid guid = new System.Guid("6e005f62-f8b2-4073-a673-c035c9129946");
subSiteFeatures.Add(guid);

Features and Events

Windows SharePoint Services also provides classes for responding to feature events. These
classes allow you to trap and respond to an event that occurs when a feature is installed in a
server farm, added to a new virtual server, or removed. Such an event is a post event, meaning
that it occurs after the respective behavior has been committed and the feature definition has
been created in the collection of feature definitions for the farm. You cannot cancel the instal-
lation or removal of a feature through a feature event.

W SPFeatureReceiver is the base abstract class that can be overridden to trap the activation,
deactivation, installation, or removal of a feature. Each of these events is a post event.
The SPFeatureReceiver class is included in the Microsoft. SharePoint namespace.

m The SPFeatureReceiverProperties class provides access to event properties such as the fea-
ture instance that has been created, the feature definition, or the parent object of the
feature (for example, an SPWeb object). The SPFeatureReceiverProperties class is included
in the Microsoft.SharePoint namespace.

Designing Windows SharePoint Services Applications
Using Features

The following sections present examples of how to work with features on a SharePoint site.
We'll look at features from the end-user perspective, to see how a feature is activated or deac-
tivated, and then we’ll look at the XML file structure for a feature and at a batch file that can
be used to install and activate a custom feature using stsadmin.exe commands. We'll com-
plete the set of examples by creating and testing a custom feature using XML files and
Microsoft Visual Studio 2005.

Activating and Deactivating Features

Figure 5-1 shows the Create page for a new Windows SharePoint Services site at the root of
the default Web site. This top-level site is based on the Blank Site template. As you can see, the
Document Libraries section lists four types of libraries that can be created for the site: Wiki
Page Library, Document Library, Data Connection Library, and Form Library. Slide Library is
not among the items in this list. It first needs to be activated as a feature before one can be cre-
ated for this site.

Working with Features in Windows SharePoint Services 85

Ajrreate Mirensoft Internet Euploere | =]
| B BB few Faeces Tod b | &]
[Qoo ~ 3 - (X (3] | S Soanch liPavertos 0| 3+ Fa (3] - L) |
| tiess [] st ovenssiorese. s B>
Team Site Welure LITWAREING ademstrator = | Hy Sita | My ke = | Helg) || Send Fasdback =]

3°4® Team Site

Hame

Team Site > Creste

Create Page

Select an item to create a new list, library, discussion board,
suFuey, page or site:

Dacument Libraries Pickuer |ibraries Lists Custom Lists Surveys Wieh Pages

® Picture Ubeaey

. Survey

® Links
= lmprt Spreadsheet

= Form Library

|

[t L] Rl

Figure 5-1 The Create page shows the types of document libraries available for this site.
Here are the steps for activating a feature for a site collection:

1. On the home page, click Site Settings on the Site Actions menu.

2. On the Site Settings page, in the Site Administration section, click Site Features to open
the Site Features page for the current site. (See Figure 5-2 on the next page.) You can use
this page to examine the set of installed features available at the site level, including
those that are activated and deactivated for the current site. Also, you can determine
which features are automatically activated for the site template you used.

3. Locate the feature you want to activate (Slide Library, for example), and then click Acti-
vate. Click Deactivate to deactivate a feature.

Note After you have activated a feature, return to the site's Create page (click Create on the
Site Actions menu), and you should be able to confirm that the feature you activated now
appears.

86 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

A} Site Fratures - Microsnit Inbermet Peplorer =1l =]
EX | & |
| Qe » O - (x (3] G| S ek i Favertns £ | (00 G] - [|
|evess [] hetpccssa Javensaimansgat estures.sazs a)> I
Team Site Welvurne LITWAREINC adrmmstrator = | My Site | My Links = | Help | Send Fesdback | 2]

3°4® Team Site

Herim

Team Sile > Site Setlings > Site Fealures
ED Site Features
j MaobdtyRedirect Athve
W Moble LRL Rediraction. Deactivate
Acthoe
T} Teom Collaburation
Deactivate
2 search Thactive
é) Tnchides rrnkent management, seaech, peogle, ske denctoey, Exeel woekbook diplay, Infoath foems, report manageman, .
Lsiess deka uorrreutivity v KPT fuctonaiky T =
_j Office Server Admin Tasks Tractive
QOB Office: Server Admin Tasdks. Actheake
shide Library Thactive
\.__‘|) Creaite a ke Whrary when yous hawn Microsoft Powweroint sbdes you want i share. Sl Weories pervids specinl Frabuees For .
Firdng, manegng and reusng shdes. Atk
This web: sk For pxample, ragpecal. Acthvotn
Translation Management Lbrary
) reate i rartaton marsgement Ueeiary when you want & il LR
4 ks, T 4 workflows and Fesbures Ativate
such as sl b, i versaonin, amd chediydedet. |
Inackive
TH) | Indse st cohorrin o conumans Mortes i the web. It ol Agsoned ochasn 1 B Eaek 2s 1 K e ek thi Trée -
i ravigalion visble n this e, AN
Search Lenter UKL Tracthve
) Mokt A =
] tone | | [duncalintranet

Figure 5-2 Use the Site Features page to activate or deactivate a feature through the Windows
SharePoint Services user interface.

Working with a Custom Feature

Next we’ll look at some of the files used to define a feature and at a batch file that can be used
to install and activate a feature that you might create. The feature we’ll examine is a custom list
type named LitwareTimesheets. This feature has been designed to create a list instance and
add some initial data items to the list.

Figure 5-3 shows the Feature.xml file, which is the feature manifest. As you can see, this file
gives the feature its name and identifying GUID and defines its scope. This feature is scoped
at the site level because its scope has the value "Web". You can also see that an ElementManifest
element points to the location of a file named Timesheets.xml, which contains the data that
will be included in the list once the feature is installed.

: Working with Features in Windows SharePoint Services

ocurnents and Settings', Administrator.LLTWARLING My Documents'Visual Studio 2005\ ProjectsLab - S (=) |
| o Ede Wew Fgoites Tock Heb |
| ek -) - (W] 5] (0| Seoch - Fovoeites £ e e [
adrees |23 Cap #s awl : r Wty Shuko Y er| Bl
ol

- «Feature [d="00BFEATL D1CE-42de-9C63-A44004CC0104" Tite="Litware Timesheets" Description="This

feature provides support for Litwane timesheets.” Voraon=" 100000 Scope="Web® Hidden="FALRF"
wmins="http:/ fschemas.microsoft.com/sharepoint />
cElementMarsfosts>
=ElermentManifest Location-"ListTemplates Timesheats.xml’ /-
«/ElementManifests>
< /Fiaturns

R =
& Due [4 My Commputer &

Figure 5-3 The feature manifest file, Feature.xml

87

The following XML, from the schema.xml file, defines the list’s fields. This file also defines list

views and other information.
<?xml version="1.0" encoding="utf-8"7>

<List xmIns:ows="Microsoft Sharepoint"

Name="Timesheets"

Title="Timesheet List"

Direction="0"

url="Lists/Timesheets"

BaseType="0"

>

<Metabata>

<Fields>
<Field Name="Title" FromBaseType="TRUE" Type="Text"

DisplayName="TimesheetID" Required="FALSE"
MaxLength="24" 1D="{fa564e0f-0c70-4ab9-b863-
0177e6ddd247}" version="1" StaticName="Title"

SourceID="http://schemas.microsoft.com/sharepoint/v3"

ColName="nvarcharl” RowOrdinal="0"/>
<Field Type="cChoice" DisplayName="Consultant"

Required="TRUE" MaxLength="50" ID="{96fe5f63-bd85-4f87-
b423-5437e803b242}" SourceID="{e9b34e79-429b-42a4-bcba-

8b766aa59987}" StaticName="Consultant"

Name="Consultant" ColName="nvarchar3" Rowordinal="0">

<Default>Britta Simon</Default>
<CHOICES>
<CHOICE>Britta Simon</CHOICE>
<CHOICE>John Rodman</CHOICE>
<CHOICE>Mike Fitzmaurice</CHOICE>
</CHOICES>
</Field>

88 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

<Field Type="Choice" DisplayName="Project" Required="TRUE"
MaxLength="50" 1D="{el8a2fdc-c40a-4e33-9e84-
10a5df587da4}" sourceIlD="{e9b34e79-429b-42a4-bcba-
8b766aa59987}" StaticName="Project" Name="Project"
CcolName="nvarchar4" Rowordinal="0">
<Default>FI-23-123</Default>
<CHOICES>
<CHOICE>FI-23-123</CHOICE>
<CHOICE>MR-23-123</CHOICE>
<CHOICE>PR-10-232</CHOICE>
</CHOICES>
</Field>
<Field Type="DateTime" DisplayName="Submitted on"
Required="TRUE" Format="DateOnly" ID="{4676b294-0c00-
476a-8693-6012028ececf}" SourceiD="{e9b34e79-429b-42a4-
bc6a-8b766aa59987}" StaticName="Submitted_x0020_on"
Name="Submitted_x0020_0On" CoTName="datetimel"
RowOordinal="0">
<Default>[today]</Default>
<DefaultFormulavalue>2005-12-
30T00:00:00z</DefaultFormulavalue>
</Field>
<Field Type="Number" DisplayName="Hours" Required="TRUE"
Min="1" Max="24" Decimals="0" ID="{98fbe207-eedb-4903-
bbb9-d84016dfa0d0}" SourceID="{e9b34e79-429b-42a4-bcba-
8b766aa59987}" StaticName="Hours" Name="Hours"
colName="fTloatl" Rowordinal="0"/>
<Field Type="cCurrency" DisplayName="Hourly Rate"
Required="TRUE" Min="40" Max="225" LCID="1033"
ID="{d77c5eal-6646-4b18-90e4-16a23fb8dcd7}"
SourceID="{e9b34e79-429b-42a4-bc6a-8b766aa599871}"
StaticName="Hourly_x0020_Rate" Name="Hourly_x0020_Rate"
CcolName="float2" RowOrdinal="0"/>
</Fields>

And here is the XML that shows list properties and some of the data used to populate the list,
from the Timesheets.xml file:

<?xml version="1.0" encoding="utf-8" 7>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<ListTemplate
Name="Timesheet"
Type="10201"
BaseType="0"
onQuickLaunch="TRUE"
SecurityBits="11"
DisplayName="Timesheets"
Description="Litware Time Sheet List Type"
Image="/_Tlayouts/images/CHNGCOL.GIF" />
<ListInstance
Id="Timesheets"
Description="Litware Time Sheet List Instance"
TemplateType="10201"
Title="Timesheets"
Url="Timesheets"
>

Working with Features in Windows SharePoint Services 89

<Data>
<Rows>
<Row>
<Field Name="TimesheetID">Britta Simon FI-23-123
1/2/2006</Field>
<Field Name="Consultant">Britta Simon</Field>
<Field Name="Project">FI-23-123</Field>
<Field Name="submitted on">1/2/2006</Field>
<Field Name="Hours'">6</Field>
<Field Name="Hourly Rate">50</Field>
</Row>
<Row>
<Field Name="TimesheetID">Britta Simon FI-23-123
1/3/2006</Field>
<Field Name="Consultant">Britta Simon</Field>
<Field Name="Project">FI-23-123</Field>
<Field Name="Submitted on">1/3/2006</Field>
<Field Name="Hours">5</Field>
<Field Name="Hourly Rate">50</Field>
</Row>
</ROwS>
</Data>
</ListInstance>
</Elements>

Finally, here is the code from a batch file named Install.cmd. This batch file copies files into
the Windows SharePoint Services Feature directory and runs stsadm.exe commands to install
the feature and activate it on the site at the URL http://localhost.

@SET SPDIR="c:\program files\common files\microsoft shared\web server extensions\12"
Echo Deactivating feature
%SPDIR%\bin\stsadm -o deactivatefeature -filename
LitwareTimesheets/feature.xml -url http://Tocalhost
Echo Uninstalling feature
%SPDIR%\bin\stsadm -o uninstallfeature -filename LitwareTimesheets/feature.xml
IISRESET
Echo Copying files
rd /s /q %SPDIR%\Template\Features\LitwareTimesheets
xcopy /e /y Features\LitwareTimesheets* %SPDIR%\Template\Features\LitwareTimesheets\
Echo Installing feature
%SPDIR%\bin\stsadm -o installfeature -filename LitwareTimesheets/feature.xml -force
IISRESET
Echo Activating feature
%SPDIR%\bin\stsadm -o activatefeature -filename LitwareTimesheets/feature.xml
-url http://localhost -force

After this batch file is run, users can navigate to the site at the root of the default Web site and
see that a list has been created named Timesheets. (The Timesheets list will not show up on
the Quick Launch toolbar, so users would need to click View All Site Content on the Quick
Launch toolbar to see the list, which is shown in Figure 5-4.)

920 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

2} 1imesheets - Microsoft Internet Explorer =10 =]
I T ar
| sk ~ & - (x] (7] | S Soorch Fawvortos £ v g 2] = (3%
| s [2] herpeiflocabost Taneshestsialltens. & 8=
Team Site Welcame LITWAREINC\sdrninistratar= | My Site | My Links ¥ | HEIE D Sendresassern =|
4 .
"2 Team Site [ad Cortert =
Kt
g Team Site > Himesheets
J Timesheets
Wew Al e Content Litware Time Sheet List Instance
Documents Mew = Actions = | Settings > Ve | all Tiemesheeks =
Lists 1 Eritta Smon F1.23.123 122006 L e Britha Smon F1.23:123 1f2[20086 & $50.00
Discussivns A Erita S P33 BiltaSinon FLI3A73 1/3/7006 3 s0.00
Surveys] Eritba Sanon F1-23-1, Britks Simon Fl-23-123 174{2006 L] $50.00
People and Groups L) Greta Smon P2l Dttasmon FREMZY 1[S[H06 + Fo0.00
l Recyele Bin 1 FErtta SmonF1.23:0 Britha Smon F1.23.123 1Ef2006 a $E0.00
() Erita Senon MR-23-1Z3 1/2/2006 [rew BiltaSion MRZ3IZS 1/2/2006 3 $60.00
1]
8] Dune [T s iocaintramt 4

Figure 5-4 The Timesheets list and its data were created and installed through files that define
a feature.

Creating a Custom Feature

Now we’ll walk through the creation of a custom feature. We’ll work with a Visual Studio
project named LitwareFeatureLab.sln, which contains starter XML files for a feature named
LitwareFeatureLab and an assembly DLL project that we’ll use to create receiver classes for
the feature.

Figure 5-5 shows the feature manifest file, Feature.xml, open in Visual Studio 2005. As you
can see, this manifest file contains the essential feature attributes, such as the Id, Title, and
Scope, but nothing else at this point.

First we’ll add an element manifest to Feature.xml to reference a file named Lightup.xml.
Lightup.xml contains the feature’s functionality. Here’s the markup included in Lightup.xml
so you can examine the feature elements defined within it. We’ll simply reference
Lightup.xml in Feature.xml, which will add the functionality defined in Lightup.xml to the
feature.

: Working with Features in Windows SharePoint Services

#0 Litware! eatureL b - Microsodt Visusl Studio =10] %]
Be B Yew Project Bubd Delug ML Dpta Tet Took Wadow Qommundy Hel
- @ % Dm0k Dy = RNFRED-g
5| Featueesml | Stetfage | -
E <?xml version="1.0" encuding=®utf-g% 7>
T ~ (] Litwarel eatureLsb
i cFeature Td="BOFFEIF6-TF28-1Sed-BF94-OBSATEEISESIY B S Properties
Title="Litware Feature Lab" 3 Refrererces
Description=tThis festure provides custom Litware functionsility.” B B Fettres
Veraione®l 0.0, 00 5 [wareFeshurelab
:&] Feature.xml
4] Uighbup.aml
smlnsm hEtR S sohenas MmisEosolt, com/ sharspeint S 3 L Layouts
5] tretad.omd

<ElementBanifes
<1== nothin
</Elementinnifearas

1) Lwars,srih
&) LiwarnFraheel shierehoer o5

La/Features

| 5 Document -

|
El Mise
Encodng Unicode (UTT-1)
urp
Schemas
Brleheoet

il | o

| b Evror Lt
Ry i Coll ahi M

Figure 5-5 A bare-bones Feature.xml file

<?xml version="1.0" encoding="utf-8" 7>
<Elements xmIns="http://schemas.microsoft.com/sharepoint/">
<!-- Create Command Link Site Settings Page -->
<CustomAction
Id="SiteSettings"
GroupId="customization"
Location="Microsoft.SharePoint.SiteSettings"
Sequence="106"
Title="Custom Litware Site Setting Command">
<UrlAction Url="/_layouts/LitwareFeatureLab.aspx?Command=SiteSettingCommand"/>
</CustomAction>
<!-- Add command to Site Actions Dropdown -->
<CustomAction Id="SiteActionsToolbar"
GroupId="SiteActions"
Location="Microsoft.SharepPoint.Standardmenu"
Sequence="1000"
Title="Litware Custom Action"
Description="Custom Litware Site Action"
ImageUrl="/_layouts/images/ACL16.GIF">
<UrlAction Url="/_Tayouts/LitwareFeatureLab.aspx?Command=SiteActionCommand"/>
</CustomAction>
<!-- Document Library Toolbar New Menu Dropdown -->
<CustomAction Id="DocLibNewToolbar"
RegistrationType="List"
Registrationid="101"
GroupId="NewMenu"
Rights="ManagePermissions"
Location="Microsoft.SharepPoint.Standardmenu"
Sequence="1000"
Title="Litware Custom New Command"
Description="This command creates a new Litware doc"

91

92 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

ImageUrl="/_layouts/images/ACL16.GIF">
<UrlAction uUrl="/_Tayouts/LitwareFeatureLab.aspx?Command=NewDocCommand" />
</CustomAction>
<!-- Document Library Toolbar Actions Menu Dropdown -->
<CustomAction Id="DocLibActionsToolbar"
RegistrationType="List"
RegistrationIid="101"
GroupId="ActionsMenu"
Location="Microsoft.SharepPoint.Standardmenu"
Sequence="1000"
Title="Litware Command on Document Library"
Description="This command performs a custom command on the document
Tibrary"
ImageUrl="/_layouts/images/ACL16.GIF">
<UrlAction Url="/_layouts/LitwareFeatureLab.aspx?Command=DocLibCommand" />
</CustomAction>
<!-- Per Item Dropdown (ECB)-->
<CustomAction
Id="ECBItemToolbar"
RegistrationType="List"
Registrationid="101"
Type="ECBItem"
Location="BugwWorkaround:LocationShouldEqualEditControlBlock"
Sequence="106"
Title="Litware ECB Item Command">
<UrlAction Url="/_layouts/LitwareFeatureLab.aspx?Command=SiteSettingCommand" />
</CustomAction>
</Elements>

In Feature.xml, we add an ElementManifest element for Lightup.xml as follows:

<ElementManifests>
<ElementManifest Location="Lightup.xml1"/>
</ElementManifests>

After building the project, we can install the feature using a batch file similar to the Install.cmd
file shown earlier, but with one small difference. This batch file also copies an application page
named LitwareFeatureLab.aspx to the _layouts directory. You might notice that this page is
referenced in the UrlAction attribute in all the CustomAction elements in Lightup.xml.

After the feature has been installed, we can determine that it is working properly by examining
the Site Actions menu. We should see the Litware Custom Action command as shown in
Figure 5-6.

Go back and examine each of the CustomAction elements in Lightup.xml. Each of these com-
mands shows up in the Windows SharePoint Services user interface. We would need to add a
document library to the site to test the last three custom actions.

Working with Features in Windows SharePoint Services 93

2 norne - Team Site - Microsoft Internet Explorer =10] x|
| B G Wew Fgeortss ok Hob |
| sk « &) - (=] (7] 0| D Seoch iPaverbes £ | (3 S (3] - L) B
| Adress [2] hirpiflocahosidefaut asoic i[> [

Team Site Welcome LITWAREINChsdministrator = | My Site | My Links % [HeIB I Sendiressnscrn =|

2 .
22" Team Site [a8 Cosier |
m sam Site
Home
Wew Al e Content
Dovunents.
site settings
LA Manage sie
Lists
Litware Custom Action

Discussivns Cusibiom Liwears Sle Action

Surveys

Peaphe and Geoups

& Recyrle Rin
. 1]

8] Dune DT T T e ket 4

Figure 5-6 The Site Actions menu with a custom action added through a feature

Creating a Callback Receiver Class for a Feature

Now we’ll write and configure a custom receiver class that fires custom event handlers when-
ever our feature is activated or deactivated within a site. We’ll use the class library DLL project
named LitwareFeatureLab as a starting point. This project has been configured to compile the
output assembly, LitwareFeatureLab.dll, with a strong name and install it into the Global
Assembly Cache (GAC) any time the project is built.

We need a reference to Microsoft.SharePoint.dll so that code in the LitwareFeatureLab project
can use the core Windows SharePoint Services types. The receiver class is contained in the
source file, LitwareFeatureLabReceiver.cs. The following implementation changes the current
site’s title and description each time the feature is activated or deactivated.

using System;
using Microsoft.SharePoint;

namespace LitwareFeatureLab {
public class LitwareFeatureLabReceiver : SPFeatureReceiver {
public override void FeatureInstalled(SPFeatureReceiverProperties
properties){}
public override void FeatureuUninstalling(SPFeatureReceiverProperties
properties){}

94 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

public override void FeatureActivated(SPFeatureReceiverProperties
properties) {
SPweb web = (SPweb)properties.Feature.Parent;
web.Title = "Litware Feature Lab";
web.Description = "Litware Feature Lab activated at " +
DateTime.Now.ToLongTimeString();
web.Update();

public override void FeatureDeactivating(SPFeatureReceiverProperties
properties) {
SPweb web = (SPweb)properties.Feature.Parent;
web.AllowunsafeUpdates = true; // this is required to prevent
//errors in beta 1
web.Title = "Plain 01d Team Site";
web.Description = "Litware Feature Lab deactivated at " +
DateTime.Now.ToLongTimeString();
web.Update();

}

Now we need to modify Feature.xml, using the ReceiverAssembly and ReceiverClass attributes,
to indicate that there is a source file named LitwareFeatureLabReceiver.cs.

<?xm1 version="1.0" encoding="utf-8" 7>

<Feature Id="BOFFE3F6-7F28-45ed-BF94-0B597EE95E53"
Title="Litware Feature Lab"
Description="This feature demonstrates Hello world functionality."
version="1.0.0.0"
Scope="web"
ReceiverAssembly="LitwareFeatureLab, Version=1.0.0.0, Culture=neutral,
Pub1icKeyToken=d4e5777b16a5749f"
ReceiverClass="LitwareFeatureLab.LitwareFeatureLabReceiver"
Hidden="FALSE"
xmins="http://schemas.microsoft.com/sharepoint/">
<ElementManifests>

<ETementManifest Location="Lightup.xm1"/>

</ElementManifests>

</Feature>

We can now run Install.cmd again to install the feature with the receiver functionality. We can
test to make sure the functionality is working by going to the Site Features page and deactivat-
ing and reactivating the feature. If the site title and description change, as shown in Figure 5-7,
we know the receiver callback functionality is working properly.

Working with Features in Windows SharePoint Services

Tl 1rome - Litware I esture Lab - Microsoft Intemet Explorer ;@ﬂ
| Be Ed gew Fgerkos Took tep |
| ook D - (W g G| S Seaech i Fovortes 0| (O Fa 0] - D) B
| Adress [i8] hirpifoss 1 fdefauk_sspi i[> [
Litware Feature Lab Welcame LITWAREINC\sdrministratar= | My Site | My Links ¥ | BB D Sendresassern =|
3's# Litware Feature Lab [3 Cantert [
e
m Litware Féesture Lab
_) Home
Wew Al Ste Content
Documents
Picires My
Lists) 1"
DS e MO Wﬁ’ndaws
By SharePoint Services.

Peaphe and Geoups
& Recyrle Rin

1]

2] e T T Mundinamt A

Figure 5-7 A demonstration of receiver functionality in a feature

Adding a Document Library on Activation

Let’s say that we want to modify the Litware feature by changing the FeatureActivated event

95

handler method so that it creates a document library named Weekly Timesheets. You could

add the following code to the method as a starting point:

SPListTemplate template = web.ListTemplates["Document Library"];

Guid docLibID = web.Lists.Add("weekly Timesheets", "Library for Litware weekly
Timesheets Documents", template);

SPList docLib = web.Lists[docLibID];

docLib.onQuickLaunch = true;

docLib.uUpdate();

You could also add complementary code to the FeatureDeactivating event handler to remove

the document library named Weekly Timesheets if it exists:

try

{
Guid docLibID = web.Lists["weekly Timesheets"].ID;
web.Lists.Delete(docLibID);

}

catch (Exception ex) { /* do nothing */ }

96

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Adding an Event Handler to the Timesheets List

Another change we could make to this feature is to add an event handler to the Timesheets
list. We’d start by creating a new class, named TimesheetEventReceiver, and then implement
this class as an item event handler by inheriting from SPItemEventReceiver and overriding
ItemAdding, ItemAdded, ItemUpdating, and ItemUpdated.

We could implement ItemAdded and ItemUpdated to generate a unique TimesheetID for the
current item by concatenating a string that contains the values of the Consultant, Project, and
Submitted On columns. After this unique string is generated, its value is assigned to the cur-
rent item’s TimesheetID column. The code needs to call the Update method on the SPListItem
object to save the changes.

We could also implement ItemAdding and ItemUpdating to perform validation of the value
entered by the user for the Submitted On date. The validation would make sure that the date
entered is not a day in the future. If the user tries to enter a time sheet item for a future date,
the action is cancelled and an error message is returned.

We would also modify the FeatureActivated event handler method to register event handlers
for each of the four events in the TimesheetEventReceiver class. We could use code that looks
like the following, which refers to ItemUpdated.

SPList Tist = web.Lists["Timesheets"];
1ist.EventReceivers.Add(
SPEventReceiverType.ItemUpdated,
"LitwareFeatureLabSolution, Version=1.0.0.0, Culture=neutral,
Pub1icKeyToken=d4e5777b
"LitwareFeatureLabSolution.TimesheetEventReceiverSolution");
Tist.update(Q);

Here’s the code for the TimesheetEventReceiver class, showing the string concatenation and
validation.

using System;

using System.Collections.Generic;
using System.Text;

using Microsoft.SharePoint;

namespace LitwareFeatureLabSolution

{
public class TimesheetEventReceiverSolution : SPItemEventReceiver

{

public override void ItemAdding(SPItemEventProperties properties)
{

base.ItemAdding(properties);

validatecChange(properties);

Working with Features in Windows SharePoint Services 97

public override void ItemUpdating(SPItemEventProperties properties)
{

base.Itemupdating(properties);

validateChange(properties);

private void validateChange(SPItemEventProperties properties) {
SPweb web = properties.Openweb();
SPListItem timesheet =
web.Lists[properties.ListId].GetItemById(properties.ListItemId);
// check to make sure date is not day in future
if (Convert.ToDateTime(timesheet["Submitted On"]).CompareTo(DateTime.Today) > 0)

{
properties.ErrorMessage = "You cannot enter timesheet for days in future";
properties.Cancel = true;
return;

public override void ItemAdded(SPItemEventProperties properties) {
base.ItemAdded(properties);
GenerateID(properties);

public override void ItemUpdated(SPItemEventProperties properties) {
base.ItemUpdated(properties);
GenerateID(properties);

private void GenerateID(SPItemEventProperties properties) {

SPweb web = properties.openweb();

SPListItem timesheet =
web.Lists[properties.ListId].GetItemById(properties.ListItemId);

// denerate TimesheetID by concatenting Consultant, Project

// and Submitted on columns

timesheet["TimesheetID"] = timesheet["Consultant"] + " " +
timesheet["Project"] + " " +
convert.ToDateTime(timesheet["Submitted
on"]) .ToShortbateString(Q); ;

timesheet.Update();

And here is the code for the updated receiver class:

using System;

using System.Collections.Generic;
using System.Text;

using Microsoft.SharePoint;

98 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

namespace LitwareFeatureLabSolution

{
public class LitwareFeatureLabReceiverSolution : SPFeatureReceiver
{
public override void FeatureInstalled(SPFeatureReceiverProperties
properties)
{
}
public override void FeatureUninstalling(SPFeatureReceiverProperties
properties)
{
}
pubTlic override void FeatureActivated(SPFeatureReceiverProperties
properties)
{
SPweb web = (SPweb)properties.Feature.Parent;
web.Title = "Litware Feature Lab Solution";
web.Description = "Litware Feature Lab Solution activated at " +

DateTime.Now.ToLongTimeString(Q); ;

web.Update(Q);

SPListTemplate template = web.ListTemplates["Document Library"];

Guid docLibID = web.Lists.Add("weekly Timesheets", "Library for
Litware weekly Timesheets Documents", template);

SPList docLib = web.Lists[docLibID];

docLib.onQuickLaunch = true;

docLib.UpdateQ);

SPList 1list = web.Lists["Timesheets"];

Tist.onQuickLaunch = true;

Tist.EventReceivers.Add(SPEventReceiverType.ItemAdding,
"LitwareFeatureLabSolution, Version=1.0.0.0, Culture=neutral,
Pub1icKeyToken=d4e5777b16a5749f",
"LitwareFeatureLabSolution.TimesheetEventReceiversolution");

Tist.EventReceivers.Add(SPEventReceiverType.ItemAdded,
"LitwareFeatureLabSolution, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=d4e5777b16a5749f",
"LitwareFeatureLabSolution.TimesheetEventReceiverSolution");

Tist.EventReceivers.Add(SPEventReceiverType.ItemUpdating,
"LitwareFeatureLabSolution, Vversion=1.0.0.0, Culture=neutral,
Pub1icKeyToken=d4e5777b16a5749f",
"LitwareFeatureLabSolution.TimesheetEventReceiversolution");

Tist.EventReceivers.Add(SPEventReceiverType.ItemUpdated,
"LitwareFeatureLabSolution, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=d4e5777b16a5749f",
"LitwareFeatureLabSolution.TimesheetEventReceiverSolution");

Tist.update(Q);

Working with Features in Windows SharePoint Services

public override void FeatureDeactivating(SPFeatureReceiverProperties
properties)

SPweb web = (SPweb)properties.Feature.Parent;

web.
.Title = "Plain 01d Team Site";
web.

web

web.

try
{

}

AllowunsafeuUpdates = true;

Description = "Litware Feature Lab Solution deactivated at " +
DateTime.Now.ToLongTimeString(); ;
Update(Q);

Guid docLibID = web.Lists["weekly Timesheets"].ID;
web.Lists.Delete(docLibID);

catch (Exception ex) { }

try

}

{

SPList Tist = web.Lists["Timesheets"];
Tist.onQuickLaunch = false;
Tist.Update();

catch(Exception ex){}

929

Chapter 6
Windows SharePoint Services
Core Development

In this chapter:

Top-Level Classesouuniiinie it et et iaeaan 101
Using the Windows SharePoint Services Object Model and the Data in a List . . 107
Adding Word Documents to a Document Library 114

In this chapter, we’ll review some of the primary classes in the Microsoft Windows SharePoint
Services server-side object model that provide access to objects representing the various
aspects of a SharePoint site. We’ll then demonstrate some of these classes and their members
in action, in examples that take data from a list, serialize the data to XML, add the data to a
Microsoft Office Word 2007 document, and store the document in a document library.

Top-Level Classes

The Microsoft.SharePoint and Microsoft.SharePoint. Administration namespaces provide types
and members for working with lists and sites and for managing a server or collection of serv-
ers that run Windows SharePoint Services. The following table lists the four major top-level
classes in these namespaces. Starting with one of these classes, you can work through the
object model to the class you need to use to work with lists and Web sites or to manage one
Or Imore Sservers.

Class Description

SPGlobalAdmin Used for central configuration settings. In particular, you can use this class
to enumerate the list of virtual servers in Internet Information Services
(11S) and access SPVirtualServer objects.

SPVirtualServer Represents a virtual server, and is used for server-wide configuration set-
tings. Use this class to create, delete, and access sites under a specific vir-
tual server.

SPSite Represents a site collection (a top-level site and its subsites), and is used
for managing existing sites and for accessing site and list data.

SPWeb Represents an individual site, and is used for working with the lists, files,
and security of the site, including users, site groups, cross-site groups, and
permissions.

101

102

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Depending on which part of a Windows SharePoint Services deployment you need to custom-
ize and the type of application you are creating, you can use different means of entry into the
Windows SharePoint Services object model to obtain the higher-level object you need to start
with. The SPGlobalAdmin class provides access to the highest-level objects in the object hier-
archy. These objects are generally related to administrative operations. You can also use the
SPGlobalAdmin class to reach objects that are lower in the hierarchy. The SPGlobalAdmin class
includes a constructor that you can use to obtain an SPGlobalAdmin object to customize glo-
bal administrative settings in a deployment.

To perform actions on data within a SharePoint site, you must first obtain an SPWeb object,
which serves as the starting point for accessing lists, items, documents, users, alerts, and so
on. For example, to return a collection of lists for a site within an HTTP context, you must first
obtain the SPWeb object by passing the current System. Web. HttpContext object to the GetCon-
textWeb method of the SPControl class, as shown in this example:

SPWeb mySite = SPControl.GetContextweb(Context)

You would then use mySite.Lists to get the collection of lists for the site. Similarly, mySite. Title
returns the title of the site, and mySite. Users returns the users on the site.

If you are creating a Web Part, Web service, or Web application to work with site collections,
individual sites, or lists, use the GetContextSite or GetContextWeb method of the SPControl
class to obtain the current site collection or site. When you create a Web application in the
_layouts directory, the application’s functionality becomes available to all sites on the Web
server. Outside an HTTP context, such as in a console application, use the constructor of the
SPSite class to obtain a specified site collection.

Here are descriptions of some of the properties and methods of these and related classes
that you are likely to use when creating an application for a Windows SharePoint Services
deployment:

m The ContentDatabases property of the SPVirtualServer class returns an SPContent-
DatabaseCollection object that represents the collection of content databases used for a
virtual server. Each SPContentDatabase object provides access to properties of the con-
tent database.

B The WebServers property of the SPGlobalConfig class returns an SPWebServerCollection
object representing the collection of front-end Web servers in the Windows SharePoint
Services deployment. Each SPWebServer object provides access to properties of the Web
server.

m The VirtualServers property of the SPGlobalAdmin class provides access to an SPVirtual-
ServerCollection object representing all the virtual servers in the Windows SharePoint
Services deployment. The OpenVirtualServer method of the SPGlobalAdmin class returns
a specific virtual server. Each SPVirtualServer object has members that can be used to
manage the virtual server. The Sites property provides access to the SPSiteCollection

Windows SharePoint Services Core Development 103

object representing the collection of site collections on the virtual server, and the Add
method is used to create top-level site collections.

m Each SPSite object represents a site collection and has members that can be used to man-
age the site collection. The AllWebs property provides access to the SPWebCollection
object that represents the collection of sites within the site collection, including the top-
level site. The OpenWeb method of the SPSite class returns a specified site.

m Each site collection includes any number of SPWeb objects. Each object has members
that can be used to manage a site (including its template and theme) and also to access
files and folders on the site. The Webs property returns an SPWebCollection object repre-
senting all the subsites of a specified site, and the Lists property returns an SPListCollec-
tion object representing all the lists in the site.

m Each SPList object has members for managing the list or for accessing items in the list.
The Getltems method can be used to perform queries that return specific items. The
Fields property returns an SPFieldCollection object representing the fields (or columns)
in the list. The Items property returns an SPListItemCollection object representing the
items (or rows) in the list.

m Each SPField object has members that contain settings for the field.

B Each SPListItem object represents a single row in the list.

Note Most classes in the Microsoft.SharePoint and Microsoft.SharePoint. Administration
namespaces start with SP. Generally, classes in the Windows SharePoint Services assembly that
don't start with this prefix represent Web form controls.

Figure 6-1 on the next page shows the relationship between the top-level classes in the Win-
dows SharePoint Services object model and server and site architecture.

Updating Object Properties

Windows SharePoint Services does not usually save modifications of object properties to the
database until you call the Update method on the object. The following example shows how to
change the title and description for the Tasks list:

SPList myList = myweb.Lists["Tasks"];
myList.Title="New_Title";
myList.Description="List_Description";
myList.Update(Q);

Note An exceptional case is when a document is checked out from a document library.
Metadata for a document that is checked out from a document library cannot be modified
using the Update method of the SPListitem object.

104 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Server and Site Architecture

1 | SQLServer 2000
Databases

2 1 Web
Servers

SPGlobalAdmin
3
Virtual _—>

- ©

....... e SPControl
="l) 4

Collections \

Top-Level
Web Site
-

Site
Top-Level 0
D Web Site Collection

7 Fields

-
. List

—
— Items

Figure 6-1 Top-level classes in the Windows SharePoint Services object model

FTfi

Working with Collections

Just as lists are at the center of a SharePoint site, so are collections at the center of its object
models. You can use each collection to add, delete, enumerate, and update a type of object.
Collection classes generally share the following traits:

Has a name that ends in “Collection”
Implements the System.Collections.ICollection interface
Has a Count property of type Int32

Has an Int32 indexer that can be used to get the nth item in the collection

Has an indexer that takes an item identifier

m Has Add and Delete methods

Calling the Add method for a collection usually updates the content database on the server
with the appropriate data. In cases in which additional information is required to update data,
however, the Add method returns an object that you use to gather the information. For exam-
ple, to add an item to a list, first use the Add method of the SPListItemCollection class to return
an SPListItem object, assign values to appropriate properties of that object, and then call the
Update method to effect changes within the content database.

Windows SharePoint Services Core Development 105

Using Indexers

Indexers provide a useful means for accessing individual items in collections. To return an
item, use square brackets ([]) in Microsoft Visual C# (or parentheses in Microsoft Visual Basic
NET) to contain either an index or a string that identifies the item within the collection.

For example, if mySite represents an instance of the SPWeb class, SPList myList =
mySite.Lists["Announcements"] returns the Announcements list. You can then use the Items
property for the list object to return all the items in the list (SPListItemCollection myltems =
myList.Items). To return only a subset of items from the list, call one of the list object’s Getltems
methods and pass an SPQuery object to specify the subset. For example,

SPListItemCollection myItems = myList.GetItems(myQuery)

You can use an indexer to return a specific field from a list; for example, myList.Items["Field_-
Name"]. You can also specify a field name in an indexer and iterate through the collection of
items in a list to return values from the field. The following example, which would require a
using directive for the Microsoft.SharePoint namespace and a directive for the Microsoft.Share-
Point.Utilities namespace, displays the Due Date, Status, and Title values for each item in a list:

foreach(SPListItem myItem in myItems)

{
Response.wWrite(SPEncode.HtmTEncode(myItem["Due Date"].ToString()) + "
");
Response.Write(SPEncode.HtmlEncode(myItem["Status"].Tostring()) + "
");
Response.Write(SPEncode.Htm1Encode (myItem["Title"].Tostring()) + "
");

}

The next example shows how to return all Title and Status values for the Tasks list on a Share-
Point site. (This example would also require a using directive for Microsoft.SharePoint and
Microsoft.SharePoint. Utilities.)

SPweb mySite = SPControl.GetContextweb(Context);

SPList myTasks = mySite.Lists["Tasks"];
SPListItemCollection myItems=myTasks.Items;

foreach(SPListItem myItem in myItems)

{

Response.wWrite(SPEncode.Htm1Encode(myItem["Title"].ToString()) + " :: +
SPEncode.HtmlEncode (myItem["Status"].Tostring()) + "
");

}

You can also use indexers to modify values in a list. In the next example, a list item is added
to a collection and the values for a URL column are assigned to the item:

SPListItem myNewItem = myList.Items.Add(Q);
myNewItem["URL_Field_Name"] ="URL, Field_bescription";

myNewItem.Update();

106

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Note The URL field type is unique because it involves two values (separated by a comma
and a space), and in the preceding example these values are both assigned to the new item
through a single indexer.

The next example sets the Status and Title values for a list item.
SPListItem myItem = myItems[0];

myItem["Status"]="Not Started";
myItem["Title"]="Task Title";

myItem.Update();

Note Anindexer throws an ArgumentOutOfRange exception if it does not find the specified
item.

Determining Where to Build a Custom Application

The scope of an application affects the location where you build an application that runs
on Windows SharePoint Services. Custom ASPX pages and Web applications that you
want to be accessible from all Web sites in a Windows SharePoint Services deployment
should be stored in the following directory, which supports the _layouts virtual direc-
tory:

Local_Drive:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\60\
TEMPLATE\LAYOUTS

Pages in this directory are accessible from all Web sites in the Windows SharePoint
Services deployment through a URL in the following form:

http://Server_Name/[sites/][Site_Name]/[SubSite_Name]/[...]/_layouts/File_Name.aspx

You may also want to create Web applications that contain custom code that works
with the global settings for your deployment. For code that involves only the
Microsoft.SharePoint. Administration namespace for working with global settings in a
deployment, Microsoft recommends that the Web application be created on the admin-
istrative port. Build and store ASPX pages and Web applications for the administrative
port in the following directory:

Local_Drive:\Program Files\Common Files\Mictrosoft Shared\Web Server Extensions\60\
TEMPLATENADMIN\1033

Pages in this directory are accessible through a URL in the following form:

Windows SharePoint Services Core Development 107

http://localhost:Port_#/File_Name.aspx

Using the Windows SharePoint Services Object Model
and the Data in a List

In the following sections, we’ll continue to add some functionality to a sample SharePoint site.
Litware, our fictitious business, is a consultancy company that requires each of its consultants
to fill in a daily time sheet that summarizes the activities the consultant performs during that
day. The time sheet data is stored in a custom SharePoint list for later use. At the end of each
week, managers review the time sheets to approve or disapprove the hours submitted. To
facilitate the review process, we want to generate an Office Word 2007 document that sum-
marizes the work each consultant performs during a week.

In this example, we’ll perform queries against the Timesheets SharePoint list and aggregate
the results into a custom XML format. The queries will be executed using the Windows Share-
Point Services object model, and the results will be aggregated using some custom .NET code.
We'll then use the XML Serializer to write the custom XML data to the console for verification.
We'll start out by viewing the output in a console application, and then we’ll focus on using
the data in the Timesheets list to update an Office Word 2007 document. Finally, we’ll place
this document in a SharePoint document library where managers or other users can view it.

Generating Weekly Time Sheet Aggregate Views

We'll start with a Microsoft Visual Studio 2005 solution named TimesheetAggregator. The
project contains three files: Program.cs, Project.cs, and WeeklyAggregate.cs.

Before we can access any data in SharePoint, we need to establish a connection to the Share-
Point site. When writing code of your own, don’t forget that the common terminology and the
SharePoint object model don’t always match up. Remember that site collections are repre-
sented by the SPSite object and sites are represented by the SPWeb object.

First we add a reference to the Microsoft.Sharepoint assembly. Next we create a Microsoft.Share-
Point.SPSite object in the Main method to connect to the default SharePoint site. (The URL for
the example is http://0ss1.) We use the SPSite constructor that takes a single string parameter.
We access the SPWeb object associated with the SharePoint site at http://oss1 by using the
SPSite’s OpenWeb method. By default this method opens the site associated with the URL pro-
vided to the SPSite object’s constructor.

We then get a reference to the Timesheets list by using the SPWeb object’s Lists property and
the name of the list, Timesheets. Here is the code from Program.cs:

static void Main(string[] args)
{
// get access to the SharePoint Tist

108

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

SPSite site = new SPSite("http://ossl");
SPweb web = site.Openweb();
SPList list = web.Lists["Timesheets"];

Next we create a class to encapsulate the process of aggregating the time sheet values. The
class, named TimesheetAggregator, contains a single method, GenerateAggregation. This
method returns an instance of WeeklyAggregation, which is a class that represents the aggrega-
tions you need to generate. The GenerateAggregation method accepts as parameters a string
representing the consultant whose data you need to aggregate and a DateTime value that rep-
resents a date in the week to aggregate data for. Finally, the method accepts a reference to the
SPList object containing the data to aggregate.

namespace TimesheetAggregator

{
class TimesheetAggregator
{
public weeklyAggregation GenerateAggregation(string consultant,
DateTime date, SPList timesheetList)
{
}
}
}

Now that we’ve created the TimesheetAggregator class and the GenerateAggregation method,
we need to write some code that will perform a query against the list to retrieve data for a
specific consultant and week. First we calculate the minimum and maximum dates, which
represent the Sunday and Saturday surrounding the date parameter. Keep in mind that the
DateTime.DayOfWeek method returns an enumeration with the value 0 for Sunday, 1 for Mon-
day, and so on. You can use the DayOfWeek and AddDays methods to help calculate the min-
imum and maximum dates.

Next we create an instance of an SPQuery object. The SPQuery object has a constructor that
allows you to provide a view that will be used to help initialize the query. In this example, we’ll
use the All Timesheets view. Next we specify the Where section of the query by using the Col-
laboration Application Modeling Language (CAML) shown in the following code. Notice that
this query requires that the consultant’s name match one in the list and that the submitted
date be between the minimum and maximum dates. Microsoft.SharePoint. Utilities. SPULil-
ity.CreateISO8601 DateTimeFromSystemDateTime converts a .NET DateTime object to a string
that is acceptable to the CAML parser.

Finally, the code calls the SPList. Getltems method using the query we’ve built. This call returns
a collection of SPListItem objects that represent time sheet entries for the specified consultant
and week.

pubTlic weeklyAggregation GenerateAggregation(string consultant, DateTime date,
SPList timesheetList)

{

Windows SharePoint Services Core Development

// calculate the min and max dates for the week
DateTime minDate = date.AddDays(-(int)date.Dayofweek);
DateTime maxDate = minDate.AddDays(6);

// retrieve the 1list items for the consultant and week
SPQuery query = new SPQuery(timesheetList.views["A11l Timesheets"]);
query.Query =
"<where>" +
"<And>" +
"<Eg><FieldrRef Name='Consultant'/><value Type='Text'>" +
consultant +
"</value></Eq>" +
"<And>" +
"<Gegq><FieldRef Name='Submitted_x0020_on'/><value
Type='DateTime'>" +
SPUtility.CreateISO08601DateTimeFromSystemDateTime(minDate) +
"</Value></Geq>" +
"<Leg><Fieldref Name='sSubmitted_x0020_on'/><value
Type='DateTime'>" +
SPUtility.CreateISO8601lDateTimeFromSystemDateTime(maxDate) +
"</vValue></Leq>" +
"</And>" +
"</And>" +
"</Where>";
SPListItemCollection results = timesheetList.GetItems(query);

109

Now that we have the SPListItem objects that apply to the consultant and week in question,
we need to group the hours by project. To do this, we write code in classes named Weekly-
Aggregation and Project that loops through each SPListItem in the collection returned from the
query. These classes are designed to serialize into the appropriate XML when submitted to the
System.Xml.Serialization. XmlSerializer class.

We create an instance of System.Collections.Generic.Dictionary by using a string as the key and
Project as the value. This dictionary will be used to store the grouped project hours. Next we
loop through each SPListItem in the results from the query and retrieve the values from the list

item by using the indexer and by providing the name of the field. Notice in the code that

spaces are encoded as _x0020_.

If the project hasn’t already been added to the dictionary, we create a new instance of a Project
object, initialize its Name and HourlyRate properties based on the list item, and then add it to
the dictionary. Finally, for each list item, we retrieve the appropriate Project object from the

dictionary and increment the hours based on the current list item.

// create the project aggregates
Dictionary<string, Project> projects = new Dictionary<string, Project>(Q);
foreach (SPListItem TistItem in results)

{

// retrieve the values from the Tist item

string project = TistItem["Project"].ToString(Q;

int hours = Convert.ToInt32(TistItem["Hours"]);

decimal hourlyRate = Convert.ToDecimal(listItem["Hourly_x0020_Rate"]);

110

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

// check if we already have data for the project
if (!projects.ContainsKey(project))
{
// create a new project record
Project newProject = new Project();
newProject.Name = project;
newProject.HourlyRate = hourlyRate;
newProject.Hours = 0;

// store the project in the dictionary
projects.Add(project, newProject);
}

// add the current item's hours to the total
projects[project].Hours += hours;

}

At this point, we’ve retrieved the data and grouped the hours by project. Next we need to
build the aggregated totals and Project objects into the WeeklyAggregation object. The primary
focus of this step is to take the groupings from the previous step, copy them into the Weekly-
Aggregation object, and perform some calculations on the data to come up with the totals.

First we create an instance of the WeeklyAggregation object and initialize the Consultant and
WeekStarting properties based on the consultant parameter and the minDate value calculated
earlier. Next we initialize the total hours and total pay to 0 so that these values have a starting
point for the totals to be calculated. Because the previous grouping already created the Project
objects that are contained within the WeeklyAggregation object, all we have to do is create a
new array and copy the data from the dictionary into the array.

Finally, we need to loop through each item in the projects array and perform two tasks: calcu-
late the project’s total pay by multiplying the hours by the hourly rate, and increment the
totals in the WeeklyAggregation object. Having initialized the WeeklyAggregation value, we
return it from the GenerateAggregation method.

// initialize the weekly aggregates object
weeklyAggregation aggregation = new WeeklyAggregation(Q);
aggregation.Consultant = consultant;
aggregation.weekStarting = minDate;
aggregation.TotalHours = 0;

aggregation.TotalPay = 0.0M;

// copy the project objects from the dictionary and calculate the totals
aggregation.Project = new Project[projects.Count];
projects.values.CopyTo(aggregation.Project, 0);

foreach (Project project in aggregation.Project)

{
project.TotalPay = project.Hours * project.HourlyRate;
aggregation.TotalHours += project.Hours;
aggregation.TotalPay += project.TotalPay;

}

// return the results

Windows SharePoint Services Core Development 111

return aggregation;

3

We can test the GenerateAggregation method by calling it with some hard-coded parameters.
For example, we can call GenerateAggregation from the Main method in the Program.cs file
using Britta Simon as the consultant and January 2, 2006 as the date. To see the results, we
have two options. One is to look at the data in the WeeklyAggregation object in the debugger;
the other is to serialize the WeeklyAggregation object to the console. Here is the serialization
code.

// perform the aggregations

TimesheetAggregator aggregator = new TimesheetAggregator();

weeklyAggregation aggregation = aggregator.GenerateAggregation("Britta Simon",
new DateTime(2006, 1, 7), Tist);

// write the aggregation to the console
xmlserializer serializer = new XmlSerializer(typeof(weeklyAggregation));
serializer.Serialize(Console.out, aggregation);

We can test the code by running the console application. Figure 6-2 shows the console dis-
playing an XML document that contains the aggregation of all hours submitted by Britta
Simon for the week of January 2, 2006.

="http:/“www.w3.org 2001 7XMLSchena—instance" xmln
consultant="Britta Simon" weekStarting=
alPay="1780.8">
hourlyRate " totalPay=""1688" >
hourlyRate= totalPay="188" ~>

<leeklyAggregation>

Figure 6-2 Data from a SharePoint list serialized to XML

Using the Packaging API to Stuff Weekly Time Sheet Aggregates into
Word Documents

In this example, we’ll use the WeeklyAggregation object created in the previous example, seri-
alize it to XML, and store it in an Office Word 2007 document that is designed to display the
total hours for a consultant grouped by project. This summary document will be written to
the file system for now, but in the next example it will be stored in a SharePoint document
library, where a manager could approve or disapprove the hours submitted.

112

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The first step in generating the time sheet summary document is to store a template document
somewhere. In this case, we'll store the document template (a file named Template.docx) in a
resource that will be compiled into the assembly.

In the project properties window, we select the Resources tab, and then click the link to create
anew resource file for the project. We add the Template.docx file as a resource by clicking the
drop-down arrow on the Add Resource button and selecting Add Existing File. The name of
the resource is Template.

We next add a GenerateDocument method to the TimesheetAggregator class. This method
should return an array of bytes and accept a WeeklyAggregation object as a parameter.

public byte[] GenerateDocument(WeeklyAggregation aggregation)
{
}

Now we need to read the Template.docx resource into a memory stream for use by the pro-
gram later. To start this process, we create an instance of System.I0.MemoryStream to work in.
This stream will be used initially to store the template and later the updated document. Next
we write the byte array from the resources into the stream using the Stream. Write method of
the Stream class. To access the byte array, we use the Properties.Resources. Template property
that is generated automatically by Visual Studio 2005 based on the resource we added earlier.
Finally, we need to be sure to reset the stream’s location to 0 by using the Stream.Seek method
so that future reads will start from the beginning.

// create a memory stream to process the file 1in

using (MemoryStream stream = new MemoryStream())

{
// read the template from the library and load it into the stream
byte[] template = Properties.Resources.Template;
stream.write(template, 0, template.Length);
stream.Seek(0, Seekorigin.Begin);

Having read the template into the stream, we need to open it by using the packaging APIs in
System.I10.Packaging and then modify the timesheetData.xml part. We need to add a reference
to the WindowsBase assembly that is part of WinFX. This assembly is located in the C:\WIN-
DOWS\msagent\Windows\v6.0.5070 folder.

We next create an instance of a System.IO.Packaging. Package object by using the static method
ZipPackage.Open and the stream from the previous step. The file needs to be opened with read
and write access. Next we create a new relative Uri object with a path of /customXML/
timesheetData.xml. Finally, the code opens the file part using the Package. GetPart method and
stores the PackagePart object for later.

Windows SharePoint Services Core Development 113

// open the word document and find the timesheet chunk

pPackage file = zipPackage.Open(stream, FileMode.Open, FileAccess.Readwrite);
uri xmlParturi = new Uri("/customxML/timesheetData.xml", UriKind.Relative);
pPackagePart xmlPart = file.GetPart(xmlParturi);

The last step in modifying the template document is to write data to the XML PackagePart by
using the XmlSerializer class. To do this we need to get access to the part and then write the
new data to the part’s stream. We first create an instance of the System.Xml.Serialization.Xml-
Serializer class for the WeeklyAggregation class. Next we retrieve a stream object from the XML
part by using the PackagePart.GetStream method, making sure that the object is opened for
reading and writing. We then serialize the aggregation data to the stream retrieved from the
PackagePart.GetStream call. The length of the stream should be set to 0 before writing. If it
isn’t, extra data may be left at the end of the stream if the new document is smaller than the
old one.

// serialize the weekly aggregation to the part

Xmlserializer serializer = new XmlSerializer(typeof(weeklyAggregation));

using (Stream xmlData = xmlPart.GetStream(FileMode.Open,
FileAccess.Readwrite))

{
xmiData.SetLength(0); // this makes sure there's nothing left in the
// stream
serializer.Serialize(xmlData, aggregation);
}

Now that the updates to the package part are finished, we flush the changes to the stream and
close the package by using the Flush and Close methods of the Package object.

// close the file
file.Flush(Q);
file.Close();

The final step of implementing the GenerateDocument method is to return the byte array
stored within the MemoryStream object. We use the MemoryStream.ToArray method to return
the internal byte array from the GenerateDocument method.

// return the byte array containing the data in the stream
return stream.ToArray(Q);

Now that we’ve completed the GenerateDocument method, we can write some code in the
Main method to test it. We call GenerateDocument using the output of GenerateAggregation and
then write the resulting byte array to a file.

byte[] document = aggregator.GenerateDocument(aggregation);

// write the file to the file system

using (System.IO.FileStream writer = System.IO.File.Create(@"C:\Exercise 2
Test.docx"))
writer.write(document, O, document.Length);

114 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Figure 6-3 on the next page shows that this version of the application produces the same
results as the console application with one exception: the data is stored in a Word file contain-
ing a formatted version of the weekly aggregations that is saved on the hard disk.

A Erave T¥atdas Han o - EX
SR8 0 = Lovvienl Imot Prgclusit Meloences, Mollings. Review e

; p— T 1 3, Replate
W 1 reanann -l | #) G E R F S passcen [naBib(] aaBbe| aamve | 2R SR
PCNJ.D LY ke % - AW EEEE] i i

i

h‘imcshcet for Britta Simon
Week Ending: 1/1/2006

Hourly Ratee Total Pay
_F-23-123 |50 o2 1600
MR-23-123 60 3 160
INamel IiiourlyRate [Hours] [Total Pay]

Total Hours: 35

Total Pay: 1780.0

Prelotl | Wosdd | VenZih 0.2 2 8 a0k

Figure 6-3 The list data is now captured in a formatted Word file.

Adding Word Documents to a Document Library

In this section, we’ll take the Word document created in the previous example and store it in
the Weekly Timesheets document library so that managers and users have access to it
through our SharePoint site.

We need to add code to the Main method to access the SPDocumentLibrary object for the doc-
ument library. Gaining access to the library is similar to gaining access to the Timesheets list,
in that you need to use the Lists property of the SPWeb object. The difference is that the SPList
object is then cast to a specialized list type of SPDocumentLibrary.

SpDocumentLibrary Tibrary = web.Lists["weekly Timesheets"] as
SPDocumentLibrary;

Next we create the StoreDocument method for the TimesheetAggregator object to encapsulate
the creation of the new document in the document library. This method should take three
parameters: a byte array named document, a string called documentName, and a reference to an
SPDocumentLibrary object named library.

Windows SharePoint Services Core Development 115

public void StoreDocument(byte[] document, string documentName,
SPDocumentLibrary Tibrary)

{

}

To add a document to the library, we’ll perform three steps in implementing the StoreDocu-
ment method. First we determine the URL of the document library. To do this, we access the
ParentWeb property of the SPDocumentLibrary object to get access to the SPWeb object. Then
we get the SPSite object using the SPWeb.Site property. Finally, we call the SPSite. MakeFullUrl
method to get the full URL based on the library’s server-relative URL that is found using
SPDocumentLibrary.RootFolder.ServerRelativeUrl.

In the next step, we use the URL of the document library and the documentName parameter to
generate the document path. The third step is to add the file by using the SPWeb.Files collec-
tion and calling the Add method. The parameters needed by this method are the path to the
new document, the array of bytes representing the file, and a Boolean flag specifying whether
the file should be overwritten if it already exists.

// denerate the document path

string TibrarypPath = library.Parentweb.Site.MakeFullurl
(library.RootFolder.ServerrRelativeurl);

string documentPath = libraryPath + "/" + documentName;

// add the document to the library
Tibrary.Parentweb.Files.Add(documentPath, document, true);

To use the completed StoreDocument method, we can call it from the Main method. First we
generate a unique file name based on the Consultant and WeekStarting parameters from the
WeeklyAggregation objects. Next we call StoreDocument using the document byte array from
the GenerateDocument method, the document name, and the document library named Weekly
Timesheets.

string documentName = string.Format("{0} {1:MM-dd-yyyy}.docx",
aggregation.Consultant, aggregation.weekStarting);
aggregator.Storebocument(document, documentName, Tibrary);

We can now run the application and verify that the output is in the Weekly Timesheets docu-
ment library.

Using an Event Handler to Generate Weekly Aggregate Documents

Having written the components to aggregate time sheets, we can now automate the process.
Every time an item in a list is changed, Windows SharePoint Services fires an event that you
can capture and use to perform processing. In this section, we’ll take the code written in the
previous examples and use it to update the weekly aggregate time sheets each time a related
time sheet entry is made or updated.

116

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The first step is to create a new class, named TimesheetEventHandler, to contain the implemen-
tation of the SharePoint list event handler. The only change needed to the event handler class
is to make it derive from SPItemEventReceiver.

using System;

using System.Collections.Generic;
using System.Text;

using Microsoft.SharePoint;
namespace TimesheetAggregator

{
public class TimesheetEventHandler : SPItemEventReceiver
{
}

}

Next we need to override the ItemAdded and ItemUpdated methods and use their parameters
to get access to the SPListItem object that has changed. In both methods, we need to get access
to the SPWeb object containing SPListItem. To do this, we use the SPItemEventProperties object
and call its OpenWeb method. Finally, we gain access to the SPListItem object by using the
SPWeb.Lists property, and then use SPList.GetItemByld to get the SPListItem object that has
changed. The Listld and the ListItemId properties in the SPItemEventProperties object contain
the IDs for the list and list item that have changed.

public override void ItemAdded(SPItemEventProperties properties)

{
base.ItemAdded(properties);
// get access to the Tist item that has been changed
SPweb web = properties.openweb();
SPListItem TistItem = web.Lists[properties.ListId].
GetItemById(properties.ListItemId);
}
pubTlic override void ItemUpdated(SPItemEventProperties properties)
{
base.ItemUpdated(properties);
// get access to the Tist item that has been changed
SPweb web = properties.openweb();
SPListItem TistItem = web.Lists[properties.ListId].GetItemById
(properties.ListItemId);
}

With references to the SPWeb and SPListItem objects of the item that has changed, we can per-
form the operations from the previous examples on SPListItem. To perform these operations
and share them between both event handler methods, we can put this code into a single
method, named UpdateWeeklyTimesheet, and have it accept two parameters, the SPWeb object
and the SPListItem object.

We start by retrieving the SPList object by using the SPListItem.ParentList property and the
SPDocumentLibrary object by using the SPWeb.Lists property, and typecasting SPList to an
SPDocumentLibrary object. Next we retrieve the consultant’s name and the submitted-on date

Windows SharePoint Services Core Development 117

from the list item. Finally, we process the data in the Main method, as we did in the previous
examples but with one difference. Instead of providing hard-coded consultant and date
parameters, we use the values retrieved from the SPListItem object. (We also need to call
UpdateWeeklyTimesheet from both ItemAdded and ItemUpdated.)

private void UpdateweeklyTimesheet(SPweb web, SPListItem TistItem)

{

// get the Tist and document library

SPList Tist = TistItem.ParentList;

SPDocumentLibrary Tibrary = web.Lists["weekly Timesheets"] as
SPDocumentLibrary;

// get the Tlist item information

string consultant = listItem["Consultant"].ToStringQ);

DateTime submittedon = Convert.ToDateTime(listItem["Submitted_x0020_0on"]);

// process the data

TimesheetAggregator aggregator = new TimesheetAggregator();

weeklyAggregation aggregation = aggregator.GenerateAggregation(consultant,
submittedon, Tist);

byte[] document = aggregator.GenerateDocument(aggregation);

string documentName = string.Format("{0} {1l:MM-dd-yyyy}.docx",
aggregation.Consultant, aggregation.weekStarting);

aggregator.StoreDocument(document, documentName, library);

Adding the Assembly to the GAC

Because we turned this project into a SharePoint event handler, we need to convert it to a class
library and put the assembly into the Global Assembly Cache (GAC). To do this, we open the
project properties window in Visual Studio, select the Application tab, and change Output
Type to Class Library. Next we sign the assembly using TimesheetAggregator.snk. To sign the
assembly, we click the Signing tab in the properties window, select the Sign The Assembly
option, and select TimesheetAggregator.snk. Also, on the Build Events tab of the properties
window, we need to add the following command to the post-build event command line sec-
tion. This line will add the assembly to the GAC after it is built.

"%programfiles%\Microsoft visual Studio 8\SDK\v2.0\Bin\gacutil.exe"
-if $(TargetDir)\TimesheetAggregator.dll

Registering the Event Handler Assembly

We also need to register the event handler, and one way to do this is to use the SharePoint
object model to write a simple application that will install the handler. We'll do this using
a console application project, named TimesheetAggregatorinstaller, that we can add to the
solution.

We need to add entries to the SPList.EventReceiver collection, which is where an assembly and
class are associated with an event fired by the list. The first step is to open the SPList object in

118

&

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

the same manner as we did in the previous examples—open the site (http://ossl) and get a
reference to the Timesheets list.

We next add entries to the SPList. EventReceivers list. One entry is for the ItemAdded event and
the other for ItemUpdated. For the assembly and class names, we use the values shown in the

code example that follows. We can then build the application and run it to install the event
handlers.

// get access to the SharePoint Tist
SPSite site = new SPSite("http://ossl");
SPweb web = site.openweb();

SPList 1list = web.Lists["Timesheets"];

// add the event handler
Tist.EventReceivers.Add(SPEventReceiverType.ItemAdded,
"TimesheetAggregator, Version=1.0.0.0, Culture=neutral,
Pub1icKeyToken=6479e6da8b088665",
"TimesheetAggregator.TimesheetEventHandler");
Tist.EventReceivers.Add(SPEventReceiverType.ItemUpdated,
"TimesheetAggregator, Vversion=1.0.0.0, Culture=neutral,
Pub1icKeyToken=6479e6da8b088665",
"TimesheetAggregator.TimesheetEventHandler");
Tist.uUpdateQ);

In the examples demonstrated in this chapter, the code was run under the Administrator
account, so all of the object model operations were performed using an account that had full
control of the http://oss1 site. However, the event handler runs under the account of the
application pool, Network Service, which means we need to give the Network Service account
Contributor permissions to the http://ossl site. To grant permission to this account, follow
these steps:

1. Open http://oss1 (or your top-level site), open the Site Settings page, and then click the
Advanced Permissions link.

2. Click Add Users, enter Network Service, and give that account Contributor permissions.

Finally, it’s time to test the application by navigating to the Timesheets list and creating a new
ntrsz AT 70 a4 1alea + BE1D2 192 andthae data 1/ /900A
31234 1122006

ertry—Weve-used-the-censultant)ohrn-Redman—preject Rl nd-the-date

We can verify that the event handler is working by navigating to the Weekly Timesheets doc-
ument library and checking whether the new summary document was created, and Figure 6-
4 shows that it was.

Note Thereis another way to install an event handler. The information about which event to
handle and what assembly will handle it can also be installed in a feature. For more information
about features, see Chapter 5, “Working with Features in Windows SharePoint Services.”

Windows SharePoint Services Core Development

B EH Yew Fgardes ok He | v
Qoo ~ () - - Search Fanorkes £ | 0w Ly o] = [
Address 45 Bl
[Welcurne LITWAREING\admmistrator = | Hy Site | My Linka =) |} Al | Send Fasduach) =]
#'2# Litware Feature Lab [at coetent I |
Herie Site Artions = |
Likware Feature Lab = Weakly Timeshests
Weekly Timesheets
 tew= |Uplasd = | actions = | Seftings = | All Daruments - |
| Type Mame Madfied @ recfied By
B orkea Smen 01-01-2006 L rew L4}2006 5:03 Pt LITWAREINC|scministrater
&) H 14008 451 PH LITWARE NG| ackminsstrator
an 01012006 ddocs - Microsolt Ward
Insert Page layout References
Timesheet for John Rodman
Week Ending: 1/1/2006
Haurly Rl Hours Total Pay
123123 [10 am
Name] [Hourly Rate] [Hours] [Total Pay]
[Total Pay]
=
LT T T S3tocaintranet

119

Figure 6-4 The time sheet summary document automatically generated in a document library

Chapter 7

Creating Workflows: The
Missing Piece of Office
Productivity

In this chapter:

Workflows and Activities i 121
Windows Workflow Foundation Run-Time Engine 123
Building Custom Workflows i, 123
Installation and Deployment it 125
Workflow Stagesooniii i e 125
Workflows in Action e 128

Not so long ago, the final output of a business productivity application was a paper document.
As an element or outcome of a business process, that document was then mailed, faxed, or
placed in an in box for activities such as review, approval, or archiving.

Information workers who created and worked with these documents were part of often
loosely defined business processes. Those processes have remained elusive, and until now
they have been difficult to define with any degree of precision or reproducibility. Even when
e-mail became the distribution mechanism of choice, once an individual finished his or her
tasks with a document, there was still the question “What happens next?”

With the 2007 Microsoft Office system, information workers and developers who build appli-
cations for them can answer that question by associating a workflow and workflow activities
to a document library, list, or content type that is part of a Microsoft Windows SharePoint Ser-
vices site. Workflows provide a solution to automating business processes related to docu-
ment creation and management. In the future, many documents authored in Microsoft Office
applications will be part of some kind of formal workflow process.

Workflows and Activities

The workflow functionality in Windows SharePoint Services is based on the Windows Work-
flow Foundation (WF), a set of base workflow technologies that programmers can access
through WinFX. WF also provides tools for the development and execution of workflow-
based applications.

121

122 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

There are two ways to think of workflows. Both types are supported by WF, and you can cre-
ate either type for Windows SharePoint Services.

m Sequential workflows are modeled as flowcharts and are well suited for system-oriented
workflows. A sequential workflow represents a sequence of steps that occur in order
until the last step is completed. However, sequential workflows can be affected by exter-
nal events and include parallel logical paths, so the precise order in which activities are
executed can vary.

W State machine workflows are modeled as state diagrams and are best suited for human-
based workflows. A state machine workflow represents a set of states, transitions, and
actions. One state is denoted the start state, and based on an event, a transition is made
to another state. The state machine can have a final state that determines the end of the
workflow. State machine workflows are effective at capturing processes that can be
changed as they run. For example, a bank manager might override and approve a loan
application for a customer with a bad credit history on the basis of specific circum-
stances that are not modeled in the original workflow.

The two main concepts in WF are the workflow and the activity. A workflow represents a coor-
dinated, event-driven set of activities and is compiled into a .NET assembly. An activity is a
NET class written in managed code that exposes methods and properties and fires events. A
workflow runs by conditionally executing the methods in the activities.

A workflow lets you associate a business process to items on a SharePoint site. For example,
you can create a simple workflow that routes a document to a series of users for approval or
develop more complex workflows that involve multiple steps, including conditional branch-
ing, throughout the life cycle of an item. Workflows can be initiated by a user or designed so
that Windows SharePoint Services initiates the workflow when an event occurs; for example,
when an item in a list or document library is created or modified.

A workflow can also be added to a content type, and multiple workflows can be associated
with a specilfic item. More than one workflow can run on the same item at the same time, but
only one instance of a workflow can run on an item at any given time. For example, you might
have workflows named Loan Approval and Document Preparation associated with a content
type named Loan Application. Although both workflows can run simultaneously on an item
of the Loan Application content type, you can’t have two instances of the Loan Approval
workflow running on the same item at the same time.

Windows SharePoint Services provides a set of basic workflows and support services that are
built on WF. In turn, Microsoft Office SharePoint Server 2007 can make use of Windows
SharePoint Services to implement more sophisticated workflows. Examples of work{lows
include moderation, approval, issue tracking, collecting feedback, and collecting signatures.
Some of the built-in activities include task management activities such as creating a task, com-
pleting a task, or deleting a task; and item activities such as updating an item or changing an
item’s status.

Creating Workflows: The Missing Piece of Office Productivity 123

Note The workflows and activities just mentioned are accurate at the time of writing but
might change by the time the 2007 Microsoft Office system is released.

WE is tightly integrated with Microsoft Exchange and Microsoft Office Outlook. For example,
workflows can generate tasks for individuals that will appear in the Outlook task list. Work-
flows can also send e-mail messages and time out if the message has not been acted on within
a set time. The action can then be escalated to another user. The 2007 Microsoft Office system
client applications are fully workflow aware. For example, Microsoft Office Word 2007,
Microsoft Office Excel 2007, and Microsoft Office PowerPoint 2007 are enabled for workflow
initiation, configuration, and completion. Microsoft Office Access 2007 can also take advan-
tage of workflows for reporting.

Windows Workflow Foundation Run-Time Engine

The WF run-time engine manages workflow execution and enables workflows to remain
active for long periods of time and survive machine reboots. The WF run-time engine provides
services to workflow applications, including sequencing, state management, tracking capabil-
ities, and transaction support. The engine serves as a state machine responsible for loading
and unloading workflow templates in addition to managing the current state of any work-
flows that are running.

WEF allows any application process or service container to run workflows by loading WF
within its process. For Windows SharePoint Services workflows, SharePoint hosts WE. In
place of the pluggable services that are included with WF, Windows SharePoint Services pro-
vides its own implementations of services for transactions, persistence, notifications, roles,
tracking, and messaging. The functionality of the WF run-time engine, in addition to the host-
ing functionality that Windows SharePoint Services provides, is exposed through the Win-
dows SharePoint Services object model.

Building Custom Workflows

The basic workflow activities provided by Windows SharePoint Services offer the means to
define sophisticated workflows. Sometimes, however, you'll need to build your own activities.
For example, within a health care application, a developer might want to send a Health Level

Seven (HL7) message to request an X ray or a drug for a patient after it has been approved by
a doctor.

Activities can be readily built with managed code in Microsoft Visual Studio 2007. Workflows
can be created with Microsoft Office SharePoint Designer 2007 and with the Microsoft Visual
Studio 2005 Designer for Windows Workflow Foundation. Workflows can also be custom-
ized through the user interface in Windows SharePoint Services itself.

124

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

To manage complex workflows, you'll need to create a form or a series of forms for associating
and configuring the workflow, initializing the workflow, and for gathering user input required
for a workflow. If you build a workflow using Office SharePoint Designer, the forms are gen-
erated for you as .aspx pages. If you use Visual Studio, you can also use Microsoft Office
InfoPath 2007 forms. Office InfoPath 2007 forms will run inside the browser or natively on
the client if Office InfoPath 2007 is installed.

More Info For more information about running Office InfoPath 2007 forms in the browser,
see Chapter 9, "Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007.

The Visual Studio 2005 Designer for Windows Workflow Foundation is an add-in hosted
within Visual Studio 2005. Developers can use this tool to create custom workflows and
workflow activities. A workflow can be created using graphical elements, XML specification,
code, or a combination of these. The designer provides a graphical design surface that devel-
opers can use to easily assemble and configure predefined activities into a custom workflow.
Workflow authors use and extend the workflow model in the same way they use and extend
other elements of the Microsoft .NET Framework.

The Visual Studio 2005 Designer for Windows Workflow Foundation includes a number of
predefined activities you can use to create Windows SharePoint Services workflows. In addi-
tion, Windows SharePoint Services provides a number of activities specifically for use in Win-
dows SharePoint Services workflows. These activities are optimized to simplify and streamline
development of workflows for use on SharePoint sites.

Because not all the activities available in the Visual Studio 2005 Designer for Windows Work-
flow Foundation are relevant in the context of SharePoint sites, Windows SharePoint Services
supports a subset of the available activities. These include the following:

m Code Use this activity to add Visual Basic or C# code to your workflow.

m ConditionedActivityGroup Use this activity to perform a set of activities condition-
ally, based on criteria specific to each activity, until a condition is met for the
ConditionedActivityGroup activity as a whole.

B Scope Use this activity to logically group activities to provide a framework for
transaction and exception handling.

B Sequence Use this activity to execute an ordered set of child activities.

m Replicator Use this activity to create multiple instances of a single child activity.

Windows SharePoint Services provides specific activities that help in three main areas: creat-
ing, updating, completing, and deleting SharePoint tasks; creating, updating, and deleting
SharePoint task alerts; and enabling workflow forms within specific scopes to allow users to
modify workflows that are in progress.

Creating Workflows: The Missing Piece of Office Productivity 125

Installation and Deployment

To install a workflow on a server farm, you need to create a workflow definition, which is an
XML file that contains the information Windows SharePoint Services requires to instantiate
and run the workflow. This information includes the name, GUID, and description of the
workflow; the location of any custom forms used in this workflow; and the correct class
within the workflow assembly to call.

Each server farm contains a workflow associations table, and each entry in this table contains
data about a workflow’s association with a specific content type, list, or document library. This
data usually indicates whether the workflow is started automatically or by users and provides
the task and history lists associated with the workflow. If a workflow has been added to mul-
tiple content types, lists, or document libraries, it will have one entry in the table for each asso-
ciation. Likewise, if a specific content type, list, or document library is associated with
multiple workflows, the table includes an entry for each of these workflows.

Workflow Stages

Users, including administrators and end users, interact with workflows at various stages.
Among these stages are association, initiation, status, and completion. The following sections
describe some of these stages in more detail.

Workflow Association

Workflows are installed at the server level. The administrator of a site collection must activate
the workflow to make it available to a specific site collection on that server. Site administrators
can then associate a specific workflow with a list, document library, or content type. A work-
flow association is stored as a property of the specific list or other item. Administrators can
also set general workflow parameter information such as

m A unique name for the workflow

m How the workflow is applied to a given item (either automatically when the item is cre-
ated or changed or manually) and which roles (such as Administrator or Contributor)
can start a workflow

B The task list for the workflow to use if it creates tasks

m The history list for the workflow to store history events, as defined by the workflow

In addition, a site administrator can specify custom parameter information for a particular
workflow. To capture this information, the workflow must provide its own form that Win-
dows SharePoint Services displays for the administrator.

126 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Workflow Initiation

Any user who has been assigned the appropriate role can initiate a workflow that is config-
ured to run manually. The user selects the item on a SharePoint site and then selects the work-
flow from the group of workflows associated with that item. The user supplies any
information required for the specific workflow and then starts the workflow. Initiating a work-
flow creates a new workflow instance for that specific item.

Again, for a user to specify custom workflow initiation settings, the workflow must provide its
own form. The user specifies the initiation settings on this form, and the settings are passed to
the workflow engine, which starts the workflow instance.

Workflow Status

Users can view the progress of a workflow on a selected item. The main document library or
list item page displays the status of the workflows running on an item. In addition, each item
has a workflow page on which a user can see all workflows currently running on that item, all
workflows that have run on the item in the past, and all the workflows available for that item.

When a user initiates a workflow on an item, Windows SharePoint Services adds a column to
that item, and the column’s name is initially set to the name of the workflow. Windows Share-
Point Services uses this column to display the current status of the item within that workflow.

Workflow Task Completion

Workflow stages appear as tasks in a task list. When designing a workflow, its author can
specify the task schema, which might include information such as the following:

Task title

Name of the person the task is assigned to
Task status

Task priority

Task date due

Alink to the referenced item

As the workflow runs and tasks are created, the user can select the task, mark it complete, and
enter any optional or required information. The workflow instance is then notified of changes
to workflow tasks and can choose to respond to those changes as specified in the workflow.

This response can include moving the item to another stage of the workflow.

Creating Workflows: The Missing Piece of Office Productivity 127

The OnWorkflowActivated Activity

All Windows SharePoint Services workflows start with the OnWorkflowActivated activity.
(Each new SharePoint workflow application project you create contains an OnWorkflow-
Activated activity as the first activity by default. However, you still must set the properties of
that activity.) This activity initializes the correlation between the workflow instance and the
correlation reference so that the WF runtime can direct incoming messages to the workflow
instance.

Using the Information in the OnWorkflowActivated Activity

After a Windows SharePoint Services workflow is initiated, the Properties property of the
OnWorkflowActivated activity returns an SPWorkflowActivationProperties object that repre-
sents the initial properties of the workflow as it starts, such as the user who added the work-
flow and the list and item to which the workflow was added. Any activity that needs access
to the initialization information of the workflow, such as the workflow ID, can refer to the
Properties object defined in the OnWorkflowActivated activity.

You can use the initiation properties from any other activity within the workflow; these are
especially useful when you are using a Code activity to work with the Windows SharePoint
Services item the workflow is running on. For example, you can use the following code to
return the SPListltem object on which the workflow instance is running. In the code sample,
wfProperties is the object variable specified for the Properties property of the OnWorkflow-
Activated activity.

SPweb myweb = new SPSite(wfProperties.SiteId).openweb(wfProperties.webid);

SPListItem myItem =
myWeb.Lists[wfProperties.ListId].GetItemById(wfProperties.ItemId);

//Here is where you can alter the item..

myItem.Update(Q);

Setting the Properties of the OnWorkflowActivated Activity

When you create a SharePoint workflow application project, an OnWorkflowActivated activ-
ity is the first activity by default. Several of the activity’s properties need to be specified. Each
required property that has not been specified is highlighted with an exclamation-point icon
in the properties window. To ensure that the OnWorkflowActivated activity is valid, do the
following:

m Set the Activation property to True. You must set this property to True for the workflow
to initialize properly.

m Specify variables for the following properties:
Q Properties
Q CorrelationReference

a Workflowld

128 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

How Windows SharePoint Services Processes Workflows

Windows SharePoint Services runs a workflow until the workflow reaches a point at
which it cannot proceed until a specific event occurs—for example, a user specifying that
a task is complete. At this point, Windows SharePoint Services commits the changes
made in the previous Windows SharePoint Services workflow activities. Those changes
are batched into a single SQL transaction, an approach that has two major advantages:

m Batching the changes is less performance intensive than committing each change
as it occurs as a separate transaction.

m If any of the changes fail when committed, Windows SharePoint Services rolls
back the changes to the previous commit point, which decreases the amount of
work developers have to do when creating exception handlers and compensation
handlers for Windows SharePoint Services workflow activities.

When the event for which the workflow is waiting occurs, the workflow resumes run-
ning and runs until another event is reached or the workflow ends, at which point Win-
dows SharePoint Services commits any changes made by Windows SharePoint Services
workflow activities that followed the last commit point. This continues until the work-
flow reaches its conclusion or is stopped by the user.

This approach can affect workflows in which Code activities are interspersed with Win-
dows SharePoint Services—specific workflow activities. Although the write operations
for the Windows SharePoint Services workflow activities are batched and not commit-
ted until a commit point is reached, write operations that are included in Code activities
are committed as they occur. Also, Code activities do not have the implicit rollback func-
tionality of Windows SharePoint Services workflow activities. Exception and compensa-
tion handlers must be written for those activities.

Workflows in Action

The sample SharePoint site illustrated in the examples in previous chapters is used by consult-
ants for Litware, a fictitious company, to fill in a time sheet each day to summarize their activ-
ities. The time sheet data is stored in a custom SharePoint list for later use. For example, at the
end of every week, managers review the time sheets to approve or reject the hours submitted
by each consultant. To facilitate this process, an approval process is followed for each weekly
summary time sheet. In this section, we’ll demonstrate a workflow that creates a task assigned
to a consultant’s manager and provides the manager with a form that he or she uses to accept
or reject the time sheet. We'll first illustrate the built-in approval workflow so that you can see
some of the steps required to associate and configure a workflow with an item on a SharePoint
site. After that, we'll create our own approval workflow using Visual Studio 2005.

Creating Workflows: The Missing Piece of Office Productivity 129

Associating and Activating SharePoint Workflows

As mentioned earlier, Windows SharePoint Services provides several built-in workflow types.
One of these is an approval workflow. As the result of user interaction with the workflow, a
task is added to a task list on a SharePoint site. The approval workflow also provides Office
InfoPath 2007 forms to facilitate interaction with the task. In this section, you’ll see how to
attach an approval workflow to the Weekly Timesheets document library to facilitate manager
approval of time sheets.

Before you can use the approval workflow, you need to enable the Routing Workflows feature
on the site collection. Open the site (http://oss] in our example) and navigate to the Site Set-
tings page by clicking Site Settings on the Site Actions menu. Under Site Collection Adminis-
tration, click Site Collection Features. Figure 7-1 shows the Site Collection Features page,
which lists built-in workflows among the features. In the features list, find the Routing Work-
flows feature and be sure that it is activated.

Bl
D Lt wew Faverres ook ek | 2]
Qo =) - (4] [3) ([S sowech iPovorkes €| 30 K (3] - L) |
A [] bero:floss1]_Isroutsianscer estures. sspisapeatte] B us |

Team Site Welcurne Litwarelne Ademmstrator = | My Site | My Links = | Help | Send Fesdback =)
4 N
2" Team Site

Hame

Team Site > Site Setlings > Site Features
ED Site Collection Features

j Lontent Type Definition Arthe
QOB content type defintions Deactivate
j Digposition Approval Workflow Acthoe
#ting & de Deactivate
_J Lollect Signatures Workflow Arthe
Gaathess sigrshures nended o comelnte an Cffion dacusent, Oeacthntn
_J Tield Definition Acthoe
OO Firdd defindriors Deactheate
_J Issue Tracking workflow Arthe
e this weorkflow ba track Tssues. Deactheate
i) ncel Services Site Feature Acttve [
ks st beved Microsoft Office Fxrel Services Faatuens tn the Windows SharePoint Services framework. Deactheate
_J Routing Workflows Akive
“wiorkfiows that send a documert for frndhack or appecwal, eacthntn
J Translatinn workflow Akive
This workfiow vall create placeholder doouments and send them to transtabors. Deacthveake
% Weh Part Adder default groaps Tnstive =l
Eloene = [T dvecaintranat
.Q,‘su-q |2 @ || @ 5 collection Featur... (5 %36 AN

Figure 7-1 To use a built-in workflow, you must activate the workflow on the site collection.

For this example, we also need to create a task list to store workflow-related tasks. To do this,
we open the site’s complete content list using the View All Site Content link and create the list,
choosing Tasks as the list type.

130

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Now that the preliminary work is done, we can associate the approval workflow with the
Weekly Timesheet document library. After opening the document library, we use the Docu-
ment Library Settings page to open the page shown in Figure 7-2, which lets us associate the
workflow with the library. On the page, we select the Approval workflow template, name the
workflow TimeSheetApproval, and select the task list we created to store the workflow tasks.
In this example we also indicate under History List to create a new workflow history list to
store the history of the workflow.

[B o wnekdlom_Microsolt Internet Bxplorer IEIES
Do £t wew Faveres ook ek | 2]
Ot - O -)) (b] Dseweh CiFavtss @] (- Fo (0]~ 1) B '
Ao [I TLista T NAS LA R A SRR 1 L% 70] B s)
Team Site Welcurne Litwarelne Adommstrator = | My Site | My Links = | Help | Send Fesdback | 2]

3°4® Team Site
Home

Add a Workflow: Weekly Timesheets

Warldlaw Select a worklow template: Eresaription:

il 8 wur Use thes workflom B0 route & document or kst ibem
Tor spproval, Each Aggrover vl be axsigned a
task bn Apgenie or Arjert the assocabed
document or kem.

Cullect Feedback
Collact Sigratures
Digposition Approval

Ll

Mare Type & unigue nane for this orkfiow:

[TuneShesthoproval

Task List Select 8 bask bt Description:

[rases T =] U e Tk ek b Dk o vk sk s

OF your beam needs to complets.

History List Setect & history et Description;

TaneSheetaproval istory (ni] A e hiskory st vil be crested for uss by this
werkfiow,

Start Opthons ¥ o thés werkFlow b be manusaly staetod by anypone with a prsmission level of
. - O Contribe

e .. ll

[ETtes T =
Figure 7-2 This page is used to define attributes when adding a workflow to a list or library.

After clicking Next on the page shown in Figure 7-2, we see the page shown in Figure 7-3. On
this page, we can configure settings related to the approval process. For our purposes, we're
interested only in the Approvers text box. In it we enter litwareinc\administrator so that the
administrator must approve each time sheet document. We then click OK to complete the
steps for setting up the workflow. Now we can test the approval process.

In the Weekly Timesheets document library, we select the Workflows menu item from one of
the time sheet documents, and then start the workflow by clicking the TimeSheetApproval
link under Start A New Workf{low, shown in Figure 7-4.

Creating Workflows: The Missing Piece of Office Productivity

weorkflow - Mic Internet Fsplorer |
e Gl gew Fgoes Tods Wb | &
Qe = 3 - H) [F G| eanch ik | - 0 B - 0
A [] bero:floss1]_Isroutsi LR, 1 e ATREIFCH =] B [uns >
| Team site Welcorme Litwarelne Administrator = | Hy Site | My Liniks = | Hele | Send Fasdbsck]
3 N
#'s* Team Site
Home | Sie Actions * |
. e i o
Customize "TimeSheetApproval”: Weekly Timesheets
Use ths page to customize this retance of “TimeSheetaporoval
|| |
Workilow Tashks
specty bow s it whather b .
vt kaviks b et dedegabed of F participants ran request |
chiariges b made b the documan price to fnshing thee ' A participarts smutaneousdy (poralel)
Lk, & o particiack ot 4 time (e
Allow werkflom poeticipants to:
7' Detagation Lasks to snolher person
[¥ Renquest a change beforn complating the task
Delaull Wurkflove Start Yahues
Speciy Ure del st vahoes thal this we vk Typeth # paopis you wank 4
b5 started. You can opt bo lock the kst of particioants sothat & started. barsks
ol be changed by the person shartiog e worklkow,— sanal werkflows).
A e —
F alowchs 3,
Ty & meseaas to inchude with your request:
|
E_m T T S icintranst

131

Figure 7-3 This page is used to define aspects of the approval process managed by the workflow.

T workfnws - i Intrenet Fuplneee
Bl Bl e Fgoedes Twk Heb | &y
Qback + &) - (=) (2] G| S Seareh i Faverkns £ | (e i (9] <)
agiioss [) i 4-a AT 1 H 2Rt a1 e Wtk RESEUT meshests et Lome 7] [Ga | Unks
| Team site Welcurns Lilsarelne Admmstrator = | Hy Sits | My Lisks = | Hela | Send Fasdbach |~
3 N
#'s* Team Site
Harive | Sk Actions - |
) |Workflows: Timesheetlinfo_3.28
‘o roports foe ol Lisis s s b <tint & e worHfiows o6t s curek it b i Ut Sttt of g o cxxiplsbed vronomn
eeirkfigers oo thes ket
Start o New Workflow
J Timeshestaocroval
- LLise: this workfiow bo route & docurrert or ket Rem for sporoval. Lach Approver will be asagned & task to Approve or Reject the sssocisted document or ibem.
Yiew Status of & Running Workflow
Ther - this kem
¥iew Status of & Completed Workflow
There are rs compheted workflows o the R,
=l
ermmmmmmﬂm-mmwaﬂmﬂmwmm DD DT s iocaintranet

Figure 7-4 Users initiate a workflow using a menu command that opens this page.

132 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The initialization page shown in Figure 7-5 allows us to modify the initialization parameters
set when we created the workflow. In this case, we won’t override any of these settings, so we
simply click Start to initiate the workflow.

2] Start Woekilow - Marrosolt Internet Euploeer

Bl Bl e Fgoedes Twk Heb | &y
Qe + &) - (=) (2] G| S Seareh i Faverkns £ | (- R (9] <)
agess [5] - v " dodbF MAbUbeUAT} iz] Bl ta |uns »
Team Site Welcurne Litwarelne Ademmstrator = | Hy Site | My Links = | Help | Send Fesdback =)
* ’ ~ N
2" Team Site
Home Site Activns - |
Start "TimeSheetApproval”: Timesheetlinfo_3.28
Use ths page to start & new indtance of “TimeSheetdoprovsl
Request Approval
To reguest spproval For this document, type the names of the people wio reed Lo approe R on the Approvers s i1 the order you war
ned. 1 emad i erabled on the serves, sach appreer vl recehve notFication of thesr basi via emad el once purryore has
- the tasks assgned;
| |
Due Date
o bl g, approvers vall recsive & vevindeer on Ll date § Uheir Lask i rok finited,
e each e b3 Frish the task
Motily Others -
T notily cther peogle sbout this worklkos starting il sssigning Lasks, Lype names on the OC e,
e, | a,l
e =
[e FTTTT S ol tranet

Figure 7-5 The page that starts the workflow

As you can see in Figure 7-6, the workflow has created a task for the Litwarelnc Administrator
to resolve.

The next step in the workflow is to complete the task so that the workflow can continue. We
do that in the Tasks list by editing the properties of the task. On the approval form, shown in
Figure 7-7, an approver can enter comments and approve or reject the time sheet.

Creating Workflows: The Missing Piece of Office Productivity 133

™ Team Site > Tashs
@ Tasks

Vinw 4l Sibe Conbant Use the Tasks lst to keep track of work that you or your tesm needs to complete.

Documents Mew - | Actons - Settings - Vevri | My Tasks =
« Shared Doouments

| Tithe Sahus Fricety D Gt o Complete | Link, Cukrome
= Workdy Tmeshents Pl appenve TimeshentInfo_3.28 | new Mok Started {2) boemal Tiveshesttinfa_3.28

Picures.

Lists.

* Tesm Discusson

* Tasks

Disrussinns
Surveys
Praple and Geoups
2l mecycle vin

A [T T
Figure 7-6 A task is created once the workflow is run.

T woekflne Task - Micrasnft Inteenet Fuplnrer

3°#t Team Site
Home LSRHIEE)
Tasks: Please approve Timesheetlinfo_3.28

Yuur s ey - indo_3.28
Fron; Lbwarslie Adisistrstor
Eue by

Mo instructions weer: provided foe thés task.

Type comments to inchide vt your rrsponss:
o e wiss weel spent

towove | et | cancd |
her optivns
Bassion task Eeguest a changs
Porssered by Forma Sendons
=
fElowe T oot

Figure 7-7 A manager uses this form to approve or reject the time sheet.

134 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services
After approving the time sheet, the last step is to verify that the workflow was successfully
completed and that the time sheet has been approved. We can see in Figure 7-8, which shows
the Weekly Timesheets document library, that the TimeSheetApproval column for the docu-
ment we approved is set to Completed.

Afwrekly Timesherts - Micersoft Internet Fuplores

===
B BB Wew Faeordes Took Hep | & |
Qo =) - (4] [3) ([S sowch iPovorkes €| (30 (3] - L
Augrss [E) beep:hose Weekty ozl mesheets f cems{alltems, oo | B [uns »
Team Site v Litwearelng Adenistrator = | My Site | My Links = | Helg | Send Fesdback | <]

(1 .
3's* Team Site [Coctont =l
s Team Site = Weskly Timeshests
c—f) Weekly Timesheets
Wiews Al Sihe Conbent Mew = |Upload = | Actions = | Settings = e | All Documents =
Dacuments e n [T TimnShoetapproval
= Shared Documents | Trnesheetinfo_3.20 1w AJI2006 11:50 AW Liwareing Administrator Completed
» Weeldy Tmeshents B Tineshestinfa 4. 10w AJEJ2006 11:558 &M Lewsarnine Administrabor
Piclures B) Tiveshetinio_4.7 1nes 416/2006 11:59 AM Liwwaredi Aekninistr ator
Lists
« Tesm Descusson
Discussinns
Surveys
Praple and Geoups
& mecycle Uin
I =l
] [W ocalintranet

Figure 7-8 The status of a workflow is displayed for the item in a document library.

Creating a Human Workflow in Visual Studio 2005

Even though Windows SharePoint Services provides several workflow solutions, from time to
time you'll need more functionality than is provided by the built-in routines. In these cases,
developers can create custom workflow solutions as well as custom Office InfoPath 2007
forms for managing workflow initialization and task completion. In this section, you'll see
how to create a custom approval workflow and interactive forms using Visual Studio 2005
and Office InfoPath 2007. We'll start by creating a project (named CustomApproval) in Visual
Studio 2005, basing the project on the SharePoint Sequential Workflow Library template.
Visual Studio fills out the project with initial references, an XML file, and a preliminary class
named Workflow1.cs. Figure 7-9 shows the Visual Studio window with Workflow1.cs open in
design view and the default onWorkflowActivated1 activity already in place.

Creating Workflows: The Missing Piece of Office Productivity 135

2% CustomApproval - Microsalt Visual Studin == %]

Bl Ede vew Eroject Duld Debug wirflow Dgts Tegt fodks Window Commurty Lt
- % BE[D-O -] b Dty SRR RED
i@ e[l wes - 2 |mi o

| WurkfluweLes [Design] | Sart Pags

1
gl . -~
S SharaPoint Sequential Warkdlow

Workflowl SharePontWork kv Templates, Sha =

(2 & -

Fl Activity -
{Name) Workllowl
Conmmented False

Destription
Parammeters (Collection)
E Advamed
Dol aSources (Colbection)
Trangaction mone. |

: B B | o
| ela]y . L 3 | (ame)
)

13l | Phesse specky name of the sctivity used ta
4 (] | e assodsed e,

£ Errer List
PRty

Figure 7-9 The initial project window for a SharePoint Sequential Workflow Library template
project

The first step in implementing the workflow is to retrieve information such as the name of the
manager who needs to approve the document and any comments associated with the docu-
ment approval process. To gather this information we add three member fields to the
Workflowl.cs class. (To view the code for Workflow1.cs, you can right-click Workf{low1.cs
and select View Code.) The member fields we add, all strings, are named user, comments, and
taskStatus.

Next we switch Workflow1.cs back to design mode and create an event handler for this initial
activity by right-clicking the representation of onWorkflowActivatedl and selecting Generate
Handlers. We implement the handler by accessing the workflowProperties.CreationData collec-
tion to access the User and Comments values and store them in the member fields. Here’s the
code for the initial fields and the handler:

public string user;

public string comments;

public string taskStatus;

private void onworkflowActivatedl _Invoked(object sender, EventArgs e)
{

// retrieve the creation data

user = workflowProperties.CreationData["User"].ToString(Q;

comments = workflowProperties.CreationbData["Comments"].ToString(Q);

}

136

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Next we'll create a step in the workflow by using the CreateTask activity. We start by creating
several member fields in the Workflow1.cs class to store information about the task’s prop-
erties before and after editing. These fields are used to retrieve the results of the task’s
completion.

public Guid taskID = default(System.Guid);
pubTlic Microsoft.sharepPoint.workflow.SPworkflowTaskProperties taskProperties =
new Microsoft.SharePoint.workflow.SPworkflowTaskProperties(Q);
public Microsoft.Sharepoint.workflow.SsPworkflowTaskProperties
taskBeforeProperties =
new Microsoft.SharePoint.workflow.SPworkflowTaskProperties(Q);
public Microsoft.sharepoint.workflow.SPworkflowTaskProperties
taskAfterProperties =
new Microsoft.SharepPoint.workflow.SPworkflowTaskProperties();
public System.workflow.Runtime.Messaging.CorrelationReference
taskReferenceobject =
new System.workflow.Runtime.Messaging.CorrelationReference();

We switch Workflow1.cs to design mode again and drag a CreateTask activity onto the canvas
after the activation activity, as shown in Figure 7-10.

A% CustomAppeoval - Miceasalt Visual Sthudin =l]|
Gl Edt Wew Project Duld Debug workflw Dgts Tegt ook Window Commundy Lo
- % DE[9-O -] b Doy SRR RED
% @ R oo - =2 |l
N | | B i sl
i T SharePoink Workllow Y 3| E A
g - i pEEEDA
g R Puker 7 Customappeaval
& SharaPoint Sequantial Workflow 4 g Prcperties
4 WSSty 3 T [l Aeferences
41 Enablewnrdlomtodiication h %’““""""
! o | Tretahlbak
3 Ot lowboclind i] workflow ol
I erivorklovitenrChanged 1 rivodksiow -] Workilowl co
W -+ Activaed]
) Onwoddiomitineleted
41 SendEmad
4 onTaskocreated *
4 CrakDeisted o el
4 onlakrhanged . .
4 Crestelask
4 UpdateTack E
4 DelsteTask
I CompleteTask. B s
T e [rrogees - #x]|
4] UpdoteilTardks |uu1=u=k1 Mool L Off s, Workdhorr Creab =
" Wil Worklaw (2! (3] #
B A, =
") createTaskl
There are o wsable controls in Conmmenited Fase
IFouE. ey e R ok S bk Ly Cormdlaboratersre
Dscription
El Handlers
S| Hetedivecking -
= |B mMusc
T | raiaa rrrerrerwreeryey|
2 | oy
(i) | Paase specky the dentier of the activiy. It hes
Lo b e i e veon e,
2]
4 Erer List

e |

Figure 7-10 You can build the stages of a workflow by dragging activities from the toolbox.

Now we need to use the properties pane and set several properties for the CreateTask activity.
We set its CorrelationReference property to /Workflow1.taskReferenceObject, its Taskld prop-
erty to /Workflow1.taskld, and its TaskProperties property to /Workflow1.taskProperties.
These values are used by the activity to manage the lifetime of the workflow and to provide
parameters for the task’s creation.

Creating Workflows: The Missing Piece of Office Productivity 137

Finally we need to populate the properties of the task by using the taskProperties variable. To
access this code, we right-click createTaskl and click Generate Handlers. The only property
that is required is taskID, which was set in the designer. The ExtendedProperties property is
used to send information to and from the Office InfoPath 2007 forms.

private void createTaskl_MethodInvoking(object sender, EventArgs e)

{
// initialize the task ID
taskID = Guid.NewGuid(Q);

// populate the properties of the task

taskProperties.AssignedTo = user;

taskProperties.Description = "Approve the document.";

taskProperties.Title = "Timesheet Approval”;

// populate the type of the form and extended properties
taskProperties.TaskType = 0; // This 1is used to map tasks to Infopath forms
taskProperties.ExtendedProperties["Comments"] = comments;

3

The previous step created a new task. The next step is to wait for the task to change and
store the results of the change. We open Workflowl.cs in design mode and drag an
OnTaskChanged activity to the workflow canvas, placing it after the createTask1 activity. We
set its CorrelationReference property to /Workflow1.taskReferenceObject, its Taskld property
to /Workflowl.taskld, its BeforeProperties property to /Workflow1.taskBeforeProperties, and
its AfterProperties property to /Workflow1.taskAfterProperties.

Now we need to write the code associated with the OnTaskChanged handler that will retrieve
the status value from AfterProperties and store it in the member variable taskStatus.

private void onTaskChangedl_iInvoked(object sender, EventArgs e)

{

// retrieve the TaskStatus property from the infopath form

taskStatus = this.taskAfterProperties.ExtendedProperties["TaskStatus"].Tostring(Q);

}

The last step in defining the workflow is to complete the task and set its status to the Task-
Status value retrieved in the previous step. Again we open Workflow1.cs in design mode. This
time we drag a CompleteTask activity onto the canvas and place it after the onTaskChanged1
activity. For this activity, we set the CorrelationReference property to /Workflow1.taskRefer-
enceObject, the TaskId property to /Workflow1.taskld, and the TaskOutcome property to
/Workflow1.taskStatus. The TaskOutcome property is the text value that is used when setting
the status value of the completed task.

Now that the design and coding of the workflow is complete, we need to sign and build the
workflow assembly. To sign the assembly, we navigate to the Signing tab in the project prop-
erties window, select the Sign The Assembly check box, and browse to the .snk file to use—
CustomApproval.snk in this example.

138

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Next we need to create the Office InfoPath 2007 forms that will be used by the workflow. The
first form will be used to retrieve the user name of the manager who is assigned the approval
task. The form has two fields, User and Comments, that are tied to appropriate data sources
for receiving data. (For the purposes of the example, we used XML files.) The form also
includes a text box and a button that is used to submit the form to Windows SharePoint
Services and then close the form. Figure 7-11 shows the initialization form, named Custom-
ApprovalAssoc.

(Design) LustomApprovalAssoc - Microsoft Office Inforath _I8 ﬂl
Fie E# Wew Qe Fpmal ook Toble Help sion for el =
RIES bl B Bereview -1 (3% 4 Ta @y F B, 5 Ll | o Desn Tasks... | wews = V!

A Verdana 0 B ruEEami=-=-=-FE YA
] Cvou Table [ten horder s [ipe =l - - | ot~ 5 B IE H
Manager's User Nama ;l' 5‘"'; X
i Desgn Tasks
Start
Daka soawoe:
Main -
= myFields
2 User
] Comments
I Show dstals
Actions
Hanage Data Connechons., .
4 Help wath the Data Source
ooy Infopsth snd Forms Services

Figure 7-11 The first of the three Office InfoPath 2007 forms created for the custom workflow

Next we’'ll define the form that is displayed when a new instance of the workflow is started.
We can base this form on the previous form so that the primary data source will have the same
namespace in both forms. We modified this form by changing the text box label from Man-
ager’s User Name to Comments and changing the binding of the text box to the Comments
data source field. This form is saved as CustomApprovallnit.

The last form we create is used when acting on the approval task. In this form, the manager is
presented with any comments entered in the CustomApprovallnit form and two buttons—one
to click to approve the document and another for cases when the document is rejected. The
design of this form includes a field named TaskStatus and two XML data connections for
receiving data. (The Comments text box at the top of the form is bound to a field named
ows_metalnfo_Comments in one of the data sources.) The Accept and Reject buttons set the
value of the TaskStatus field, submit the data to Windows SharePoint Services, and then close
the form. Figure 7-12 shows the approval form.

Creating Workflows: The Missing Piece of Office Productivity

{Design) LustomApprovall ask - Microsoft Dffice Lnforath 18]]
Bt EM Wiew Qiserl Famal Took Talde Help tioe for help. =
RIES b B Bereview - | (3% 4 Ta @y F B, 5 Ll | o Destan Tasks... | wews = VE
A Verdana 0 B 7u[EEami=- == v A
] Orow Table [f No border Bl - - | et~ 5 @ E
Comments: Dala Source %
GEH Y
5 Design Tasks
Approve I Hejrot T
| vain -
=y miyFields
21 TashShatus
I Show detals
MActions
Hanage Dats Connechons., .
il Help with the Daba Source:

[Comesebiey: Inforath s Forms Strvices

Figure 7-12 The task approval form

139

The next step is to define a feature that will install the workflow. The Visual Studio project
provides a basic Feature.xml file that you can use for this purpose. The information you need
to add to the file includes a GUID for the workflow, which you can generate by clicking the
Create Guid command on the Tools menu in Visual Studio. For the RegisterForms value for

this example, we use Forms/*xsn. Here is the XML from the file:

<?xml1 version="1.0" encoding="utf-8" 7>

<!-- _1cid="1033" _version="12.0.3111" _dal="1" -->
<!-- _LocalBinding -->
<!-- Customize the text in square brackets.

Remove brackets when filling in, e.g.
Id="[UNIQUE GUID]" ==> Id="328B9FAF-0E29-46b1-92B3-71F7D1D67761" -->

<Feature TId="FD130413-76CE-475e-9160-CB5C75116165"
Title="Custom Timesheet Approval"
Description="Custom Timesheet Approval workflow"
Vversion="12.0.0.0"
Scope="site"
ReceiverAssembly="Microsoft.office.workflow.Feature, Vversion=12.0.0.0,
Culture=neutral, PublickeyToken=71e9bcellle9429c"
ReceiverClass="Microsoft.office.workflow.Feature.workflowFeatureReceiver'
xmlns="http://schemas.microsoft.com/sharepoint/">
<ElementManifests>
<ElementManifest Location="workflow.xml" />
</ElementManifests>
<Properties>
<Property Key="GloballyAvailable" value="true" />

140

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

<!-- value for RegisterForms key indicates the path to the forms relative to
feature file location -->
<!-- if you don't have forms, use *.xsn -->
<Property Key="RegisterForms" value="Forms/*.xsn" />
</Properties>
</Feature>

Next we open the Workflow.xml file, which is also provided by Visual Studio, and fill

in the first portion of its template. (You’'ll need to check the public key token of the
Microsoft.Office. Workflow. Feature assembly deployed in the Global Assembly Cache (GAC)
when working with the file yourself.) We populate the MetaData section with URNSs for the
three Office InfoPath 2007 forms we created earlier. To find the URN, open the form in Office
InfoPath 2007 in design mode and choose Properties from the File menu.

<?xm1 version="1.0" encoding="utf-8" 7>

<!-- _1cid="1033" _version="12.0.3015" _dal="1" -=>
<!-- _LocalBinding -->
<!l-- Customize the text in square brackets.

Remove brackets when filling in, e.g.
Id="[UNIQUE GUID]" ==> Id="328B9FAF-0E29-46b1-92B3-71F7D1D67761" -->

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<workfTlow
Name="Custom Timesheet Approval"
Description="Custom Timesheet Approval workflow"
Id="E6D98FEO-E332-4471-AFDE-20881AFCAAD5S"
CodeBesideClass="cCustomApproval.workflowl"
CodeBesideAssembly="CustomApproval, Version=3.0.0.0, Culture=neutral,
Pub1icKeyToken=6479e6da8b088665"
Associationurl="_layouts/Cstwrkf1IP.aspx">

<Categories/>
<MetaData>
<Association_FormURN>urn:schemas-microsoft-
com:office:infopath:CustomApprovalAssoc:-myxsb-2006-01-02T01-28-
35</Association_FormuRN>
<Instantiation_FormURN>urn:schemas-microsoft-
com:office:infopath:CustomApprovalInit:-myXsD-2006-01-02T01-28-
35</Instantiation_FormurRN>
<TaskO_FormuRN>urn:schemas-microsoft-
com:office:infopath:CustomApprovalTask:-myxsD-2006-01-02T02-08-
14</TaskO_FormuRN>
<StatusPageUrl>_layouts/wrkStat.aspx</StatusPageurl>
</MetaData>
</WorkfTow>
</Elements>

The last step in creating the feature is to update the Install.bat file that Visual Studio 2005
provides when you create the workflow project. You can use this file to install and activate the
feature. Here is the file as Visual Studio provides it.

Creating Workflows: The Missing Piece of Office Productivity 141

@echo off
if (%l.==.. (
goto usage

)

echo Copying the feature...

echo.

rd /s /q "%CommonProgramfFiles%\Microsoft Shared\web server extensions\12\TEMPLATE\FEATURES\
[FEATURE NAME]"

mkdir "%CommonProgramfFiles%\Microsoft Shared\web server extensions\12\TEMPLATE\FEATURES\
[FEATURE NAME]"

copy /Y [FEATURE XML FILE NAME] "%CommonProgramfiles%\Microsoft Shared\web
server extensions\12\TEMPLATE\FEATURES\[FEATURE NAME]\"

copy /Y [WORKFLOW XML FILE NAME] "%CommonProgramfiles%\Microsoft Shared\web
server extensions\12\TEMPLATE\FEATURES\[FEATURE NAME]\"

xcopy /s /Y [FORMS, e.g. *.xsn or Forms*.xsn] "%programfiles%\Common
Files\Microsoft Shared\web server extensions\12\TEMPLATE\FEATURES\[FEATURE
NAME]\ [FORMS DIRECTORY if any; should match the location specified in your
feature.xml under RegisterForms]\"

echo.

echo Adding assemblies to the GAC...

echo.

"%programfiles%\Microsoft visual Studio 8\SDK\v2.0\Bin\gacutil.exe" -uf [DLL
NAME (NO EXTENSION, e.g. HelloworkFlow)]

"%programfiles%\Microsoft visual Studio 8\SDk\v2.0\Bin\gacutil.exe" -if [PATH
TO DLL RELATIVE TO THIS FILE, e.g. bin\Debug\HelloworkFlow.d11]

echo.

echo Activating the feature...

echo.

pushd %programfiles%\common files\microsoft shared\web server extensions\12\bin
stsadm -o deactivatefeature -filename [FEATURE NAME\FEATURE XML FILE NAME,

e.g. Helloworkflow\feature.xm1] -url %1

stsadm -o uninstallfeature -filename [FEATURE NAME\FEATURE XML FILE NAME, e.g.
Helloworkflow\feature.xml]

stsadm -o installfeature -filename [FEATURE NAME\FEATURE XML FILE NAME, e.g.
Helloworkflow\feature.xml]

stsadm -o activatefeature -filename [FEATURE NAME\FEATURE XML FILE NAME, e.g.
Helloworkflow\feature.xm1] -url %1

echo Doing an iisreset...
echo.

popd

jisreset

goto end

142

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

:usage
echo.

echo Usage: Install A<url of ServerAs
echo i.e. Install http://myserver
echo.

rend

You execute Install.bat with the command line parameter with the URL to your site, which
will register the assembly in the GAC, uninstall, reinstall, and finally activate your workflow
feature. You could now follow the steps shown earlier in the chapter to associate the custom
workflow with the Weekly Timesheet document library, configure the workflow so that the
Litwarelnc Administrator must approve the document, and then run and test the workflow.

Note You can implement conditional branching in a workflow. For example, if a time sheet
is approved, the manager needs to be sure the consultant is paid. You could extend the
approval workflow by using the Windows Workflow If-Else activity to create a new task for the
manager only if TaskStatus is set to Accepted.

Chapter 8
Introducing Excel Services

In this chapter:

Key Scenarios for Excel Servicesc.ooiiiiiiiiini i, 144
Excel Services Architecture Overview cciiiiiiiiiinaenn.. 148
Controlling Visible Information and Interacting with Workbooks 149
Building Applications with Excel Web Services 151
Controlling and Protecting Workbooks 154
Data Connection Libraries i, 156
Unsupported Features in Excel Servicesc i, 159
Excel Services and ReportinginaPortal 162
Coding with Excel Web Servicesciiiiiiiiiniiiiiinnnann. 172
Excel Services User-Defined Functions, 178

Microsoft Office SharePoint Server 2007 Excel Services, new server technology that ships with
the 2007 Microsoft Office system, supports loading, calculating, and rendering Excel work-
books on servers. Excel Services has two primary interfaces: a Web-based user interface that
enables users to view workbooks in a browser, and a Web services interface for programmatic
access to the data and logic in workbooks. Excel Services, which requires Microsoft Office
SharePoint Server 2007, provides the following capabilities:

Allows browser-based access to workbooks
Incorporates workbooks in portals and on dashboards

m Controls access to workbooks for either regulatory and audit concerns or to protect
intellectual property in the workbooks

m Eliminates “multiple versions of the truth”; in other words, Excel Services makes it
unnecessary for users to maintain separate copies of the same workbook, which are
often out of sync

B Uses servers to offload long-running calculations from desktop computers

B Enables logic and business models built in Excel to be used in other applications with-
out having to develop the logic or business models again in a programming language

Excel Services is built on Office SharePoint Server 2007, which means, for example, that when
a user saves a workbook to Excel Services, he or she saves it to a SharePoint document library
and can then make use of SharePoint document library features. A whole range of additional

143

144

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

features in SharePoint and Excel Services together provide tools to help organizations and
users share, manage, and control workbooks. These features include workflows, versioning,
auditing, and taking snapshots of workbooks at specific points in time.

This chapter introduces some of the key concepts and practices of Excel Services. We'll look
at the scenarios for which Excel Services can be used, its architecture, mechanisms for control-
ling who can access a workbook, and how users can interact with workbooks in the browser.
We'll also review methods and other elements of the Web services interface. Then we’ll dem-
onstrate how to work with Excel Services and a SharePoint site, how to incorporate Excel for-
mulas in an application, and how to create a user-defined function (UDF) that you can use
with Excel Services.

Key Scenarios for Excel Services

Microsoft targeted three scenarios for the initial release of Excel Services:

m Sharing workbooks through the browser
m Building business intelligence (BI) dashboards

B Reusing the logic encapsulated in Excel workbooks in custom applications

In the following sections, we'll look at each of these scenarios in more detail, starting with
sharing workbooks and issues related to controlling and managing workbooks.

Sharing Workbooks Through a Browser

Certain types of workbooks—those that contain important business information or logic,
require intensive calculation, or are shared with customers or partners—don’t easily lend
themselves to current methods of sharing workbooks, such as e-mail or file shares. For exam-
ple, sharing through e-mail tends to multiply the number of copies of a workbook. It’s easy for
users who receive the file to modify their personal copies, which results in more than one
copy of the data. Which version is accurate?

It is also difficult for workbook authors to protect parts of their work—for example, key logic,
business modeling, or data that is considered confidential or proprietary intellectual prop-
erty—while sharing other parts of the workbook, such as the completed analysis they want a
client to see. Finally, large workbooks that require intensive calculation are not well suited for
distribution by e-mail. Every user who opens the file has to wait for the workbook to down-
load and the calculations to run before they can continue with their work.

Excel Services provides users with means to handle these and other issues related to sharing
workbooks. Using Excel 2007, workbook authors can save their files to a SharePoint docu-

ment library and give other users browser-based access to the server-calculated version of that
workbook. When a user accesses the workbook, Excel Services loads the workbook, refreshes
external data when necessary, runs necessary calculations, and sends the resulting output to

Introducing Excel Services 145

the browser. The workbook is rendered using only DHTML. No ActiveX control is required,
and no client installation of Office Excel 2007 is necessary. Users view the latest version of the
workbook, and they can interact with its data in the browser. Moreover, a workbook author
can restrict access to specific sheets or cell ranges in the workbook, thus hiding intellectual
property from people who need to see only the results. A user accessing the file in the browser
sees only cell values and not the underlying formulas. If multiple users are viewing the same
workbook, it is loaded and calculated only once by the server, saving the network bandwidth
and lessening the wait time for long-running calculations. Finally, workbook access can be
logged and audited. Overall, these capabilities provide a powerful means for sharing work-
book via the browser in a controlled and secure way.

Note Excel Services does load balance separate workbook calculations across multiple serv-
ers and calculates more than one workbook on a server (each request runs on a different
thread). Excel Services does not, however, break out a single workbook across multiple servers.
This design is optimized for scaling to large numbers of workbooks and requests; for example,
many users viewing a dashboard with data from a number of workbooks on it, or programmat-
ically running a large parametric sweep of a workbook or group of workbooks.

The upcoming Microsoft Windows Compute Cluster Server 2003 complements Excel Services'’
interactive end-user scenarios by providing scalable, reliable, batch workbook processing.
Compute Cluster enables computation-intensive applications to scale their performance and
achieve high availability using farms of 64-bit servers. Compute Cluster capabilities can be eas-
ily integrated into an application using a .NET or DCOM object model. For example, a Web Part
can be programmatically connected to a Compute Cluster job scheduler that distributes a pro-
cessing load over a number of compute nodes, each running a separate instance of the Excel
Services engine. For more information about Microsoft Windows Compute Cluster Server
2003, see www.microsoft.com/windowsserver2003/ccs/default. mspx.

Building Business Intelligence Dashboards

Business intelligence is one of the key areas of focus for Office Excel 2007 and Excel Services.
The browser-based sharing of workbooks described in the previous section is part of that
effort. Business people such as financial analysts, business planners, and engineers who work
with data in Excel workbooks can’t easily reuse and share that data in a portal or on a dash-
board. The integration of Excel Services with Windows SharePoint Services and Office Share-
Point Server 2007, however, allows all sorts of users to build Web solutions that contain live
and interactive data without using any code, as shown in Figure 8-1 on the next page.

Let’s look at the pieces that could be included on a dashboard and how it would be created.

m Office SharePoint Server 2007 The dashboard is built using Windows SharePoint
Services, and its format is consistent with the rest of the SharePoint site it belongs to.
Because the concept of a dashboard (a page containing a set of SharePoint Web Parts) is
native to the SharePoint platform, it is simple for users to create dashboards that look
like the rest of their intranet site.

146 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

m Excel Services Two of the Web Parts on the dashboard are provided by Excel Ser-

vices; in this example, a table and chart are contained within a workbook, but these
could also be formulas, PivotTables, and so on. In the context of a dashboard, however,
users can configure Excel Services to show only a portion of the workbook (a “sum-
mary” view). The author can also configure the level of interactivity available for a dash-
board. Finally, because Excel Services is just showing a workbook, the creator of the
dashboard can make use of his or her knowledge of Excel to create that workbook and
format it without writing any custom code to access external data, perform calculations,
format the results, or provide interactivity.

Key Performance Indicators One of the Web Parts on the dashboard is a Key Perfor-
mance Indicator (KPT) List Web Part. This Web Part is part of SharePoint, not Excel Ser-
vices. A KPT Web Part provides a highly visual display of data that allows users to get a
sense of the status of important factors in their work. The data can come from sources
such as a manually maintained Excel worksheet or an enterprise database.

SharePoint Filters The final set of Web Parts on this dashboard are Filter parts, which
are also SharePoint Web Parts, not from Excel Services. These Web Parts can be hooked
up without code to other parts on the page, enabling users to filter everything they see
on the page. For example, if a user named Beth wanted to see only her support calls for
ProductA during FY04, she would enter those criteria and click Apply Filters. All the

content on the dashboard (chart, table, KPIs) would update accordingly. Filters can be
set up to allow users to pick from a predetermined set of values; enter a date, number, or

string; filter on the user viewing the dashboard; filter on values in an external database;
and the like.

OO) e S B 5> - OB S

VP 1 Ty e rp—— S r——r—————"rT——

R Dpen Seapshat in Excel 12 | B9 Oree in Bvrel 12 | W Calrulaos worksssk | T | M) | Mg | O selss

Top 10 Product Subcategory Reseller Report

Dk 00|
Geography Uned Saces

Rl Bhoes

Mourtan Bhes

Tighes

Mereeys

Road Frames
Hoorean Frames
Whaeehk

Bb-5horts &,

Lowes

59,2040 B 11

Helmets

4558649 § $15,304 55 123967

Al s 196,245.75

Top 10 Product Subcategories

B

Rapart |

Figure 8-1 A business intelligence dashboard built without code using Excel Services

Introducing Excel Services 147

How is this dashboard created? A user with the appropriate SharePoint permissions can cre-
ate a dashboard with just a few clicks. They can choose which Web Parts (there are many
more than the few just mentioned) they want to display on the dashboard, as well as where
they want those parts displayed. After choosing the Web Parts to include on the dashboard,
the user can configure the dashboard using a Web browser, setting up which workbook data
is shown (and how), what KPIs are shown in the KPI list, and what filters should be available,
for example.

Reusing the Logic Encapsulated in Excel Workbooks

In addition to a browser-based interface to the server, Excel Services provides a Web service
interface. The same workbook that is published by its author can be accessed programmati-
cally by any application that can communicate through Web services. The calling application
can change values, calculate formulas in the workbook, and retrieve some or all of the
updated workbook using the Web service interface (subject, of course, to security permis-
sions). This capability opens a range of interesting possibilities and solutions for using Excel
and Excel Services.

Today, developers or other users of spreadsheets need to rewrite the logic represented in
them in code to support running in a server-grade environment. Excel Services lets the logic
be retained and updated when necessary in a workbook and used to its full effect in the con-
text of an application. This combination of effort provides users with the best of both worlds—
easier and more effective modeling in Excel, as compared to custom code, together with appli-
cation integration, scalability, and manageability.

Multi-User Editing of Workbooks

Excel Services does not attempt to address the scenario of multiple users who want to
jointly author a workbook in real time and see each other’s edits. Excel Services allows
more than one user to open and interact with a workbook at the same time, but each
user has his or her own session. If a user interacts with the workbook (for example, by
setting a filter on a PivotTable), other users do not see those changes. The changes a user
makes are not saved to the original file.

The server storing the workbook opens the file as read-only, and each user has his or her
own session state in the server’s memory. A workbook is loaded only once in server
memory no matter how many users are accessing it. Each user’s session maintains the
specific interactions (for example, filters) that the user has performed and how the
workbook results should be calculated and returned to that user. This behavior is the
same whether calling the workbook through Web services or accessing it through the
Web-based user interface.

148 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Excel Services Architecture Overview

As mentioned previously, Excel Services is part of Office SharePoint Server 2007. Excel
Services has three components: Excel Web Access, Excel Web Services, and Excel Calculation
Services.

B Excel Web Access is a SharePoint Web Part that performs the rendering (in this case,
creating the HTML) of Excel workbooks on a Web page. You can use this Web Part as
you would any other Web Part in SharePoint to create a wide range of pages.

B Excel Web Services provides programmatic access to the logic and data in a workbook.
This component is a Web service hosted in SharePoint. You can use methods in this
Web service to develop applications that incorporate calculations performed by Excel
Services and to automate the updating of Excel workbooks.

m Excel Calculation Services is the component that loads the workbooks, calculates them,
refreshes external data, and maintains session state for interactivity. This component is
at the heart of Excel Services.

Additionally, Excel Services makes use of a proxy internally to handle the communication
between the components on the Web front end and the application server in multiple-server

configurations. This proxy also handles load balancing in case there are multiple application
servers in your installation.

In the simplest configuration, the three components that make up Excel Services would run
on the same computer; however, in most production environments with a significant number

of users, the components on the Web front end and the application server would be on differ-
ent computers.

Security

Excel Services uses the security infrastructure provided by Windows SharePoint Services.
Excel Services uses Windows SharePoint Services for authentication (who can log onto the
server) as well as authorization (who has access to which workbook and the type of access:
read, write, view only, and so on). The reliance on the Windows SharePoint Services security
infrastructure provides a strong security environment for protecting workbooks.

Performance and Scalability

Excel Services is optimized for scenarios in which multiple users access the same worksheets.
This optimization is achieved by caching at multiple levels so that collective performance for
a group of users is improved by caching the workbooks as well as any external data queried
by the workbooks. These operations are transparent to an end user except for the response
time. (Cached results are shared only between users who have the same rights.)

Introducing Excel Services 149

Controlling Visible Information and Interacting
with Workbooks

When a workbook is published to Excel Services, the entire workbook is saved to the server
so that data can be refreshed or calculations run. The workbook author can, however, control
which parts of the workbook are visible when a user views the file in the browser or it is
accessed through the Excel Services Web services API. The three choices for controlling how
a workbook is viewed on the server are

m The entire workbook (the default setting).

m A subset of sheets (as many or as few as you want). This approach is useful when you
have workbooks that contain lots of behind-the-scenes sheets that hold intermediate cal-
culations, source data, and so on, but only a few sheets that you want users to see. If an
author needs to make changes to the workbook over time, however, he or she still can
use all the features in Office Excel 2007 and can see the entire workbook without having
to unhide sheets.

B A set of named items, such as named ranges, charts, tables, PivotTables, and Pivot-
Charts. This mode is called Named Object view. In this view, users can select the items
they want to see from a drop-down list in the browser. Items are displayed one at a time,
which simplifies setting up a dashboard. Even though only a single item is shown at a
time, the entire workbook is loaded in Excel Services, which means that the visible
objects can be refreshed and are interactive.

Defining Parameters

Users are able to interact with a workbook in the browser, but they will not be able to directly
edit cells in the grid. Instead, workbook authors can specify parameters as part of the process
of publishing a workbook to Excel Services. Parameters let an author expose specific cells
whose values a user can then change when working with the data. Excel Services provides a
built-in task pane for changing the values of parameters. After the value of a parameter has
been changed, the workbook calculates new values and the user sees the results in the
browser.

Note that not all cells can be exposed as parameters. Here are the restrictions:

The parameter must be a single cell and cannot be a range.
B The cell must not contain a formula.

B The cell must be a regular workbook cell, not a cell in a PivotTable, table, chart, and
S0 on.

B The cell must have a defined name.

150 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Interacting with Workbooks in the Browser
Users can interact with workbooks in the browser in a number of ways:

View workbooks in a browser
Navigate within workbooks

Sort, filter, and perform other operations on the data in workbooks

Change parameters to facilitate what-if analysis in the workbooks

Features related to interactivity are generally grouped into three areas: worksheets, tables, and
PivotTables. Although the level of interactivity does not include full authoring of workbooks

in the browser, users with appropriate permission can open a workbook in Office Excel 2007

and have the complete range of Excel’s features at their behest. In situations in which interac-
tivity needs to be controlled—for example, if you want to display some data using a PivotTable

but don’t want users to be able to change the view—interactivity can be turned off. You can, for
instance, allow users to sort but not filter, to interact with tables but not with PivotTables, and
SO On.

Interactivity with Worksheets

Excel Services supports the same layout and formatting capabilities as does Office Excel 2007.
To users, a worksheet viewed in Office Excel 2007 will look the same as the worksheet viewed
in a browser (within the constraints of HTML). The look of a worksheet includes familiar for-
matting as well as features new to Office Excel 2007, such as data bars, color scales, table
styles, and others.

Only one section of a worksheet is served up by Excel Services at one time. This limitation is
a performance optimization, as less HTML needs to be served up to the client. The number of
rows and columns can be configured. The default values are 75 rows and 20 columns. Paging
controls allow a user to move between sections.

Users will also be able to page between worksheets (using tabs as in Excel), expand and col-
lapse outlining, set parameters, refresh external data and calculate the worksheet, and find
values within the worksheet. (The Find feature will search for values in the entire worksheet,
even the parts that are outside the current section.)

Interactivity with Tables and AutoFilters

If a workbook contains a table or autofilters, users will be able to set and update sorts and fil-
ters. Specifically, users will be able to sort data in ascending or descending order, use a multi-
select or Top 10 filter, set quick filters (“Above Average,” “Below Average,” “Contains,” “Last
Month,” and so forth), or set custom filters (“Less Than,” “Contains,” and so on).

Introducing Excel Services 151

Interactivity with PivotTables

If a workbook contains a PivotTable, users can interact with the PivotTable within the
browser, including expanding and collapsing levels, sorting in ascending or descending
order, applying a multiselect or Top 10 filter, setting quick filters, or setting custom filters.

Building Applications with Excel Web Services

One of the main purposes of Excel Services is to enable the logic encapsulated in Excel work-
books to be used in custom applications. Having this capability means having access to work-
books and their contents on the server through Web services in a manner that’s scalable and
manageable.

As mentioned earlier in the section about Excel Services architecture, Excel Calculation Ser-
vices is the engine of Excel Services; it is the component that loads and calculates workbooks.
In situations in which users interact with a workbook in the browser, Excel Calculation Ser-
vices loads and calculates a workbook and then hands it off to the Excel Web Access compo-
nent, which produces the HTML that is rendered in the browser. Developers can also use
Excel Calculation Services without interacting with the Excel Web Access component. Specif-
ically, a Web service API sits on top of Excel Calculation Services so that developers can call
server-side workbooks directly from their own applications. For example, developers can
write code that opens a workbook on a server, sets cells and ranges to specific values, controls
an external data refresh and workbook calculation, and then retrieves values from the calcu-
lated workbook or retrieves the workbook in its entirety.

Excel Web Services enables many possibilities. In one scenario, a business expert who
authors a workbook can now maintain the model in Excel; an administrator can protect that
model on the server using the appropriate set of users, roles, permissions, and a firewall; and
a developer can call Excel Web Services to incorporate the logic of the model into the opera-
tions of a custom solution. A variation on this would be to provide a custom user interface to
Excel-based server applications that use Excel Web Services to interact with a server-side cal-
culation session.

Another scenario in which Excel Web Services will play a role is automating workbook
updates on servers. This capability works especially well in combination with the new Open
XML file format, which greatly simplifies the task of programmatically creating an Excel file
from scratch or by using a template. After a file has been created, it often needs to be calcu-
lated; for example, external data feeds need to be updated. It is straightforward for developers
to write code that uses Excel Web Services to perform these operations and then retrieves an
up-to-date copy of the calculated file and saves it back to the server or delivers it to any other
destination.

In brief, you can write code that can start a session with Excel Calculation Services, set values
in cells and ranges, process the workbook, and get calculated values or the entire workbook

152 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

back to use within your application. The following list describes some methods and proper-
ties of Excel Web Services. You'll see some sample code later in the chapter.

GetApiVersion gets a version string of the installed Web service API build.

B sessionld = OpenWorkbook opens a server-side calculation session. The method takes a
workbook file path and a few other arguments and returns a sessionId.

B GetSessionInformation gets a few properties of the server session, primarily the language
context of the session.

m SetCell sets a value in a cell on one of the workbook’s sheets. Two versions of this
method exist: one takes a cell address (for example, B52) or a named range (for exam-
ple, Interest), and the other accepts integer coordinates for cases in which using the
coordinates in your code is more convenient, usually when you have indexes in the code
and want to use them to index the sheet.

B SetRange is the same as SetCell but is used for setting values for an entire contiguous
range. The same two versions exist as in SetCell.

B Refresh reads data from an external data connection (or all of a workbook’s connec-
tions) and refreshes the values in the relevant cells; for example, in PivotTable cells or in
the results of cube formulas.

m Calculate recalculates the formulas in a specific range or in the entire workbook. This
method is useful when the workbook author has turned off automatic calculation. Two
versions exist: you can use either a string or integer coordinates to refer to a range, much
like in the Set methods.

m CalculateWorkbook calculates the entire workbook, using one of two calculation meth-
ods:

Q Recalculate calculates only formulas that have dependencies that changed (aka
“dirty” formulas).

Q CalculateFull calculates all formulas, regardless of dependency changes.

m GetCell gets a value from a cell. The two regular addressing mechanisms exist here as
well. You can get either formatted string values or the raw binary values.

W GetRange gets a set of values from a contiguous range of cells; it has the same addressing
flavors as GetCell.

B GetWorkbook gets the entire calculated workbook into your application memory as a
byte array. You can get either the live result or a snapshot. A snapshot is essentially a
workbook with the layout of the original workbook, with all the original formatting and
with up-to-date values, but with the formulas and external connections stripped out and
without the portions of the workbook that were marked during the publishing process
not to be viewed.

Introducing Excel Services 153

B CancelRequest: If your application runs the Excel Web Services session in a separate
thread and wants to cancel a long-running server request (like a long calculation that a
user got tired of waiting for), it can do so by calling this method.

B CloseWorkbook tells the server to close the workbook that it opened for this session,
thereby also allowing the server to release all the resources it maintained for the context
of your session.

Error Handling
Errors are exposed to an Excel Web Services application in three ways:

B Excel calculation errors show up just like they do in Excel—as cell error values
(#VALUE!). When you call GetCell or GetRange and ask for formatted values, you'll get
the #-style error string. When you ask for unformatted values, you'll get an enumerated
error code.

B An error in processing one of the Web service methods (which prevents the method
from completing successfully) is exposed as a SOAP exception that your code can catch.

B Less critical errors that do not prevent the method from returning normal results are
returned as part of the method’s arguments, specifically as an output argument. The rea-
son for this approach is that an exception would divert the code from its normal execu-
tion path, which is not desirable with noncritical errors. Checking for these errors is
optional.

Sessions

One concept that developers need to be aware of is the way Excel Calculation Services main-
tains sessions for performance reasons. A good way to understand the benefit of server state
is to think about a user who interacts with an Excel workbook in a Web browser. Each time
the user takes an interactive step—such as revealing details in a PivotTable, changing an input
parameter, refreshing data connections, and so on—we want the server to compute only the
difference between what the user saw on the screen before taking that step and what they
should see as a result of the step. For performance reasons, we do not want the server to
read the workbook file from disk again or to recalculate formulas that do not need to be
recalculated.

This behavior is also desirable in situations in which an Excel server-side calculation is per-
formed by the server for a custom solution that uses Excel Web Services. For example, if the
solution’s code sets a cell to a new value, we want the server to calculate only formulas that
depend on that cell’s value and nothing else. So, the server keeps the state, or context, of a cus-
tom application’s calculation in server memory. This context is called a session. A session ID
lets the application tell the server which session it is working with. The server returns this ID
to the application when it starts a new session (by opening a workbook), and then the appli-
cation code passes this session ID to subsequent Web service calls.

154

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Controlling and Protecting Workbooks

In this section, we'll review how Excel Services enables you to lock down and protect work-
books. These capabilities help address an organization’s need to limit access to workbooks
either for regulatory and audit concerns or to protect proprietary information. To further
address this requirement, in addition to allowing users to execute and view workbooks on the
server, the Windows SharePoint Services architecture has been extended with a new right,
called the View Item right.

After describing the View Item right, we’ll show how to ensure that the workbooks users view
are the “right” workbooks—in other words, how to control which users can author workbooks
that will be run on the server, and which versions of those workbooks will be available for
users to view.

The View Item Right

To help you understand the View Item right, think of how SharePoint is used for a document
store on the server. Users can save and version files, administrators can control access permis-
sions, and so on, all through any browser. (SharePoint does a lot more than serve as a docu-
ment store, of course.)

Currently, SharePoint administrators can give users Reader rights, which lets them look at
content; Contributor rights, which provides permission to look at, change, and add to con-
tent; or Administrator rights, which provides full control. With the View Item right, you can
lock down workbooks that have been published to SharePoint so that users can open the
workbooks using Excel Services, interact with them, and see the execution results, but can’t
download a copy of the workbook or access any areas that were not published as viewable on
the server. This right helps hide any proprietary information contained within the workbook,
such as specific formulas, a proprietary model, external data connections, or hidden elements
of the workbook.

Note The View Item right is specific to SharePoint document libraries and does not work
with workbooks that are stored in UNC shares or generic HTTP locations.

As an example of how the View Item right can be used in an Excel Services solution, imagine
a workbook that takes several inputs and then calculates discount rates for a large retailer.
The discount rate for any specific distributor is dependant on many factors, including the
quantity of product that is purchased, the time of year, and the number of previous transac-
tions for a given distributor. Of course, the formula for the discount rate is carefully guarded
by the retailer because it determines the profit made on each transaction. With Excel Services,
this retailer can now assign a distributor View Item rights to the workbook containing this
sensitive model without having to worry that the distributor will be able to download or see
the model.

Introducing Excel Services 155

The View Item right affects how both Excel Web Access and Excel Web Services allow access
to a workbook. The specific elements that are affected include the following:

m Which portions of a workbook a user can access. When a user has only the View Item
right, he or she can see only the portions of the workbook that have been marked as
viewable on the server during the publishing process.

m Which portions of the workbook can be opened in Excel. Although users with the
Reader right can open the original workbook in Excel if they want to see the model, for-
mulas, data connections, and so on, users with the View Item right can only open a
snapshot of the original workbook in Excel. In a snapshot, a user can see the numbers
but not the proprietary information behind those numbers (formulas, connections, and
so on). That information, in fact, is not contained in the snapshot. (And, of course, users
can see the numbers only for the portions of the workbook that were marked as visible
on the server.)

These examples focus on viewing the workbook through the browser using Excel Web
Access. Similarly, if an application accesses the workbook through Excel Web Services, the
View Item right is enforced. For example, issuing a call such as GetRangeAl to a range that has
not been marked as viewable will result in an exception, as would GetWorkbook.

Controlling Who Can Publish Workbooks to Excel Services

The first step in controlling who can save workbooks to the server is controlling the locations
from which the server will load workbooks. An administrator controls these locations by
maintaining a list of directory paths as trusted locations. Excel Services checks this list before
opening any workbook and will not load and execute a workbook unless it comes from a
trusted location. Using SharePoint rights (for workbooks stored in SharePoint document
libraries) or simple file system rights (for arbitrary UNC paths), an administrator can control
who can save workbooks to these locations. Effectively, this list of trusted locations allows an
administrator to control which users have access rights to save workbooks that will be exe-
cuted by Excel Services.

For example, on a company intranet all employees could have the rights to save workbooks
(and other files) to various SharePoint sites within a portal. However, an administrator could
designate one trusted location within the portal where only a select few users could save
workbooks that would be loaded and executed by Excel Services. In turn, the users browsing
those workbooks are guaranteed that they are viewing sanctioned copies of the workbooks.

Controlling the Publishing Process for Workbooks in Excel Services

When workbooks are stored in SharePoint document libraries, many more features for con-
trolling the process of authoring and publishing workbooks are provided, and these features
guarantee not only that the right version of a workbook is made available to users but that
each workbook is subject to proper review and approval cycles. Additionally, an audit log is

156

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

available that tracks who accessed which workbook and when. This log is useful in the con-
text of compliance processes, for example.

The check-in, check-out, and versioning mechanisms in Windows SharePoint Services 3.0
allow for major and minor version numbering as well as security specifically for old versions
of workbooks (and other documents). Additionally, SharePoint has built-in functionality for
policies around retention and expiration of documents, which means that outdated versions
of a workbook are automatically retained and then destroyed in order to meet compliance
requirements.

Document approval within SharePoint allows an administrator to set up a document library
so that when a workbook author saves a new version of a workbook to the library, the work-
book is not available to other users to view immediately. Instead, the workbook needs to be
reviewed by an administrator or an appointee, such as a financial analyst in charge of the
library, and be approved or rejected. Only after approval does the workbook become available
for other users who have the rights to view it. An approval process can be as simple as the
administrator monitoring the library and changing a flag on the workbook in the document
library, or it can be a custom workflow that sends e-mail messages to a group of approvers to
ensure that the workbook meets any number of internal requirements prior to its approval.

More Info For more information about workflows, see Chapter 7, “Creating Workflows: The
Missing Piece of Office Productivity."

Finally, Windows SharePoint Services 3.0 allows administrators to audit key events within
document libraries. Although auditing within workbooks themselves has not been imple-
mented, events such as opening, creating, modifying, and deleting workbooks are all
recorded in a centralized log. Several built-in reports are provided to analyze that log, in addi-
tion to mechanisms to generate custom Excel reports.

Data Connection Libraries

What

In the past few sections, you've learned about managing, sharing, and securing Excel work-
books using Windows SharePoint Services and Excel Services. In this section, we’ll cover a
new feature that provides management, sharing, and security of data connections: the Data
Connection Library.

Is a Data Connection Library?

AData Connection Library (DCL) is a new type of SharePoint library (much like a document
library) that provides a location in which to store, share, and manage connection files. Con-

nection files are Office Data Connection (.odc) files that contain the information and parame-
ters needed to form a data connection, such as the server name, the OLAP cube or table name,

Introducing Excel Services 157

and a query. Because a DCL is a library in SharePoint, it provides SharePoint features such as
workflow support, file approval, library level/item level security, and sorting and filtering
based on metadata. You create a DCL the same way you create any library, and DCLs can be
created on a portal or on a team site.

The way Excel interacts with a DCL makes the DCL more valuable than just a document
library full of connection files. In the following sections, we’ll describe a few of the problems
that a DCL and Office Excel 2007 help solve.

Connecting to Databases Made Easy

Setting up a connection to a database in Excel is a task that many users struggle with. For
example, if they want to connect to an ODBC data source or to a SQL Server Analysis Services
cube, users must know details such as server names, cube names, table names, what type of
connection to create, user credentials, and so on. Lots of steps and knowledge are required.
Office Excel 2007 and DCLs make connecting to databases a much simpler activity. Users
need to know what data they want to work with, and that’s pretty much it. Here’s an example
involving a PivotTable.

To connect to a database (or to another external data source such as a Web query), a user
clicks the Data tab. Figure 8-2 on the next pagae shows the Data tab (in the beta 1 build of
Office 2007; this is not the final user interface). The user clicks the Existing Connections but-
ton, and the Existing Connections dialog box will list the connections that are stored in a
DCL. These connections have friendly names and nontechnical descriptions, so it is easy for
users to choose the connection they need. The names and descriptions are provided by the
person or persons who set up the DCL and populate it with .odc files. Users simply highlight
the connection they want to use. At this point, they’ll see another dialog box that allows them
to indicate what Office Excel 2007 should do with the data. Based on the connection the user
selected, Office Excel 2007 offers only options that are possible for a particular database. For
example, the data source in this example is a SQL Server Analysis Server database, which can-
not be represented in Office Excel 2007 as a table, so that option is unavailable. At this point,
all that is left is to click OK, and the user has connected a PivotTable to a data source. The
whole operation is a total of three or four steps.

But how do the connections end up in the DCL in the first place? In general, either
connection-savvy power users or members of the IT staff will create data connection files and
put them in the DCLs where the connections can be used throughout an organization.

Excel knows about the existence of DCLs through a SharePoint feature that allows an admin-
istrator to “advertise” the location of the DCL to Office 2007 clients, which in turn allows con-
nections from a DCL to show up in Office Excel 2007. Of course, the DCL shows up only if
the user has permissions to access the connection files the library contains.

158 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

] BookL - Mitrusofl Excel - @ X
] 97 U % sheet et Pogelupold Formlos (mbsteny Review k4
[T CoTiy ity Dt soi Ouiine] i
| 2] Mew Access 1 s % = Connections E . ‘_: m 3 Dala Validation ¥ Gioup "
: = 1 &
3 Hew web — ~ 1 MG L 1 - Es Consolidate & Ungraup = =
- Creale New Existing Retresh &b sot Filer Testla Remove .
E|NewTer connection = NEOMBSSHOHET] An - nk Advaneed Columns Ouplieates 8 Whatdl Anstysis -+ Subtetal
Al - | Advertum Vorks ¥
A B —] J [3 L M NE
1 1 v Open Commetion...
2 Selert a conaectinn fram wmekbnok, computer, or SharePoing Linmy
3
4
5
[
7
8
]

26
W4k M Sheell - Sheetd - Sheetd (. il | ;

Ready @ Miew = [l O3 i3, 100% o 9 w
distart| | [& | W untied - Paint | |] Micrasnilt Eucel - Boalel (5} S PM

Figure 8-2 The Data tab

Solving Connection Management Problems

In addition to improving the discoverability and ease of using connections, DCLs help users
manage connections. For example, information about data sources, such as the server name,
OLAP cube name, table name, and the like, can change. A typical case is a database that is
moved from a test server to a production server. For organizations that have many users cre-
ating workbooks, it can be difficult to communicate changes such as these to all the people
who are affected. A worse situation is one in which hundreds of existing workbooks need to
have their data connections updated.

A DCL helps solve problems such as these because only a single connection file in the DCL
needs to be updated with the new information. After the connection file is updated, workbook
authors will have the correct connection information the next time they use that connection
file, and any existing workbooks that were created using the connection file will have their
connections updated automatically the next time that workbook’s data is refreshed.

How exactly does this work? By default, workbooks will refresh their connection information
from a DCL only when they fail to connect to the data source. (You might think of this as a
failover mechanism.) But you can also force workbooks to always get the latest connection
information before the connection is attempted. You might make use of this capability when
you want workbook authors to start using a new database for business reports but you want
to keep the old database up and running for auditing or test reasons. Connections to the
old database still work, but you want current and future workbooks to start using the new

Introducing Excel Services 159

database. The “always use this file to refresh data” setting is a property in the .odc file itself and
can be set when the file is created.

Making Data Connectivity More Secure

A DCL can also be used to make connecting to data more secure. One common security con-
cern is knowing which data connections are safe to run. For example, data connections can
contain malicious queries, or they can contain connection parameters that can slow down an
application or compromise the integrity of the data. By creating a DCL, and by allowing only
the most knowledgeable and trusted users to save connections to the DCL, you add a layer of
security that helps ensure that connections coming from a DCL are safe to run.

Much like trusted locations, Excel Services has trusted connection libraries for data connec-
tions. Excel Services has a mode in which it will process data connections only from DCLs
that an administrator has explicitly marked as “trusted” by the server. As mentioned previ-
ously, data connections have many security threats associated with them; in many ways pro-
cessing a data connection can be like running code. By providing trusted connection libraries,
Excel Services gives an administrator the ability to allow only specific data connections to be
run on the server.

Unsupported Features in Excel Services

Excel Services will not load every Excel file. Workbooks that contain one or more of the fol-
lowing features will not load in Excel Services.

m Workbooks with code. This includes workbooks with Microsoft Visual Basic for Appli-
cations (VBA) macros, form controls, and toolbox controls, Microsoft Excel 5.0 dialog
sheets, and XM macro sheets.

IRM-protected workbooks

ActiveX controls

Embedded Smart Tags

PivotTables based on “multiple consolidation” ranges
External references (links to other workbooks)
Workbooks saved in formula view

XML expansion packs

XML maps

Data validation

Query tables, SharePoint lists, Web queries, and text queries
Workbooks that reference add-ins

Workbooks that use the RTD() function

160

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Workbooks that use workbook and sheet protection
Embedded pictures or clip art

Cell and sheet background pictures

AutoShapes and WordArt

Ink annotations

Organization charts and diagrams.

DDE links

Note Asnoted in the preceding list, Excel Services does not support or load workbooks that
contain VBA code. Excel Services will support user-defined functions that are written in man-
aged code. Native code add-ins will not be directly supported, although native code functions
called by wrapper functions can be used. For more information about user-defined functions,

see "Excel Services User-Defined Functions” on page 178.

When a user publishes a workbook to a document library, the user has the option of viewing
it in the browser after the publish process is completed. If the workbook includes a feature or
features that are not supported in Excel Services, the user will see a message that indicates this.

In some cases, Excel Services will not display an object in a workbook with full fidelity as com-
pared to Office Excel 2007. For example, charts displayed through Excel Services will not
support all the visual effects included in Office Excel 2007.

Workbooks that contain one or more of the following features will load in Excel Services but
the features will not be displayed. (The features won’t be removed from the file, however, so
the next time you open the file in Office Excel 2007, they will be displayed.)

Split and frozen panes

Headers and footers

Page Layout view

Cell patterns

Zoom

Analysis Services’ member properties in tooltips

Some cell formatting, such as diagonal borders and border types not supported by
HTML

Interacting with files. While some features support interactivity in the browser, not all
do. For example, users cannot add or rearrange fields in PivotTables when working with
workbooks in a browser.

Introducing Excel Services 161

PivotCharts will not be interactive when viewed in a browser (in other words, you won’t
be able to filter a PivotChart directly), but if you interact with the PivotTable supplying
data for the PivotChart, the PivotChart will update accordingly.

Users will be able to sort, filter, expand, and collapse data in PivotTables in a browser,
but they will not be able to reveal all levels of detail, use SQL Server Analysis Services
actions, add or remove fields, or rearrange (pivot) fields.

In a browser, users can use either Named Object view or the provided navigation con-
trols to move around a workbook, but there is no equivalent of the GoTo command.

Zoom; Minimize and Maximize. These capabilities do not map well to browser-based
viewing of workbooks.

Switching to Page Layout view. A new view was designed to facilitate printing (an activ-
ity that is best performed in the Office Excel 2007 client).

Goal Seek and Scenario Manager
Formula auditing (trace precedents, trace dependents, show formulas, and so on)
Altering a workbook’s calculation mode

Watch window

As described earlier in this chapter, the full authoring of workbooks is not a scenario that was
targeted in the initial release of Excel Services. For example, you cannot insert a chart or
change a formula after the workbook is opened in Excel Services. The following operations
are not supported in this release of Excel Services:

Inserting a new worksheet

Inserting a chart

Creating a table

Inserting a PivotTable

Inserting a PivotChart

Editing formulas

Entering data into arbitrary cells
Defining names

Changing cell formatting

Altering conditional formatting rules

Grouping and ungrouping (you can interact with groups once they are defined in Office
Excel 2007)

Creating outlines (again, you can interact with outlines once they are defined in Office
Excel 2007)

162 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

B Defining consolidated ranges

m Converting text to columns

Excel Services and Reporting in a Portal

In this section, we’ll explore Excel Services some more and show how users can interact with
workbooks that are stored in SharePoint libraries. We'll also cover some of the steps required
to configure Excel Services and Windows SharePoint Services to work together.

Adding a Trusted Location and a Trusted Data Connection Library to
an Excel Services Configuration

After installing Office SharePoint Server, you need to configure trusted locations for Excel Ser-
vices before you can start rendering Excel documents using Excel Web Access. This section

outlines the steps for adding a trusted file location and a trusted data connection to an Excel
Services configuration.

1. Open SharePoint 3.0 Central Administration, and then click Application Management.

2. On the Application Management page, click Create Or Configure This Farm'’s Core
Services.

3. Click the link for the default Shared Services Provider (SSP). Figure 8-3 shows the Core
Services page, which includes a set of links for managing Excel Services.

i Home - LitwareLoreservices - Microsoft Internet Evplorer

_lo) x|
e Edt Vew Faotes ook pep a*
Qe -) - (¢ (2] | Fosearh i raveees £ N] -

L T r———rp— T Bso |

LitwareCornSarvices weleome G55 \administrator= | My Site | My Links= | Help | Sond Fendback |

2, - - .

3 2% LitwareCoreServices [Conterr: = 5]
Q) Home
Cantral Advnetration
There e a2 s L i
Useer Proli
2] Dune [l Lol it r

Figure 8-3 The Core Services home page

Introducing Excel Services 163

4. Under Excel Services Management, click Manage File Trusted Locations, and then click
Add File Trusted Location. (The list of trusted locations will be empty immediately after
the installation.)

5. On the Add File Trusted Location page, shown in Figure 8-4, enter the URL of your

server (for example, http://oss1). You might also want to select the Children Trusted
check box if you want to render documents from all document libraries on this server.

R Exrel Services: dd File Trusted Locatinn - Microsode Tnbermet Bsplarer

B ER few Frode Tk b | & |
| @Bk » O - (x| S Sewch i Favertns £ | (e G] - [
advess [£] I Iayoutsitzeuerver ocstion. sspiiT sskmrdd = B0
LitwareCoreServices Welwome CES1vadimmstrator= | My Site | My Links= | Help | Send Fesdback | 2]
22" LitwareCoreServices
Hexe Hel
Excel Services
Add File Trusted Location
= Laration
Adddress.
The document ey o directory address of this tusted lacation, =
ko Fossl
Lacatinn Type
Storsge type of this trusted kcation:
B windows Shareoint Sarvices
(o} NC
 mrte
Trust Children
Trust chid r aries o dreclonies,
¥ Chidren trusted
Description
Thee oplional description of the purpose of this brusted locstion.
=
Sesson Management
b of st e sesm0ng Session Timeoul
The madmum time {in seconds) thet an Excel Caloulstion Services sesskon can remain open and inactive:
betore & is shak down, as messured from e end of each reguest,
1200
Walid valns: from -1 (no tmeout) theough 2073800 (24 days). O means that the session eapiees at the end
o & sinje request. =)
g Bonn =0 || duocalintranet

Figure 8-4 The Add File Trusted Location page

6. Scroll down to the External Data section of this page. Select the option under Allow
External Data that matches how you plan to use external data with Excel documents.
The choices are None, DCL, and DCL And Embedded.

7. After you click OK to add this location, you should see it in the list of trusted locations,
as shown in Figure 8-5 on the next page. You can open this page when necessary to edit
the settings for this trusted location or add more trusted locations.

164 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

T Fured Services File Teiested |ncations - Mereasaft Inteenet Fuploeer | =]

| B BB e Fperdes Took bel | #:

| Qback + 3 - =) (] G| S nanch o Faverkns £ | (0= fa 3 () B

|aivess [1] epess issoioctnnd_iayouts(Ecetserver Trustedsoestons.ase EEN
LitwaraCoreServces Welcome 0SS1Y 2]

#'#? LitwareCoreServices

Homne Hely

Excel Services
File Trusted Locations

Thadd il Trusted Locatian

Tres Children

natpsjfosst wrdows [o %0 200 w 1 200 200 Fie poed
SharePoint enbedded
Servicess
al | ¥
] tone [| | [duncalintranet

Figure 8-5 The trusted location list with the new item added

Workbooks that are loaded into Excel Services might try to use connection files from a DCL
to refresh external data. Excel Services will allow these requests to be executed only if the
DCL is explicitly marked as trusted by the Excel Services administrator. The following steps
detail how to set up a trusted DCL:

1. On the home page for the site’s core services (shown earlier in Figure 8-3), under Excel
Services Management, click Manage Trusted Connection Libraries, and then click Add
Trusted Connection Library.

2. On the Add Trusted Connection Library page, type the HTTP address of the data con-
nection library (for example, http://0ss1/DCL) that you want to add. (If this DCL is not
available, you will have to create the library first.) Optionally, add a description. Figure
8-6 shows the completed page. After you complete this step, Excel Services is able to
load .odc data connection files from the DCL that you configured.

Introducing Excel Services 165

2 Lwcel mervices: Add Trusted Connection Library - Microsoft Internet Explorer =10] x|
Fie Edt Wew Farkos Took beb |
Qo - 0 - =) 2 | Poeedh revemes €] 0] - L

agdess @] Bayuuts ExcetServer TrustedD, asp? Taskmiusd | B |uwe >
LitmareCoreSarvcos Welcome 0S51\adrmmistrator = | My Ssts | My Links=0|RERIERRESE Foodbock =|

3°s® LitwareCoreServices

Excel Services
Add Trusted Connection Library

Location

Address.
The documens bheary address of this connection leary.

Sfoss1fsites/projectmanagemant/TiCL

Description
The optional dessription of the naturs or purpose of this connaction Mbrary.
4 demenstration DCy -

L |

O I Carxel

2] e T Mundinamt F

Figure 8-6 Adding a trusted data connection library

Building a Report for Excel Web Access

The scenario in this section shows the processes of building a report based on data stored in
a SQL Server Analysis Services Unified Dimensional Model (UDM) using Office Excel 2007
cube functions, and then publishing the report to Office SharePoint Server for viewing within
Excel Web Access.

To start, we need to create the data connection to be used in the report. The first step is to
open a new workbook in Office Excel 2007 and then add external data to the workbook. You
do this by clicking Data, Create New Connection, New Analysis Services Connection, as
shown in Figure 8-7 on the next page.

To create the connection, you step through screens in the Data Connection Wizard. You enter
the name of the Analysis Services server that contains the cube you want to use, and select the
database and the cube. This example uses Adventure Works DW as the database and the
Adventure Works cube. After you click Finish in the wizard, Excel prompts you for details
about how you want to import the data. For this example, we need to select Only Create Con-
nection, as shown in Figure 8-8 on the next page. You can use the Properties button to name
the connection and to set other properties. For example, on the Definition tab of the Proper-
ties dialog box, you can click the Export Connection File button to save the connection file to
a data connection library or to another location.

166 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

[Bueld - Minuuift B - & %
PR 90 ot imet Pgcluoid Formuios |[mDetemy Mericw e
2] New Access 1 £ % = Connections sl e € Cle '_' E_H @) Data Validation ¥ Gioup -+ 3
3 Hew wien — = T Preaert L&zl e e ap! 1] s Cansoltdate + Ungraup = =
H) Hew Test m c_‘_,_,m':,"n‘:" = __‘":."."' Sk a e A B e Chomines 7 Whabf Anstyis - Subtotal
Al Hew SO Server Connecion %
T _ﬁ Create a connetion to SOL berver table bap ot data iito Loced 33 & Tabie or PirotTable Report | = T T T T
A K L M ND
1 Hew Analyses Services Connection |
7 l Create @ cannedtion £ 3 SOL Senves Analyis Serices cube. Iport data o Lecel a3 & Table or PotTable Report |
3 Mok New Angiysis Services Connection |
4) Open or D X G T
B Hew Conmection using Data Wizl
6 3 Tmpart data far an unked farmat using Dara Cannection Wieard and OLECR |
! Hews Commection i MS Cuery l
L j] Tmpart data far an unsisted farmat using Miaassft Guery Wizard and 008 |
5 L
10 |
11 |
12
13 |
14 |
15
16
17 |
13
13 |
20 |
21 I
22
23 ‘
24 |
25 |
26
27
28 ! B
M 4 v v Sheets - Sheed Sheed —TJ i — == I]
Rty | @ View 0 @ 1008w u aE

Figure 8-7 Creating a new connection to external data in Office Excel 2007

Import Data ﬂﬂ
Select how vou would like to view this data in vour workbook
€ Table

" pivotTable Report
" PivotChart and PivotTable Repart
& ionly Create Connection:
Where dao you want ko put the data?
& Existing worksheet:
|=sast E2|

€ New warkshest

Properties. .. | OF I Cancel I

Figure 8-8 Use this dialog box to choose an option for importing external data.

To place the data connection file in a SharePoint data connection library, you can also open
the library and upload the file. After checking in the file to the DCL, you need to approve the
check-in to make the connection available to users. In the Data Connection Library list view,
open the drop-down menu for the data connection, and then click Approve/Reject. Figure 8-9
shows the DCL we created earlier with the Adventure Works data connection file checked in
and approved.

Next we’ll create a workbook that uses the Adventure Works data connection. In Excel, click
Data, Existing Connections, Open Connection. In the Existing Connections dialog box,
choose the Adventure Works connection. When prompted for the import option, select Only
Create Connection.

Introducing Excel Services

=10/ x|
| & |
| Qoack + &3 - (W) [F | Osewdh i Pavores €0 | (3e fa (3] ¢ B
I] LiF cortF ke M oy = B
LW Project Mansgernent welcome litwareinchadrministrator » | My Site | My Links = | Help | Send Fesdback :|‘
@& L\ Project Management [a Corvert =0
Woms MorthDivision Soulh Civision Site Artions =
___9 LW Project Managsment > DOl
‘Wi £ S Conkent 4 demonstration DCL
Doamments New~ Upload v | Actions ~ | Settings v | Al Dtemns ~
= Praject Evounents - . ™ w— o s Lace el
= DO Wal Advenbwre 055l Adventure The WIS LIPWAREING sdmanistrator Bgproved
Works s Works D fabverbas 10:24 AM
Lists Advenbure wrks e
eleds Works | hew
Peophe and Groups
2/ Recycle Uin
1]
] Done: R B B = [T #

167

Figure 8-9 The approved data connection file in the trusted data connection library in SharePoint

The next step is to start filling out the body of the report, including a title and header rows.
Then we'll add the rows of the table and actual references to the external data. Figure 8-10
shows the data added to Sheet 1 (renamed Reports), including the cells that we’ll use later as
parameters for the report (defined in D4 and D5) and their initial values (E4 and E5). Setting
up these parameters gives users the ability to change the values in the report to reflect a spe-
cific year and location. When we publish this workbook to the server, we’ll declare these cells

as parameters.

,ﬂ Top 10 Resller Repartxlsh - Microsaft Excel - 0Ox
Filex ([“ - U o 5| cheetw| Insert Page Layout Formulas Data Review (7]
| Clipboard Eikront il atinment s El numbera Eilho s ceiis lEditing i
3 & Calibri 11 v =E = = Zf General - i gamnset~ | E v A %

= | |[FEFAETR AN = |8 Y ; S Delete - | [g] - ZF

Pate 3 Ao @ 2% romattmg=]| A Fomats - Biers seedr
‘ 5 - fe| United States ¥
[4 B & D E F 6 [=
1

2 Top 10 Product Subcategory Reseller Report H
3

4 Date 2002
EI Geography United States !

6

7 SubCategory Reseller Sales Reseller Gross Profit Reseller Freight Cost 2
4 4 b »| Reports -~ Sheet? = Sheet3 - ¥ [IE (I])
Ready | @ View ~ 5 [0 100% i 0} (+) =

Figure 8-10 The report title, column headings, and parameters set up for the report

Figure 8-11 on the next page shows how the external data connection is used in conjunction

with a new Office Excel 2007 feature called cube formulas to return data from our data

168

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

source. We entered these formulas on Sheet2 of the workbook. Column A includes descrip-
tive labels of the data the formulas retrieve.

(=] Top 10 Resller Reportadts I
Flex i 9+ 0= Pagelayoul Formalas | mDalas Review 4
ettt \Ciata Tt O
) F = ? . e 1 it]
| 2] Mew Access 1 % = Connections sl -?—;l f- %o o M DalaValidation ¥ Gioup :
3 Hew Wb = —~ T Propert %) Lili] 4 I i Cansolidate + Ungraup = =
= Create Hew Existing Retresh oo Kb son Filtes Textto Remove R
E|NewTert conmection* connections= AN « Lo File Advanced Coumns Duplicates) Whatll Ansbpsis - Subletal
A2 - J= | Useful Farmulas *
| A | B |-
2 f
2 |useful Formulas Formula with Resolution I
Resoler Oate Parameter o
3 CubsMember--> CUBEMEMBER(“Adventure Works" CONCATENATE("[Date].[Calendar vear].[All Periods].[CY " Reportse4,"]"))
Resober Geography Paramietes
4 taCubshMembar - CLIBFMEMBER| "Adventura Works", CONCATENATE{"[G hyl.[G] [alG phies].&”, "[", Raporteles,”]"))
Resolved Reseller Sales to
5 CubaMember--» =CUBEMEMBER| “Adventure Works","[Measures].[Reseller Sales amaunt]”)
Resobeed Internet Gross Profit
6 toCubebMember =L Iy Works", "]-[Internet Gross Profit]")
Resobeed Internet Gross Profit
7 Margin to Cub . > =CL (" Wwarks", [l].[Internet Gross Profit Margin])
Resober Product Subcategories
& toaCubSet--» CUBESET|"Adventure Works","[Preduct].[Subcategoryl.members","Product SubLategonas”)
Create CubeMember for Date,
9 Geography, Internat Sales --> CUBEMEMBER|"Adventure Works",B3:85, "Combined Tuple")
Create CubeSet for All Products,
10 ordered by Infermet Sales > =CLBESET|"Adventure Works","[Product .| Subcategory] [l Products]children”, "Subcategaries Sorted”, 2,89)
11
12
13
14
15
16
Hod kb Regorts | Sheet2 - Shestd - TJ [| F]
Ready 2 Count2 Miew = LD I 100% o g CFRE
distant| | (3 @ | rscensalt Fecel - Top . I tazam

Figure 8-11 Cube formulas used in Excel to retrieve external data from an Analysis Services cube

When you enter cube formulas, Excel provides a list of OLAP-based connections that have
been defined in the workbook. When a cube formula expects a set_expression argument, as
you begin to enter the argument Excel fetches available dimensions, hierarchies, measures,
and member names directly from the cube so that you don’t need to enter the entire member
name by hand.

One final item to note here is that you can provide Excel with any valid multidimensional
expression (MDX) fragment that resolves to a member or to a set for member_expression and
set_expression arguments. For example, in cell B10, the set expression [Product].[Subcate-
gory].[All Products].children is a valid MDX expression that returns all the product subcatego-
ries.

The previous step got the data needed to fill in the body of the report, which now contains the
top 10 product subcategories sorted by reseller sales based on the year and geographical loca-
tion specified by the user. The final formula, found in cell B10, provides the sorted set that will
be used to construct each individual row of the report. In the next step, we return to the
Reports worksheet and enter the cube formulas that are used to create each row in the report.
Here are the cube formulas used for the report’s columns:

m B8, SubCategory

Introducing Excel Services

169

=CUBERANKEDMEMBER("Adventure Works",Sheet2!B10,ROW(B1))

=CUBEVALUE("Adventure Works" $B8,Sheet2!$B$9)

=CUBEVALUE("Adventure Works" $B8,Sheet2!$B$3,Sheet2!1$B$4," [Measures].[Reseller

m CB8, Reseller Sales

m D8, Reseller Gross Profit
Gross Profit]")

m EB8, Reseller Freight Cost

=CUBEVALUE("Adventure Works" $B8,Sheet2!$B$3,Sheet2!$B$4,"[Measures].[Reseller

Freight Cost]")

In cell B8, the formula returns the first item from the CUBESET function on Sheet2!B10 by
using the formula ROW(B1), which evaluates to 1. The ROW function is a great helper func-
tion when you're building sheet data reports and you need to retrieve individual items from a

set.

To provide the rest of the report’s data, you can simply fill down the formulas in the rows. The
report body now appears as in Figure 8-12.

=] Top 30 Reslier Reportaben - Mool B - & %
P L 9 - 0 5 Laneet Imet Pagcluoid Formuios DMa Rericw e
Lm_ I —— " T e T P [
. & - o as . e . Tl Th = Folmrts E v A %
i35 Lalibn u AW EEEEE G Gene i:r ‘:@ "i.gll Tl o |
BV 0o 20 e B0 T LI ST i;‘: r:.::f« Conilbonsl | p g fmﬁ mﬂ:
H13 - @ Lo ¥
JA] [c I o E Fo [6 [1 i % B
: -
2 Top 10 Product Subcategory Reseller Report
3
4 Date 2002
] aeagraphy United States
6
7 SubCategory Reseller Sales Reseller Gross Profit Reseller Fraight Cost
B Road Bies 7746385.412 278938.72938 193659.697
3 Mountain Bikes 6970418.733 46154.3679 174260.4931
10 Road Frames 1100779.195% 73287.2498 275194918
11 Mountain Frames 1019984.647 121233.279 254996147
12 Wheels 311123.2783 80825.806 7776.0957 |
13| Tights 79800.084 23625.0296 1895.0087 [
14 Jerseys 741653323 -3554,1603 1854.1298
15 Bib-Shorts BAUTZ.06A6 15680.4682 1601.9337
16 Gloves 59284.0285 15486.0414 1452.1054
17 Helmets 49586.497 15304.5454 1239.6692
=
23] 1
20
21
22
23
24 1
25
26 -
WA bW Reporls - Sheetd - Sheeld BE] ———) = 30|
Ready a View™ S0 O 100% o {} 4Bl

Figure 8-12 The report with data drawn from the external data source

Our goal for this report is to produce a pie chart, and we want the chart to contain a slice that
represents the subcategories that didn’t make the top 10 list. To accomplish this, we can enter
the label All Others in cell B18 and the following cube formula in cell C18:

170

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

sl IR TITE L b T PR e T - K 1 1 au L PNy L Ao
~CUDCEVALULC({ AUVEITCUTE WOTKS 5 [FTOUUCC] - [SUDCACeguUTy - [AT T FTOOUCCS] ,S1T€ECZ DO, SITEE 2 b,

Sheet2!B5) - sum(c8:c17)

Note You could apply other formatting features to a worksheet such as this. For example,
you could format it as a table (using the Insert ribbon) and apply a table style. You could make

the number formatting consistent. Finally, you could finish formatting the table by using Office
Excel 2007’s data bar functionality, which adds a colored background to a cell in proportion to
a cell’s relative value in a column.

To create a pie chart based on the data in the SubCategory and Reseller Sales columns, we first
select these columns and then use the Insert ribbon to insert a chart. After clicking OK, the
chartis added to the workbook, as you can see in Figure 8-13. With the chart in place, you can
add a chart title or do other chart formatting as you like.

& Ton 20 Resller Reportadan - M E - & X
PR L] 9 - 0 “Caneen | Imet Pugcloyoid Farsins

T & - vla - ~ i = “-buul -
-J-E 3 Calibn n A EEEERE P cenen i:r ‘:@ ‘i.gll T omae 3)"l %

Pt DI P -l i .l % | Cell Fomat s Canditional Sort& Find &

e A | -~ MR 5~ . 2| 8 ST [CS IR [BLFomat 2 Piters Seirct

H21 - A [

Tal 8] £ o I 3 T —— [| kS

13 Tights _73800.084 23625.0296 1995.0097

741653323

_Bib-shorts LA077.0046

19480.4082

35541603 = 183

16 kaes 592840285
17 Harlrmets 49586.492

15486.0414
15304.5454

146945, 2466

1239.6692

18 All Others

M Road Bikes

B Mcurtain Bikes
B #osd Frames

H Meurtain Frames
HWheets

E Tights

H jerses

Haks

M4 b Reporls Sheetd - Shesid TJ 0K
rady a

View= =0 @ 100 J w

Figure 8-13 The report data represented in a pie chart

The report is complete from a presentation perspective. Now we need to publish this work-
book to Office Server so that it can be shared with the rest of the organization. In this scenario,
we will share the chart and the Reports sheet but not the entire workbook. As mentioned ear-
lier, we could make the entire workbook available to users, but we’ll use the Named Object
view here to enable portions of a worksheet to be published. In addition, we’ll let users change

Introducing Excel Services 171

the report’s data by entering a different country and year through workbook parameters. To
add the parameters, we create a couple of named ranges in Excel that represent the cells in
which the year and country values are entered, E4 and E5 in the Reports worksheet. (You can
name cells by entering the name in the Name box, just to the left of the formula bar.)

To start the process of publishing the workbook to Office Server, we choose File, Send, Pub-
lish To Office Server. In the Excel Services Options dialog box, we set up the parameters by
clicking the Parameters tab, shown in Figure 8-14, and then adding the two named cells as
parameters for the workbook. This list of parameters is based on those cells in the workbook
that are defined as named ranges. Named ranges that are defined as a single cell and that only
contain values are eligible for being workbook parameters.

Excel Services Options

Show | Parameters |

Parameters allow you to specify cells that are editable when viewing the workbook on Office Server,
Determine which parameters you would like to make available by adding and deleting them from the list
below.

([aed) [peete | [Defrean |

Name Comments Value | Refers To

Date =DatalC3|

Geography =Datal$Cs4

Figure 8-14 Defining parameters that users can interact with when viewing the workbook’s data in
the browser

On the Show tab, a drop-down list provides three publishing options: Entire Workbook,
Sheets, and Items In The Workbook (such as the chart or table in the example we've been
showing). We selected the chart and the Reports sheet to be viewable on the server.

Note Remember that regardless of which option you select here for the items that can be
viewed on the server, a copy of the entire workbook is saved to the location where you publish
the workbook so that cell references and data models are available. For example, in this case
the chart relies on data that IS in the table (hot marked for display)and the table relies on data
from Sheet2 (also not marked for display).

Figure 8-15 on the next page shows what the workbook looks like in Excel Web Access, after
making the chart and the Reports worksheet available and publishing the workbook. When a
user changes the values of the parameters, the chart and table will update to reflect the change
in the parameter values. The complete set of data is available because the entire workbook is
loaded on the server, but the user has the ability to see only the elements you published.

172 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

O+ O - [=] 18] G s v @] 5= - KL S
e (] v o et e st e o S s A S
Bl wen Seasenet i Excel 13 | B omen i Exce 12 | BiCalruiase worsdosk | 1 | M) | Beng | O hakin
Top 10 Product Subcategory Reseller Report
Date: 2002
Geograph Unted Soaes.
| il ’ »
Pl Bhes 730N
Mourtan Bhes L BGN0A6.7T |
Rl Frames 1,100,779,1
Hoontan Frames i 1,019,904.65 3
Wherk 1,178 |

Tighes 75,800.08 [y

Jerseys M,165.33

Bb-shors § o B

Ghoves 3 59,2040 &

Helmets 5 45,506.49 | 1,239.67
M (thers & 186,945.25

Top 10 Product Subcategories

sl |
T e et]

B

Figure 8-15 The chart opened in Excel Web Access.

Coding with Excel Web Services

In this section, we’ll describe two examples that use managed code to incorporate logic in an
Excel workbook into an application. The integration is achieved by calling Excel Web Services
to run the Excel portion of the logic on the server. The first example involves a Monte Carlo
simulation model for a stock and option portfolio. The user of this application runs a com-
mand line tool and entered some arguments for the command. The code passes the argu-
ments to the server through Web service method calls and receives back results. The results
are then sent to the console. The second example shows similar code used in part of a simple
Web-based mortgage calculator that could be run from a SharePoint Web Part.

Monte Carlo Simulation

We used a console application in this example because it enables us to show a complete
application while focusing on the Excel Web Services aspects rather than on user interface
considerations. Typically, code that uses this Web service would be a server-side, middle-tier
application such as an .aspx page or a Web application.

Figure 8-16 shows two worksheets from the Monte Carlo workbook that we will make avail-
able to Excel Services and access through Excel Web Services. The worksheet named Simula-
tion holds the proprietary calculation model that we want to protect on the server and use in
an application. For this sample, the model is just a few randomly generated numbers, but the
workbook interface to the application is demonstrated just as if this were an elaborate and
truly valuable calculation model.

Introducing Excel Services

173

(& Microsom Excel - & X
L] 9 - U5 sheet Imet Pugclaolt Formuios |mbetes Review a
| 2] Mew Access = Connections 7 ¥ Clem] B (3 Data Validation * Gioup © 43
; ™ M g 7w B : 3
i3 New Wb - — e o 4» Reapply 'ﬂ‘—l_l (e (ki Cansolidate « Ungraup = =
o Creale Hew L iltes o m
W NewTet Conmeetion™ - Cortmortioni= " Advanced | Cojumns Ouplicates % Whatdf Analysis - | Sublotal
Al bl - Jx| Monte Carlo simulation for a stock and option portfalio ¥
A 8 C o E F G H 1 1 K
1 MONTE CARLO SIMULATION FOR AN OPTIONS PORTFOLIO
2
3 § i B000
1 Average % 8,860
[i " 00
. 99% CIMCVaR $ 2,228
7 i i a2
s Rel - Delta Normal -34.673%
9
W4 b b Sheetl . Symbols Jme iy m B0
T BB ASATER a2 [Last saved by user] o
[A | 8 | ¢ | o E £ [C [) % L M N o e
Bl Monte Carlo simulation for a stock and aption portfolio
2
3
a
Market info vortfolio
a Changr % Change Interest Stock Optlons Strike
11 52658 5008 ©011% 614N | 200 1000 $51.00
Rel - Delta Normal
Mo b N sheetl | Symbols SEREERER el | Ll
Ready | @ View = [l 00 i, 100% & [V Suls
Bistont] | [3 @ | W wolited-pat | 5 sB4mazcasiat [Lasts... |[2] apasascasdse past— | zzem

Figure 8-16 The Monte Carlo workbook. We want to use the logic on the Simulation sheet in an
application.

To publish the workbook to Office SharePoint Server, we follow the steps described in the
previous section, making sure that we don’t publish the Simulation sheet. We can then write
some code to interact with the Excel workbook using the Web service.

In Microsoft Visual Studio, we create a C# console application project and name it Monte-
Carlo. We first need to add a Web reference to Excel Web Services, which is http://0ss1:500/
_vti_bin/excelservice.asmx, and add a using statement for the new namespace:

using MonteCarlo.myserver;

Next we define the interface between our application and the Excel workbook. The interface
is a set of named ranges that are associated with input and output cells.

class Program
{
// input & output cell names
private static string[] inputCells = {"Symbol", "InitialPrice",
"StrikePrice", "Interest"
private static string[] outputCells = {"Average",
"RelDeltaNormal"};

"vaRr",

174

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Note Both direct range references (for example, B52) and named ranges can be used. Using
named ranges isolates the parameter location in the workbook from the application, making
the model easier to maintain.

Then we add code to display a usage line when the command is run with an insufficient num-
ber of arguments:

static void Main(string[] args)

{

if (args.Length < 1 + inputCells.Length)

{
console.Error.write("Usage: MonteCarlo <workbookpPath>");
foreach (string argName in inputCells)

console.Error.write(" <{0}>", argName);

console.Error.writeLine("");
return;

}

The usage line will help at run time because it refers to all the required arguments: a path to
the server-side Excel workbook and the input cell names that you defined in the previous
step.

Next we add code to instantiate and initialize the proxy object:

// Excel web services stuff:

// Instantiate and initialize the service proxy object
ExcelService x1Srv = new ExcelService();

x1Srv.Credentials = System.Net.CredentialCache.DefaultCredentials;

Setting credentials to DefaultCredentials means that your process security context is passed to
the Web service for authentication.

The next step is to open the workbook and start a session with Excel Services.

// open the workbook
Status[] status;
string sessionId = x1Srv.oOpenworkbook(args[0], string.Empty, string.Empty, out status

The OpenWorkbook method returns a sessionld, which is used in subsequent calls as a user’s
session context. The two empty strings designate default cultures (languages) to be used. The
status output argument returns an array of noncritical errors (usually empty). Critical errors
are returned as SOAP exceptions that you can catch.

We next set the values that are passed on the command line to cells in the workbook, using
the array of input named ranges that were defined earlier. After setting these values, we call a
method to have the server calculate the new state of the workbook.

// Set parameter values into cells
for (int i = 0; i < inputCells.Length; i++)

Introducing Excel Services 175
status = x1Srv.SetCellAl(sessionId, "Sheetl", inputCells[i], args[1+i]);

// calculate the workbook.

Note When a model is complex and time consuming to calculate, it is often a good idea to

turn off automatic recalculation when authoring the workbook in Excel. When automatic
recalculation is turned off, the server will not perform recalculations after each parameter

after all parameters are set.

After the workbook is calculated, you can get output values from the server session, using the
array of output named ranges that you just defined, and write them out.

// Get results and write them out.
foreach (string cellName in outputCells)

{
object result = x1Srv.GetCellAl(sessionId, "Sheetl", cellName, true, out
status);
console.writeLine("{0}:\t{1}", cellName, result);
}

As a last step, we close the workbook and your server session. This step is important for opti-
mization. If you do not close the session when you are finished with it, the server will still time
out the session after an amount of time (controlled by an administrator) passes. This time-out
period is usually set according to the needs of graphical applications to allow users to pause

between interactions. Unnecessary sessions that remain open consume server resources and
can cause decreased overall performance.

// Close the session.
status = x1Srv.Closeworkbook(sessionId);

After building the application in Visual Studio, we can run it without arguments to get the
usage line.

...\Debug>MontecCarlo.exe
Usage: MonteCarlo <workbookPath> <Symbol> <InitialPrice> <StrikePrice> <InterestRate>

Now we pass it the path to the Excel workbook and values to the other arguments. Here are
the result values that are written out.

. ..\Debug>MontecCarlo.exe "http://0ss1l:500/report/reportlibrary/MonteCarlo.xIsx" MSFT 26
Average: $80,950.37

vaR: $1,165.32

RelDeltaNormal: -53.026%

176 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

A Simple Mortgage Calculator

The mortgage calculator example, much like something you would find on a bank’s Web site,
is similar to the Monte Carlo scenario. Although it’s another simple application, it demon-
strates key Excel Services concepts such as the following:

m Using a server-side Excel workbook calculation as part of another application.

m Writing a custom, interactive user interface around Excel Calculation Services. (The
user interface for this application could be a SharePoint Web Part or any other format
that can communicate with Web services.)

B Protecting and maintaining proprietary business models while still providing users with
the ability to enter their own inputs and receive answers. There’s no need to recode an
Excel model just to protect it.

The example here is a simplified version of such a tool, with one twist: the entire calculation
is performed on the server by an Excel workbook and not by a function written in a program-
ming language. As far as the users are concerned, the tool does not appear to be related to
Excel; it is just an ordinary interactive Web form. A user can type in the mortgage amount,
mortgage period length, and interest rate; click Calculate; and see their prospective monthly
payment on the form. Behind the scenes, the Web page uses an Excel Web Services session to
load the mortgage calculator workbook, set its parameter cells to the values provided by the
user, and retrieve the calculated result from the appropriate formula cell.

The entire calculation is performed in a single cell by using the Excel PMT function. We name
this cell Payment. Similarly, we can define three input parameter cells that are also named,
although they don’t have to be named to be exposed by Excel Web Services. Cell references
can be used as well. However, using named cells better isolates the workbook and the code
around it; the code refers to the sheet only through named ranges so that the model can be
edited later and laid out in any way that the author sees fit, as long as the parameter and result
names remain intact. The workbook is published to a server document library.

The following sample code, which relates to running Excel Web Services sessions, is con-
tained within a single method that is called from a button control’s Click event. This applica-
tion would use standard Web Part code for the user interface and other operations.

private void CalculateUsingwebService()
{

Status[] status;

string sessionId = null;

// Step 1: Instantiate the web service
X1MortgageCalcwWebPart.Es.ExcelService es = new
X1MortgageCalcwebPart.Es.ExcelService();

// Step 2: Set web service 1link
es.Url = this.ExcelwebServiceurl;

Introducing Excel Services

// Step 3: Set credentials
es.Credentials = System.Net.CredentialCache.DefaultCredentials;

// Step 4: start the session

try

{

sessionId = es.Openworkbook(this.Mortgagecalculatorworkbookurl,

String.Empty, String.Empty, out status);

}

catch

{

sessionId = null;

}

if (sessionid == null)

{

_1blError.Text = "Error opening workbook. Please make sure that the
correct MortgageCalculatorworkbookurl and ExcelwebServiceurl are
specified in the web Part Properties.";

this.cControls.Clear(Q);

this.controls.Add(_1b1Error);

return;

}

// Step 5: Set parameters

es.SetCellAl(sessionId, "SimpleCalculator", "MortgageAmount",
_txtMortgageAmount.Text.Trim());

es.SetCellAl(sessionId, "SimpleCalculator", "MortgageLength",
_txtMortgageLength.Text.Trim(Q));

es.SetCellAl(sessionId, "SimpleCalculator”, "InterestRate",
_txtInterestRate.Text.Trim());

// Step 6: Get result

object o = es.GetCellAl(sessionId, "SimpleCalculator", "Payment", true,
out status);

if (o != null)

{
_1b1Total.Text = Convert.ToString(o);
}
else
{
_1blError.Text = "Error getting total value from workbook.";
this.controls.Clear();
this.Controls.Add(_1b1Error);
return;
}

// Step 7: End the session
status = es.Closeworkbook(sessionId);

}

177

To instantiate the Web service, the code creates an instance of the ExcelService object, which is
generated by Visual Studio when a developer adds a Web reference to the Web service’s .asmx

file. As you can see, the object is generated in the application’s namespace.

178

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The code sets the URL to the Web service and then sets credentials. In this case as well, we set
the credentials that are passed to the Web service for authentication to DefaultCredentials,
meaning that the application’s own credentials are used.

To start the session, the code calls OpenWorkbook, passing the path to the mortgage calculator
Excel workbook (a Web Part property in this case) and receiving a sessionld. This sessionld is
used later in other Web service calls to identify our session.

The code next calls SetCellA1 to set the three parameter cells to the values that a user of the
application has entered in the Web Part form. You can see how named ranges are used, as
opposed to direct cell references, to make the code insensitive to layout changes in the work-
book and thus more robust.

The call to GetCellAl retrieves the calculation’s result, the value in the Payment named range.
The sample workbook was set to be automatically recalculated, so as soon as the parameters
are set, users can expect the result to be available. In some cases, automatic recalculation is
turned off while authoring the Excel workbook; a call to Calculate is then necessary at the
point in the code at which you want to tell Excel Calculation Services to explicitly calculate
formulas.

To end the session, the code calls CloseWorkbook. This call tells Excel Calculation Services that
we are finished with this session and that all resources that were associated with the session
can be released.

That’s it. In seven lines of code and some exception handling, we have integrated an Excel
workbook calculation on the server with our mortgage calculator application. The application
provides a custom user interface, Excel Services processes the Excel workbook model, and
Excel Web Services ties this functionality together.

While this is a simple example, you can envision more complex calculations represented in
workbooks that you can call from an application. The calculations can be provided as a ser-
vice to applications, while the calculation model is safely hidden and secured.

Excel Services User-Defined Functions

We'll conclude this chapter with some information about user-defined functions (UDFs),
which are a mechanism by which developers can extend Excel Calculation Services.

To create a UDF, you must use Visual Studio 2005 because your project needs a reference to
the Excel Services UDF dynamic link library, Microsoft.Office.Excel.Server.Udf.dll. This assem-
bly has been compiled using .NET Framework 2.0. It is located on the computer where you
have installed Office SharePoint Server in the following path:

[drive:]\Program Files\Common Files\Microsoft Shared\web server extensions\12\ISAPI

Introducing Excel Services 179

Note If you use Visual Studio 2003 to create a managed-code UDF, you will not be able to
reference Microsoft.Office.Excel.Server.Udf.dll. It is not possible for an assembly created using

an older version of the .NET Framework to reference an assembly created using .NET Frame-
work 2.0.

UDF assemblies can reside either in a local directory or in the Global Assembly Cache (GAC).
In a farm scenario, the local directory path must be identical across the farm. A UDF assembly
also has to be present on a local disk on the same computer that runs Excel Calculation
Services.

By default, UDF assemblies are disabled. The Excel Services administrative pages in Windows
SharePoint Services Central Administration maintain a User-Defined Functions list for each
Shared Services Provider (SSP). Each trusted location has an AllowUdfs flag as well. The
default AllowUdfs value is False, which means the UDF assemblies in that particular trusted
location are disabled. If the AllowUdfs value is False when a session is started in a workbook
that has UDF calls, the UDF calls will fail. A change in this flag takes effect on the next session.
Administrators have to register all UDF assemblies and enable them by setting the AllowUdfs
flag to True.

By default, UDF assemblies run with full trust. If you don’t want a particular UDF assembly to
run with full trust, you must explicitly restrict code access security (CAS) permission for that
UDF assembly. You can do this by using the CAS Exclusive attribute. Developers can also use
the RequestMinimum and RequestOptional methods in their code to manage permissions.

A UDF class in a UDF assembly can be public or sealed. It cannot be abstract, internal, or pri-
vate. It must have a parameterless, public constructor. When you create a UDF assembly, you
need to mark your UDF class using the Microsoft.Office.Excel.Server.Udf. UdfClass attribute.

You must mark UDF methods using the Microsoft. Office. Excel.Server. Udf.UdfMethod attribute.
Methods that are not marked with the Microsoft.Office. Excel.Server.Udf.UdfMethod attribute
in the UDF assembly are ignored because they are not considered UDF methods. The
Microsoft. Office. Excel.Server.Udf.UdfMethod attribute has an IsVolatile property. You use this
property to specify whether a UDF method is volatile or not. The default value of IsVolatile is
False, which means that particular UDF method is nonvolatile.

AUDF method in a UDF assembly must be public and it must be thread-safe. A UDF method
cannot have ref or out parameters, use the retval attribute, use optional arguments, or use
unsupported data types. The UDF method supports numeric types (Double, Single, Int32,
Ulnt32, Intl6, Ulntl6, Int64, Ulnt64, Byte, Sbyte), strings, Boolean, object arrays (one- or
two- dimensional arrays, that is, object [] and object [,]), and DateTime data types. Supported
return value types are as follows:

B Numeric types: Double, Single, Int32, UInt32, Int16, Ulntl6, Int64, Ulnt64, Byte, Sbyte

180 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

String

Boolean

Object arrays: The arrays can be one or two dimensions
DateTime

Object

Object (Null)

Here’s an example that shows work with a UDF project in Visual Studio 2005. The project is
a C# Class Library project named SampleUdf. Before writing the class, we need to add a refer-
ence to Microsoft.Office.Excel.Server.Udf.dll. To get to this assembly, we click the Browse but-
ton in the Add Reference dialog box, and then go to

[drive:]\Program Files\Common Files\Microsoft Shared\web server extensions\12\ISAPI

If you are working on a computer that does not have Office SharePoint Server 2007 installed,
you need to copy this assembly from a computer that includes Office SharePoint Server 2007.

After we add a reference to Microsoft.Office. Excel.Server. Udf.dll, the next step is to create some
custom functions and mark them with the user-defined function attributes. As mentioned ear-
lier, you must mark a UDF class with the Microsoft.Office. Excel.Server.Udf.UdfClass attribute
and UDF methods with the Microsoft.Office. Excel. Server.Udf. UdfMethod attribute. Here’s the
completed code for the class showing the attributes.

using System;

using System.Collections.Generic;

using System.Text;

using Microsoft.office.Excel.Server.udf;

namespace Sampleudf
{
[udfclass]
public class Classl
{
[udfMethod]
public double MyDouble(double d)
{
return d * 9;

}

[udfMethod(Isvolatile = true)]
public DateTime ReturnDateTimeToday()
{

return (DateTime.Today);

}

Introducing Excel Services 181

The first UDF function takes a number (of type double) and multiplies the number by 9. The
function is a UDF method that is not volatile. (Because the default value for the IsVolatile prop-
erty is False—which means that particular UDF method is not volatile—it is sufficient to mark
anonvolatile UDF method as [UdfMethod]. You don’t need to mark it as [UdfMethod(IsVolatile
=false)].) The second function returns the current date using the System.DateTime.Today prop-
erty. This function is marked volatile.

Remember that you need to deploy a UDF assembly to a location that has been designated a
trusted location in Excel Services and also enable the UDF. You enable UDFs for a location
using links for Excel Services Management on the Core Services home page, which you've
seen earlier in Figure 8-3.

Two links are used to enable UDFs: Manage Trusted File Location and User-Defined Func-
tions. You use the first link to edit the properties of a trusted location, enabling an option to
allow user-defined functions. You use the User-Defined Functions link to specify a name of a
particular UDF assembly that you want to trust.

Chapter 9

Microsoft Office InfoPath 2007
and Microsoft Office Forms
Server 2007

In this chapter:

Key SCenariosttt e e 184
Components and Architecture of Office Forms Server 2007 185
Data Connections and Office Forms Server 2007 186
Designing Form Templateso ittt 187
Deployment e 189
SOCUNIY . ottt e e e e e 190
Custom ASP.NET Pages with the InfoPath Form Services Control 190
Automating Office Forms Server 2007 Administration Tasks 191
Working with InfoPath Forms and Forms Server 193
Embedding an InfoPath Form in an Application 201

Microsoft Office Forms Server 2007, like Excel Services, builds on Microsoft Windows Share-
Point Services 3.0 and Microsoft Office SharePoint Portal Server 2007. Office Forms Server
2007 can be used to render editable Microsoft Office InfoPath 2007 form templates in a
browser in HTML, making the forms available to users who don’t have Office InfoPath 2007
installed on their client computers.

In this chapter, we'll provide an overview of Office Forms Server 2007, including a description
of classes that can be used to automate administrative tasks. We’ll describe some of the situa-
tions in which Office Forms Server 2007 supports the use of InfoPath forms, its architecture,
and some aspects of designing form templates that will be enabled for viewing in a browser.
We will also illustrate some of the steps involved in deploying a form template to Office
Forms Server 2007 and how you can use an InfoPath form on a Web page or in a Windows
application.

183

184 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Key Scenarios

The introduction of Office Forms Server 2007 greatly increases the number of scenarios in
which InfoPath form templates can be deployed. (Each scenario, of course, would entail spe-
cific considerations for deployment topologies, scaling requirements, workflows, and other
information.) Some of these scenarios include the following:

B Aninternational importing company could use Office Forms Server 2007 to query sup-
pliers about inventory.

m Local government agencies could use Office Forms Server 2007 to manage processes
over the Internet, such as contractor permit applications and approvals.

B A department within a large organization could deploy Office Forms Server 2007 to col-
lect information from planning meetings with customers, using forms that are con-
nected to a database. This configuration would enable employees to retrieve and analyze
the data they collect from many different meetings at a later time.

B An organization such as an insurance company could use Office Forms Server 2007 to
communicate with agents in addition to policyholders and business partners. All of the
processing for documents such as insurance claims could be managed online.

The main aim of Office Forms Server 2007 is to enable users who do not have Office InfoPath
2007 installed to view and fill out forms while working in a Web browser. Form templates
(xsn files) designed in Office InfoPath 2007 are translated into browser-editable forms that
run on Office Forms Server 2007. Form templates with custom business logic are deployed by
an administrator to the Windows SharePoint Services content database and are safe-listed in
the configuration database. Form templates are managed through a global list of form tem-
plates on the SharePoint Central Administration form template management page, which is
shown in Figure 9-1.

The same form template can be designed to be deployed to Office Forms Server 2007 (making
it available through a Web browser when Office InfoPath 2007 is not available) and to run in
Office InfoPath 2007. A form that is designed for both Web browsing and for Office InfoPath
2007 is generally restricted to using only features that are common to Office InfoPath 2007
and the Office Forms Server 2007 browser-based run times. For example, business logic built
into form templates that are compatible with Office InfoPath 2007 and Office Forms Server
2007 can be developed only in C# or Microsoft Visual Basic .NET. These development lan-
guages can only call members of the new InfoPath managed-code object model provided by
the Microsoft.Office.InfoPath assembly.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007

ZjManage Form Templates - Microsnft Tnbemet Buplorer | =]
Do Lot Bew Faectss lodks L | & |
Qe+ O - =) [F] (| seanch cFaverkns £ | (0 fa 3 - L) B |
Agress [] bezp: floss1 57197 _ach aspic] B s)
Central Admumstraton Welcurie Libwarslne Ademmstrator = | Hy Site | My Links = | Helg | Send Fasdtach |]

#°2® Central Administration

Central Administration > Manage form templates

Manage Form Terhplates

List Viewrs.
Tadd Forms
;;::w Pe) ColentSigristures_Sign_L033.xn Lz, 12{14f2008 Ready es
& Fupiration_Comglete_103%. x5 12001 12142005 Ready Yes
< RervmvRouting_fesoc_L033.0n Lz, 12]14]2005 Workflow Ready es
& Reeiowieouting_Trie_L0k3 xsn [N 12/14f200% wiorkflow Ready g
-_'J Revewouting_Moddy 1033, xen 120.0.1 12142005 Wiorkliow Ready Yo
& Revinwiouting_Reew_I033. 0 [N 12/14f200% wiorkflow Ready g
=l RevewRouting Lpdste Tasks 10000, 0n 120,04 1211472005 Ready Yer
& abe_Complte_1035. 0 [N 12/14f200% Ready g
& ket 100 en 120,01 12{1472005 Ry fer
Elnene T T Eecdintenet =
distant| (3 @& |[@]Hanage Foem Templa_ 1:24 P

Figure 9-1 Form templates are managed in SharePoint Central Administration.

Components and Architecture
of Office Forms Server 2007

185

The rendering component of Office Forms Server 2007 is the FormServer.aspx page, which
resides in the _layouts folder of the server. This page can accept multiple parameters, includ-

ing the following:

B XMILLocation populates the Web-based form template with data that overrides the

default form template data.

B XSNLocation is a pointer to the form template solution file (.xsn).

B Openln specifies whether the form should be opened in Office InfoPath 2007 or in the

browser.

B SaveLocation overrides XMILLocation as the default location where a submitted form is

saved. This parameter is optional.

B SourceLocation is the location to which the browser navigates after a form is submitted.

m DisableSave is a property used to hide the Save button in a Web-based form.

186 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

For URLs with an XML file or an XSN, logic in FormServer.aspx sends the form template to
InfoPath if it is present on the client computer; otherwise, it renders the template in the
browser. FormServer.aspx uses a special header value in the page and a registered MIME type
to launch Office InfoPath 2007. An option on the Advanced Settings page for a form library
(named Opening Documents) specifies whether to open a form in the InfoPath client if the cli-
ent is available.

Client Architecture and Postback Optimization

When a Web-based form template is rendered, an XML payload and HTML are sent to the
browser along with supporting JScript files, which are cached in the temporary browser cache.
Subsequent postbacks from the browser optimize the changes in the XML payload sent from
the server, and local scripts handle the HTML update of the page. On custom pages, if a full
reload of the page occurs, operations are similar to loading a page for the first time in that the
full XML payload and the HTML are sent to the browser.

The Form Template Converter

When a form is converted, the XSN file (which corresponds to a form template) is converted
to the files needed by Office Forms Server 2007 to run the same form in the browser. Form
conversion will log an entry if certain XSL constructs are encountered, such as apply-templates
with no matching template, apply-templates with multiple matching templates, xsl:imports, and
others.

Form conversion will stop if the operation encounters either unsupported controls or unsup-
ported Office InfoPath 2007 features for which Office Forms Server 2007 cannot provide an
appropriate behavior.

Data Connections and Office Forms Server 2007

Some differences exist with respect to how data connections behave for a form template
opened in Office InfoPath 2007 and a Web-enabled form template that is opened from Office
Forms Server 2007. In general, Web-enabled form templates should use Web services for
retrieving and submitting data. If using a Web service is not possible, developers must
address some limitations about data connections when designing a template for the server.
For example, the Human Workflow Services adapter set is not supported on the server. In
addition, the database adapter becomes read-only (submit is disabled). When using a Web
service with DataSet objects, changes in the data are not tracked.

The following types of data connections are available through Office Forms Server 2007:

m Database

B E-mail

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 187

HTTP post

SharePoint (the native API is used for same-domain data connections; Distributed
Authoring and Versioning [DAV] extensions are used for cross-domain connections)

SharePoint list
Web services

XML file

Designing Form Templates

The following sections outline which form template controls are supported in Web-enabled
form templates, levels of support for different browsers, and considerations for designing
form templates in Office InfoPath 2007.

Controls Supported on Office Forms Server 2007

The following standard controls are supported on Office Forms Server 2007:

Text box

Rich-text box
Drop-down list box
List box

Date picker

Check box

Option button

Button

Office Forms Server 2007 also supports the following container controls:

Repeating section
Repeating table
Section

Optional

In addition, hyperlink and expression box controls (two of the advanced controls) are
supported.

188 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Controls Not Supported on Office Forms Server 2007
The following controls are not supported on Office Forms Server 2007:

Combo box

Multiple-selection list box
Master/Detail

Bulleted, numbered, and plain list
Picture

Ink picture

File attachment

Vertical label

Scrolling and horizontal region
Horizontal repeating table
Choice group

Repeating choice group

Choice section

Repeating recursive section

Custom controls

Browser Support

Office Forms Server 2007 supports a number of different browsers on various operating sys-
tems. The extent of the support is based on four levels.

m Level 1 offers full fidelity and provides the best experience with a Web-enabled form.

B Level 2 provides a fully functional experience, but certain features (such as a date picker
control) might not be available on some of the browsers.

m Level 3 does not provide full fidelity. Certain features might not work and rendering will
differ significantly between browsers.

B Level 4 offers no support and possible blocking.

The following table lists browsers, operating systems, and corresponding levels of support.

Note The information in the following table is subject to change.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007

189

Browser Support Matrix

Operating System

Browser

Level 1
Windows SharePoint Services

Windows 98, Windows Me,
Windows 2000, Windows XP,

Internet Explorer 6.x (plus the

Windows Server 2003 64-bit version)
Windows 98, Windows Me,
Windows 2000, Windows XP,
Windows Server 2003

Forms Administration
Level 2

Internet, Windows SharePoint
Services Site Administration,

Internet Explorer, Firefox,
Netscape 7.2 (moving to 8.x)

Form Filling for a majority UNIX/Linux
of users Mac OS X Firefox, Safari 1.2
Level 3 UNIX, Linux, Windows

Limited support (versions other than above)
Level 4

No support

Everything else Everything else

Controlling Postback Behavior When Control Values Change

The properties dialog boxes for controls in Web-enabled form templates provide settings to
manage when and whether the browser will post back data and refresh the page when the
control’s value changes. These postback settings can be found on the Browser Forms tab of a
control’s properties dialog box.

Deployment

A codeless form template can be deployed to Office Forms Server 2007 by using the Office
InfoPath 2007 user interface. A form template containing code that encapsulates custom busi-
ness logic must be activated on the forms server by an administrator and requires Administra-
tor privileges.

Custom business logic assemblies should be strong-named to support side-by-side versioning
of form templates when business logic changes. If you upgrade a form template with changes
to its business logic, the identity of the assembly should also be changed because the assem-
blies run in the same Windows SharePoint Services application domain and cannot be
dynamically unloaded.

If a form template needs to be accessible from inside a firewall and externally (as in an extra-
net scenario), Office Forms Server 2007 works with Windows SharePoint Services 3.0 Alter-
nate Access Mapping (AAM). AAM works for all connections in the form template, in addition
to multiple URLSs to the same form template, but it will not resolve linked image controls,
hyperlinks in user data, and database and e-mail data connections.

Deploying a form template to Office Forms Server 2007 is preceded by a verification step that
involves passing the form through the converter to ensure that the form is server compliant.
A verification page will return a list of any errors and warnings for the form template.

190

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Deployment can be accomplished either directly or as a combination of uploading and pub-
lishing. Uploading is the process of putting the form template on the server, and publishing
is the process of placing the form templates into sites on the content database so that users
have access.

Security

As mentioned earlier, only server administrators can deploy form template solutions that con-
tain code. Users who have either the Contributor or Web Designer role can create a form
library based on form templates that do not contain code, as they could in previous versions
of Windows SharePoint Services. Users with these roles can also create a form library with
domain-based form templates that contain code or fully trusted form templates that contain
code, but these form templates will work only in Office InfoPath 2007.

Here are some other considerations about security when using Office Forms Server 2007:

m Office Forms Server 2007 relies on the Windows SharePoint Services 3.0 AppDomain to
load and run business logic code.

m Office Forms Server 2007 supports only domain-based and fully trusted solutions.

m Office InfoPath 2007 form templates will get the ASP.NET/Medium permission set
as defined in the WSS_MediumTrust policy file. Office Forms Server 2007 uses
PermissionDeny to remove the permissions that are defined in the Domain_new secu-
rity profile.

m Cross-domain access is not allowed on Office Forms Server 2007. The form template
receives a security exception when it crosses domain boundaries. In contrast, on the
Office InfoPath 2007 client a user is prompted, which is the same behavior as in
InfoPath 2003. This difference creates scenarios in which the form template does not
work on the server but does run on the client.

Custom ASP.NET Pages with the InfoPath Form
Services Control

Office Forms Server 2007 includes a control, named XmlFormView, in the Microsoft.Office.Info-
Path.Server.Controls namespace. (You'll see an example that uses this control later in the
chapter.) Developers can use the XmlFormView control to host Office InfoPath 2007 form
templates in a custom ASP.NET page. Hosting the control allows you to manage the appear-
ance of the Web page and provides Web-based form templates for users to fill out. The
XmlFormView control includes various properties, methods, and events that allow program-
matic access to operations such as initializing and closing the form template and a “submit
to host” mechanism that can be used to send an event to the parent process, such as the

.aspx page.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 191
Some of the limitations of working with the XmlFormView control include the following:

m Only one XmlFormView control can be used per page.

m Development in Visual Studio must occur on the same machine on which Office Forms
Server 2007 is installed.

B The client-detection logic available on standard Web-enabled form templates will not
work on custom pages hosting the control.

Automating Office Forms Server 2007
Administration Tasks

The Office Forms Server 2007 object model allows an administrator to automate tasks
through the use of the NET Framework. Many of these tasks can be managed through
command-line switches run with Stsadmin.exe as well.

The main objects in the Microsoft.Office.InfoPath.Server. Administration namespace include the
following:

FormsService class The highest level of the forms server topology represents Office Forms
Server 2007 Server Administration on the Web farm. The FormsService class extends
Microsoft.SharePoint. Administration.SPService.

Note Windows SharePoint Services defines SPService as a farm-wide application or the base
object for any root “controller” object for a server application.

Here is an example of retrieving and using the FormsService class:
SPFarm farm = SPFarm.Local;
FormsService ser = farm.Services.GetvValue<FormsService>("");

console.WriteLine(ser.FormTemplates.Count);

The following table lists the properties of the FormsService class:

Property Description

Instances An SPServicelnstanceCollection inherited from SPService. A
collection of FormsServicelnstances, where there is one Forms-
Servicelnstance per SPServer on the SPFarm.

FormTemplates A FormTemplateCollection, an enumeration containing all of the
FormTemplate objects registered on the farm.

DataDefaultConnectionTimeout ~ Returns an int representing the default data connection time-
out in milliseconds.

DataMaxConnectionTimeout Returns an int representing the maximum data connection time-
out in milliseconds.

192

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

FormTemplate class The FormTemplate class represents an Office InfoPath 2007 form tem-
plate or an .xsn file that has been deployed to the forms server. All FormTemplate classes on
the server are contained in FormTemplateCollection on the FormsServerService class. The follow-
ing tables list the methods and properties of the FormTemplate class.

Method

Description

Activate(SPSite site)

Activates or reactivates a previously uploaded form template
to the site specified by site. Fails if the form template is
deployed by using RegisterFormTemplate.

Deactivate(SPSite site)

Inverse operation of Activate. Fails if a form template is
deployed by using RegisterFormTemplate.

GetAbsoluteUrl(SPSite site)

Returns the absolute URL of the form template at the given
site in the current user context.

Quiesce(TimeSpan maxDuration)

Starts quiescing the form template for the time specified by
maxDuration.

QuiesceEndTime() Returns the time the form template will stop quiescing as a
System.DateTime.

Ungquiesce() Stops quiescing the form template.

Property Description

Category Gets or sets the category to which the FormTemplate is
assigned.

CreatedTimeUtc Gets the creation time as universal time (not local time).

DataConnectionFileReferences

Gets the collection of data connection file references.

Description Gets the description attribute from the form template .xsf file.

Featureld Gets the ID (GUID) of the feature (SPFeatureDefinition) that
contains this FormTemplate.

Formld Gets URN of the FormTemplate.

Id Gets or sets the ID (GUID) of the FormTemplate in the Form-
TemplateCollection object. Inherited from SPPersistedObject.

IsFullTrust Gets a Yes/No string that specifies if the form template is
full trust.

IsSigned Gets a Yes/No string that specifies whether the form tem-
plate is signed.

Locale Gets a string that specifies the form template locale (for
example, en-US).

ModifiedTimeUtc Gets the last modified time as universal time (not local time).

QuiesceState

Gets the current quiesce state as a QuiesceMode enumera-
tion: Normal, Quiesced, or Quiescing.

Solutionld

Gets the ID (GUID) of the solution that contains the XSN.

ViewStateEnabled

Gets or sets whether the form template is currently using
view state. This property can only be set when the form tem-
plate is quiesced.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 193

Working with InfoPath Forms and Forms Server

In the sections that follow, you'll see examples of an InfoPath template that is used by our fic-
titious Litware consultants to fill in daily time sheets. The template will be deployed so that
consultants can use either the InfoPath client or a browser to enter time sheet data. We'll also
demonstrate the XmlFormView control and some other new ASP.NET and Windows controls
that developers can use to embed an InfoPath form within an application.

Creating an InfoPath Form to Capture Time Sheet Data

To start this example, we will create two InfoPath template parts, which are form elements
that can be saved and used in template after template. The first template part is for the Litware
banner, and the second is a form footer that contains text that Litware uses on its internal
documents.

In InfoPath, in the Fill Out A Form dialog box, click Design A Form. In the Design A Form dia-
log box, select the Template Part option and base the template part on a blank template. Also
select the Web Browser Enabled option because this form template will be deployed to an
Office Forms Server 2007 site later. Figure 9-2 shows the Design A Form dialog box with the
options selected.

x|
Open a form template Design a new:
| On My Computer. .. " Form Template & Template Part

n a SharePoint Site.,. Design a template part that can be inserted and updated in multiple Forms.

i) Customize 3 Sample...
3
=)

% Forms on Office Cnline Based on
Blank, HML or Schema

;\J Import...

Recent form templates
TimeSheet_1
SimpleTimesheet
TimeSheet

TimeSheet
Create a form that allows yvou to define the data source while vou are designing the
Fill out a form Firn,

2’ HIGuE AR IV weh browser enabled

Ok Cancel |
Figure 9-2 The Design A Form dialog box. Note the Web Browser Enabled option.

After the InfoPath design window opens, in the Design task pane, click Layout and then
double-click the Two-Column Table option. In the table’s first cell, we enter the text Litware
Inc, and in the second cell, the text Our code is so tasty, it will melt in your mouth. We can
then apply some borders and shading to the table and formatting to the font. Figure 9-3 on the
next page shows the template part up to this point.

We add a second row to the table and merge this table’s cells. In the merged cell, we add the
text Add here the title of the template, and then save the template part as Banner.xtp.

194

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

(Design) Templatetroupt - Microsoft Dffice Infoksth =10] x|
Be B Yew [t Fgmal Iook Table e questionfor help =
B EF I | Byproview « o (3 % 4 Ba @y F |9 0@, 0 G | 6FOeson Tasks... “E
A Verdana 0w B 7o(ElEAmis-E-E-EEY-A-B
o Dy Tabbe [Mo burder St - | - gt - 1 R[] B B

J Layout A
Litware, Inc. -Our code is so tasty, it will meltin @ ala
.. your mouth. I Den Tesks
Insert bayout tables:
3] Tathe vt e =]
] coe-ohaie Tatde
L] Toru-ciohaie Ttk
Wl e cokmn Tabie |1
, =
Merge and spht cells:
i e =
Bl =
- -
a7 "
18 =
=] & Helo vih Layout
-] |
Computilty: InfoPath and Forms Services P

Figure 9-3 The initial appearance of the banner template part

For the second template part, we follow the same initial steps, choose the One-Column Table
option for the layout, and then add the text Litware Inc. Internal Document - All Rights
Reserved. This template part is saved as Footer.xtp.

We now have two reusable InfoPath blocks and can design an InfoPath template that will
incorporate these template parts and be used to capture time sheet information. To begin the
template, we need to take care of the layout and the controls, and then we can turn our atten-
tion to linking the template to some data sources and adding its functionality. Figure 9-4
shows the completed template in design view. Like the template parts, the form template was
designed so that is it enabled for Web browsing.

As mentioned earlier, InfoPath does not support all types of controls on a form that is enabled
for Web browsing. When you click Controls in the Design task pane, InfoPath displays the
controls that can be used, and a message box at the bottom of the task pane indicates that
some controls are not compatible with server forms and have been hidden. Clicking the mes-
sage in the task pane displays a message box, shown in Figure 9-5, that lists controls that
aren’t compatible with server forms, including a combo box, file attachments, a multiple-
selection list box, and others.

Note During development of a form template, you can run the Design Checker to view and
correct any compatibility errors with the selected run-time environments. Once you choose a
form mode, you can switch the compatibility by using the Change Compatibility Settings link

in the Design Checker task pane.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 195

(Design) Template? [Read-Unly] - Microsoft Office Infoath _Igl— ﬂ
(e gt Wew [neert Fomat Took Toble Hep P & uestion for bl =
PRI 2 B o [P A T A B S B D G| W e | 6
LA Verdana -0 -B7ou[EEamis.=-E-dr YA
: [roy Table [o border =i | - | et - 5 %

= Desiyn Tasks %
Litware Inc. _ Our code is so tasty NS
H it will melt in your mouth T
Daily Timesheet Report Form [Laymic
Use Lables arxd regiors Lo
serange tems on Hhe Foem
tarrplate
B Controls
Consultant: || =] [pate: | m| ol e
Email: Fhone: | 15 Data Source
))) Dusplay and ey the dats
Project Task Description Hours sounce For e Form lemplate
- 0 vews
Craate diforent views for the
.00 Form tesplate
BR:epeating Tak A Dosign Chedior
Buvien arnd comect desige el
o pechiems i the
... Foom tesplate
i, Publish Form Template...

Share the form templste with
cther users

Kp 1l vath Desgn Tasks

‘Compatility: InfoPath and Forms Services v

Figure 9-4 The time sheet form template in design view

Microsoft Office InfoPath x|

The following controls are not supported in server Forms:

- ComboBox

- Multiple-Selection List Box

- Master/Detail

- Bulleted, Mumbered and Plain List
- Pickure

- Ink Picture
! \ -Fle Attschmen:
= - Vertical Label

- Scrolling and Horizontal Region
- Harizontal Repeating Table

- Choice Group

- Repeating Chaice Group

- Choice Section

- Repeating Recursive Section

- Cuskom Controls

Figure 9-5 InfoPath displays the controls that are not
compatible with a form that is enabled for Web browsing.

To add the banner and the footer template parts to this form, first click the Add Or Remove
Custom Controls link at the bottom of the pane. Add the template parts, and then you can
drag the banner and the footer onto the blank form view. For this template, the text “Daily
Timesheet Report Form” is added to the placeholder in the second row of the banner.

Here’s a summary of the rest of the work required to lay out the form as it’s shown in
Figure 9-4. Some additional borders and shading were applied to format the table.

m Using the Layouts task pane, we added a custom table with four columns and two rows.
We added Consultant as the label in the first cell of row 1; Email in the first cell of row
2: Date in the third cell of row 1; and Phone in the third cell of row 2

m Using the Controls task pane, we added the following controls to the view:

Q A drop-down list box in the second cell of row 1, for consultants

196 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

0 A date picker in the fourth cell of row 1
Q An expression box in the second cell of row 2
0 An expression box in the fourth cell of row 2

B We added a repeating table to the form, with four columns. The column headers are
Project, Task, Description, and Hours. The text box under Project was changed to a
drop-down list box using the Change To command on the shortcut menu.

We’ve built this form largely from scratch, but as we add controls to the form, InfoPath gener-
ates an XSD schema. You can see the default names InfoPath assigns to the elements by click-
ing on Data Source in the Design task pane. You can modify the schemas by changing the
default names and types, for example. Using the Data Source task pane, we renamed the
default elements as follows:

myFields to timesheet

myFields_1 to banner

myFields_2 to footer

field1 to consultant

field2 to date

groupl to items

group? to item

field3 to project

field4 to taskID. We also changed the type to Whole Number (integer)

field5 to description

field6 to hours. We also changed the type to Decimal (double)

We continued building the form by adding a group under the timesheet element, called
header, using the Move Up command to position the new group. We moved the consultant
and date fields to the new group, and moved the banner and the footer elements to the bot-
tom. Figure 9-6 shows the Data Source task pane after these changes have been made.

We completed the form’s layout by right-clicking the table to open the Repeating Table Prop-
erties dialog box. On the Display tab of the dialog box, we selected the Include Footer check
box. Finally, we added an expression box control to the Hours column in the footer row, used
the formula editor to insert a Sum function for the Hours field, and changed the type of the
expression box content to Decimal.

With the form template set up with controls and formatting, we can begin to take care of pop-
ulating the drop-down list boxes with data. The first data connection we’ll create retrieves con-
sultant data from a database (a simple Microsoft Access database in this example). The second
data connection retrieves project data from a SharePoint list.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 197

(Design) Templates [Read-Unly] - Microsoft Dffice Infolath =1o] x|
(B B0t Wew wet Fymat ook bl Hep pe & questin fur belp =
PRI 2 B o [P A T A B S B D G| W e | 6

DAY Verdana -0 - B 7 [EEamiss-is ";._‘;Jy._&.!

:] Crou Table [Mo border - [l - | - | gt~ IE‘ :

Litware Inc. Our code is so tasty

it will melt in your mouth
Daily esheet Report Form

Consultant: =] [Dato: | - 1 dute
| E| I [y e
Email: Phone: | & ke
i i . 2 ot
2 taskin
Project Task Description Hours] description
= 2] hours
[banver
20 L Femster

Kp Ml vath the Diats Source.

‘Compatility: InfoPath and Forms Services v

Figure 9-6 The Data Source task pane shows the names for the elements in the template.

In InfoPath, we start by selecting Tools, Data Connections. Stepping through the series of
screens, we specify first that this connection is for receiving data. Next we select Database, and
then browse to the database file and select the Consultants table. We also choose to store the
consultant’s data in the template to support offline scenarios.

For the second data connection, we specify the URL to the SharePoint site where our Projects
list is stored and then select the list by name. We included the fields named Code, Project
Title, and Manager, and here as well, we select the option to store the project data in the tem-
plate to support offline work.

We associate the Consultant drop-down list box with the Consultants data connection by
double-clicking the control, selecting Look-Up Values From An External Data Source, and
specifying Consultants as the data connection. We also specify the Name field as the field to
be displayed and stored in the XML that is generated from the data entered in the form. Like-
wise, the Projects drop-down list is linked to the Projects data connection, with Code as the
field that is displayed and stored.

The next phase in creating the template is to add some validation and rules to the controls,
which are set up in the properties dialog box for the control. Here are the rules and data vali-
dation conditions that were added to the form:

m The Consultant field cannot be blank.
m Today's date is set as the default date.

m Users are restricted from entering a date that is in the future.

198 7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

B The e-mail and phone fields are filled in automatically when a user selects a consultant.
These lookups are performed by using XPath expressions such as the following:

xdXDocument:GetbDOM("Consultants") /dfs:myFields/dfs:dataFields/d:Consultants/
@Telephone[../@Name = xdXDocument:get-DOM()/my:timesheet/my:header/my:consultant]

m Change the background color of the expression box that calculates the total of hours to
red if the amount is higher than 8.

As alast step, we add a button control to the form template that will be used to submit data to
a Web service. Here’s the code for the ProcessSheet class that defines the SubmitTimesheet Web
method that’s invoked through the Web service.

using System;

using System.xml;

using System.web;

using System.Collections;

using System.web.Services;

using System.Web.Services.Protocols;
using System.Data;

using System.Data.OleDb;

using System.IO;

/// <summary>

/// summary description for ProcessSheet

/// </summary>

[webservice(Namespace = "http://www.Tlitwareinc.com/")]
[webServiceBinding(ConformsTo = wsiProfiles.BasicProfilel_1)]
pubTlic class ProcessSheet : System.web.Services.webService {

[webMethod]
public Boolean SubmitTimesheet(string timesheet)
{
//-- just for debugging
StreamwWriter sw = new Streamwriter(@"cC:\data\temp.xm1");
sw.Write(timesheet);
sw.Close(Q);

bool returnvalue = true;

try
{
StoreInDatabase(timesheet);
}
catch
{
returnvalue = false;
}

return returnvalue;

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 199

private void StoreInDatabase(string timesheet)

{

//-- Toad the xml
Xm1Document doc = new XmlDocument();
doc.LoadXml(timesheet);

//-- drop the timesheet items in the Access database
string consultant = doc.SelectSingleNode("//consultant™).InnerText;
DateTime date = Convert.ToDateTime(doc.SelectSingleNode("//date").InnerText);

//-- grab the current data in the database
OleDbConnection conn = new
OlebbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\
Timesheet.mdb");
conn.open();
OlebbCommand cmd = new OleDbCommand();
cmd.Connection = conn;

//-- add the new stuff to it
XmINodeList items = doc.SelectNodes("//item");
foreach (XmINode item in items)
{
cmd.CommandText = string.Format("INSERT INTO TimeSheetData
(Consultant,Project,ItemDate,TaskID,Description,Hours) " +
" VALUES('{0}','{1}','{2}',{3},'{4}',{5)", consultant,
item.FirstChild.InnerText, date, item.ChildNodes[1].InnerText,
item.ChildNodes[2].InnerText,item.ChildNodes[3].InnerText);
cmd. ExecuteNonQuery();

3

//-- clean up
conn.Close();

}

We need to define a data connection for this Web service as well, although this connection is
to submit data. After selecting Web Service as the type of connection, enter the URL to the
Web service (http://localhost:6154/TimeSheetServices/ProcessSheet.asmx, for example—the
portnumber will vary). Select the SubmitTimesheet method, and then select the timesheet field
as the value for the input argument. Select XML Subtree, including the selected element, as
the value for the Include option.

With the data connection set up, we can create a rule that defines the button’s behavior.
Double-clicking the button opens the Button Properties dialog box. The rule we define has no
conditions but performs the following three actions:

B Submits the data using the Web service data connection

B Shows a dialog box with a thank-you message

m Closes the form

200

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

The template is now ready to use. We can test the template by opening the form, entering
some data, and then clicking the Submit button. If we get the message, the information was
processed successfully by the Web service.

Publishing a Form to a Windows SharePoint Services Forms Library

In this section, we take on the role of an administrator responsible for deploying an InfoPath
template. We’ll show how to deploy a template to a SharePoint forms library and make it avail-
able through Office Forms Server 2007 for consultants who do not have InfoPath installed on
their computers.

Before deploying a template, you have to verify the security level. For the deployment to
behave properly, follow these steps to request full trust, using settings on the Security And
Trust page of the Form Options dialog box:

m Clear the check box for Automatically Determine Security Level Based On Form’s
Design.

m Select the Full Trust option.
m Select Sign This Form, and then click the Create Certificate button.

m Select the Administrator certificate.

In the Design task pane, click Design Checker to ensure that the form is compatible with
being enabled for Web browsing. You should not see any red icons indicating a compatibility
error. You might see one or more blue icons indicating a warning.

Now click Publish Form Template in the Design task pane. A wizard guides you through the
steps to publish the template to a SharePoint site or an Office Forms Server 2007 site. You
need to specify the URL to the SharePoint server, and then you will create a document library
for the form template.

As an administrator of the forms library, you can specify that the InfoPath form always has to
be filled in using the browser, even if a user has InfoPath installed on his or her computer, by
setting the Opening Documents option mentioned earlier.

Figure 9-7 shows the time sheet form open in the browser after being successfully published
to Office Forms Server 2007.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 201

Enable form template for the Web.
[H——

Litw: = Our code is so tasty
S it will meit in your meuth

Oadly Timesheet Report Form

Figure 9-7 The time sheet form rendered in the browser

Embedding an InfoPath Form in an Application

Developers now have the option to embed InfoPath forms within an application. You can
work with two types of controls, one that you can use within ASPNET applications, and the
other with Windows applications. In this section, we’ll take a look at how to work with an
embedded InfoPath control. In the first example, we’ll show a Web page that displays a list of
submitted time sheets. When a user selects a time sheet in the list, a control provides a read-
only preview of the time sheet on the page itself.

To host the Web application we’ll work with, we created a virtual directory under the default
Web site. The settings for virtual directory permissions included Run Scripts as well as the
default options. The other setting we made on the Virtual Directories tab was to select Scripts
Only for the Execute Permissions option.

We also turned on session state for Office Forms Server 2007 by opening the Web.config file
found at C:\inetpub\wwwroot and removing the comment markup from the SessionState
entry in the HttpModule element, which is shown here:

<add name="Session" type="System.Web.SessionState.SessionStatemodule"/>
Then we set enableSessionState to True in the pages element in the Web.conlfig file:

<pages enableSessionState="true" enableviewState="true"
enableviewStateMac="true" validateRequest="false" pageParserFilterType=
"Microsoft.SharePoint.ApplicationRuntime.SPPageParserFilter,
Microsoft.SharePoint, Vversion=12.0.0.0, Culture=neutral,
Pub1icKeyToken=71e9bcelll1e9429c" asyncTimeout="7">

We next created a new Web site application in Visual Studio 2005, setting the type to HTTP
and choosing C# as the language.

202

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

In the designer, we add Litware Timesheet Viewer as the title of Default.aspx, and then add
a table with two rows and two columns. In the first cell of the first row, we enter Timesheets,
and then add a list box control to the second row. We named this control listTimesheets and
set the AutoPostBack property to True.

The next step is to right-click in the toolbox, and select Choose Items. Once the Choose Tool-
box Items dialog box appears, use the Browse button to load Microsoft.Office.Info-
Path.Server.dll from the C:\Program Files\Microsoft Office Server\12.0\Bin folder. Three
controls are added to the list, including the XmlFormView control.

We can now drop the XmlFormView control onto the second cell of the second row of the
table. In the properties window, we change the name of the control to xmlFormViewTimesheets
and set the Visible property to False. Figure 9-8 shows a preview of the form in the browser.

3 Litware Timesheet Viewer - Microsoft Internet Explore =iojx]
P EN yow Favess [ook b | &
Bk -) - (1] @)] S Seach <t Favorkes €8] 13- i =
Agkdress [Hetp ffose L InfoP sthLab TmeShestWebewerDafau = | EY G0 | Liks »

Litware Timesheet Viewer

Timesheets

i
EJoore T T T [@ nastedstes .

Figure 9-8 An example of the XmIFormView control

We next add the code to display all the submitted time sheets in the http://oss1/Daily
Timesheets forms library. In the code-behind file for Default.aspx, we need to add a reference
to Microsoft.SharePoint.dll and then declare the namespace:

using Microsoft.SharePoint;

Next we create a private procedure that will encapsulate the code that populates the list box.
private void PopulateListBox() {}

In this procedure, the code we write first establishes a connection to the forms library:
SPSite site = new SPSite("http://ossl");

SPweb web = site.Rootweb;

SPList list = web.Lists["Daily Timesheets"];

The next step is to get the time sheet items as a DataTable type so that we can bind the data to
the listTimesheets control.

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 203

DataTable timesheets = Tist.Items.GetDataTable();
TistTimesheets.DataTextField = "Title";
TistTimesheets.DatavalueField = "ID";
TistTimesheets.DataSource = timesheets;
TistTimesheets.DataBind();

Now we call this procedure in the Page_Load event handler:

protected void Page_Load(object sender, EventArgs e)
{

if(!Page.IsPostBack)

PopulateListBox();

}

Figure 9-9 shows the populated list box when we view the page in the browser.

[1 1mesbec ver —rac ot et phrer REE)
Be gE yow Fpodes Jok b >
2 Serch Powerkes €| v op e 2

4o [5 s oot ot meosbomefonf kg e [

Litware Timesheet Viewer

Timeshests

oy OT0B06]|
&6 0110406 el
ilch_01030E ami

" e
&tom O Tt st

Figure 9-9 The list box populated from the items in the forms library in SharePoint

We now add the code that runs when a user selects a time sheet in the list box. The code ren-
ders a read-only view of the time sheet on the form itself in the InfoPath control. To create this
view, we handle the SelectedIndexChanged event of the listTimesheets control. Not a lot of code

is required here. We just grab the selected item and pass it to the xmlFormViewTimesheets
control:

protected void TistTimesheets_SelectedIndexChanged(object sender, EventArgs e)

{

string selForm = TistTimesheets.SelectedItem.Text;

xm1FormviewTimesheets.XmlLocation = "http://ossl/Daily Timesheets/" + selForm;
xmlFormviewTimesheets.visible = true;
}

Figure 9-10 on the next page again shows the application previewed in the browser.

204

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

Our code |s so tasty

it will melt in your mauth

Povvered by Forms e

|

B - e

Figure 9-10 A preview of a specific time sheet is rendered in the Xm/IFormView control

Now we’ll turn our attention to a Windows application that hosts an InfoPath control that the
user can use to fill in a new time sheet report. The application provides assistance to the user
by means of a panel that displays project information. We’ll use a Visual Studio 2005 Win-
dows application named TimeSheetWinApp.

After creating the application, we right-click in the toolbox and select Choose Items. In the
Choose Toolbox Items dialog box, in the .NET components list, we select the item for the
form control that is associated with the Microsoft. Office.InfoPath namespace. (If this control
is not available, it can be added by browsing to C:\Program Files\Microsoft Office\
Microsoft.Office.InfoPath.dll.)

We drop the form control on the design surface of form1, change the name to formControl-
Timesheet and set the Dock property to Left. Then we add a splitter control and a panel control
to the form as well. For the panel control, we set the Dock property to Fill.

Using the New Data Source Wizard in Visual Studio, we create a data source to an Office
Access 2007 database that contains one table, named ProjectTasks, with a number of task
items per project.

We drag the ProjectTasks fields from the Data Source pane to the panel on the form, and then
add two buttons to the panel: buttonInsert with its Text property set to Insert, and buttonSave
with its Text property set to Save.

The first coding task is to display the InfoPath form to be filled out in the control. In the con-
structor, we add the following line after the call to InitializeComponent:

formControlTimesheet.NewFromsolution("http://0ossl/Daily%20Timesheets/Forms/template.xsn™);

Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007 205

We can now run the application again and see the time sheet form to be filled in, shown in
Figure 9-11.

I Litware Tumesheets e S [5]
1 of 4| b #] 2
Litware Inc. Our code is so tasty
it will melt in your mouth
Daily Timesheet Report Form P !
Progect: 00-38-12
Tk i
. Desespiions [Dngn Dals Model
Consultant: r—_;“‘-] ‘Du'ﬂ E:,fumna m
Project __[Task _[Descripti Hours |
—
Save

=
Figure 9-11 A Windows application that hosts an InfoPath form

Return to the designer after closing the application and double-click the Save button. The con-
trol only allows the form to be saved to an absolute path. To handle this, we first need to add
a couple of namespace declarations to the code:

using Microsoft.office.InfoPath;
using System.Xml;
using System.Xml.XPath;

We construct the name of the file that we will save by concatenating the values for the consult-
ant and the date. The form control exposes an XMLForm that provides you with an entry point
to the XML that is stored in the form. You can access the XML through the MainDataSource
property. From then on it is a matter of parsing the XML to construct the file name.

XPathNavigator nav =
formControlTimesheet.XmlForm.MainDataSource.CreateNavigator().SelectSingleNode
("/my:timesheet/my:header/my:consultant”,
formControlTimesheet.XmlForm.NamespaceManager) ;

string file = @"C:\Ascend\Labs\08_InfoPath\Lab\Timesheets\";

file += nav.value + "_";

nav.MoveToNext(XPathNodeType.Element);

file += nav.value.Replace("-", "") + ".xml";

MessageBox.Show(file);

The purpose of the Insert button is to create a new item in the repeating table using the project
and task displayed in the panel. To provide this functionality we will handle the Click event of
the button.

If a user has not yet added any time sheet items, you can populate the row that already exists,
which means you need to check, for example, whether the project field of the first item in the
repeating table is empty.

206

7 Development Projects for Microsoft Office SharePoint Server 2007 and Windows SharePoint Services

XPathNavigator nav =
formControlTimesheet.XmlForm.MainDataSource.CreateNavigator().SelectSingleNode
("/my:timesheet/my:items/my:item[1]/my:project”,
formControlTimesheet.XmlForm.NamespaceManager) ;

if (nav.value == string.Empty) {

}

else {

}

If this item is the first element in the repeating table, then we can set the values of the different
columns of the item.

nav.Setvalue(projectTextBox.Text);
nav.MoveToNext (XPathNodeType.Element);
nav.Setvalue(taskIDTextBox.Text);
nav.MoveToNext (XPathNodeType.Element);
nav.Setvalue(descriptionTextBox.Text);

If this is not the first item, we need to create a row in the repeating table, and then make sure
that we have access to the last row element added so that we can modify those values.

formControlTimesheet.XmIForm.CurrentView.ExecuteAction(ActionType.XCollectionInsert,
"group8_7");

XPathNavigator newNav =
formControlTimesheet.XmlForm.MainDataSource.CreateNavigator().SelectSingleNode
("/my:timesheet/my:items/my:item[last()]/my:project”,
formControlTimesheet.XmlForm.NamespaceManager) ;

newNav.Setvalue(projectTextBox.Text);

newNav .MoveToNext(XPathNodeType.Element) ;

newNav.Setvalue(taskIDTextBox.Text);

newNav .MoveToNext(XPathNodeType.Element) ;

newNav.Setvalue(descriptionTextBox.Text);

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Solution Showcase for the Office System
	Accruent
	AVIVA Consulting Group
	CorasWorks
	KnowledgeLake
	Metalogix Software
	OSISoft
	Quilogy
	Resolute
	3Sharp

	Microsoft Office Developer Center

	Chapter 1: Microsoft Windows SharePoint Services 3.0
	Integration with ASP.NET 2.0
	Working with Master Pages
	Web Parts in Windows SharePoint Services 3.0
	Developing Custom Web Parts

	Enhancements in Content Storage
	Event Handlers
	Workflows in Windows SharePoint Services 3.0
	Site Definitions, Features, and Solutions
	Internet-Style Security
	Summary

	Chapter 2: Building Solutions with Office SharePoint Server 2007
	Building Office SharePoint Server 2007 Portal Sites
	Shared Service Providers
	User Profiles
	Office SharePoint Server 2007 Search
	The Business Data Catalog

	Web Content Management
	Business Intelligence Features
	Managing Documents and Business Processes
	Office Forms Server 2007

	Enterprise Content Management
	The Single Sign-On Service

	Summary

	Chapter 3: Building a Basic SharePoint Site
	Creating a Site Collection and a Top-Level Site
	Creating a List for Tracking Project Profiles
	Creating a Document Library
	Customizing the Home Page
	Creating Child Sites
	Creating a “Hello World” Web Part

	Chapter 4: Organizing Lists and Documents with Site Columns and Content Types
	Content Types
	Content Type Settings
	File Formats
	Site and List Content Types
	Creating Content Types Based on Other Content Types
	Controlling Changes to Content Types
	Controlling Access to Content Types
	Updating Content Types
	Extending Content Types

	Site Columns
	Site Column Properties

	Working with Site Columns and Content Types
	Creating a Site Column for Project Lookups
	Creating Custom Content Types

	Chapter 5: Working with Features in Windows SharePoint Services
	Implementing Features
	Feature Elements
	Element Scope
	Activation Dependencies and Scope
	The Structure of Feature.xml
	Features and the Windows SharePoint Services Object Model
	Feature Classes
	Accessing Feature Collections
	Features and Events

	Designing Windows SharePoint Services Applications Using Features
	Activating and Deactivating Features
	Working with a Custom Feature
	Creating a Custom Feature
	Creating a Callback Receiver Class for a Feature
	Adding a Document Library on Activation
	Adding an Event Handler to the Timesheets List

	Chapter 6: Windows SharePoint Services Core Development
	Top-Level Classes
	Updating Object Properties
	Working with Collections
	Using Indexers

	Using the Windows SharePoint Services Object Model and the Data in a List
	Generating Weekly Time Sheet Aggregate Views
	Using the Packaging API to Stuff Weekly Time Sheet Aggregates into Word Documents

	Adding Word Documents to a Document Library
	Using an Event Handler to Generate Weekly Aggregate Documents
	Adding the Assembly to the GAC
	Registering the Event Handler Assembly

	Chapter 7: Creating Workflows: The Missing Piece of Office Productivity
	Workflows and Activities
	Windows Workflow Foundation Run-Time Engine
	Building Custom Workflows
	Installation and Deployment
	Workflow Stages
	Workflow Association
	Workflow Initiation
	Workflow Status
	Workflow Task Completion
	The OnWorkflowActivated Activity

	Workflows in Action
	Associating and Activating SharePoint Workflows
	Creating a Human Workflow in Visual Studio 2005

	Chapter 8: Introducing Excel Services
	Key Scenarios for Excel Services
	Sharing Workbooks Through a Browser
	Building Business Intelligence Dashboards
	Reusing the Logic Encapsulated in Excel Workbooks

	Excel Services Architecture Overview
	Security
	Performance and Scalability

	Controlling Visible Information and Interacting with Workbooks
	Defining Parameters
	Interacting with Workbooks in the Browser

	Building Applications with Excel Web Services
	Error Handling
	Sessions

	Controlling and Protecting Workbooks
	The View Item Right
	Controlling Who Can Publish Workbooks to Excel Services
	Controlling the Publishing Process for Workbooks in Excel Services

	Data Connection Libraries
	What Is a Data Connection Library?
	Connecting to Databases Made Easy
	Solving Connection Management Problems
	Making Data Connectivity More Secure

	Unsupported Features in Excel Services
	Excel Services and Reporting in a Portal
	Adding a Trusted Location and a Trusted Data Connection Library to an Excel Services Configuration
	Building a Report for Excel Web Access

	Coding with Excel Web Services
	Monte Carlo Simulation
	A Simple Mortgage Calculator

	Excel Services User-Defined Functions

	Chapter 9: Microsoft Office InfoPath 2007 and Microsoft Office Forms Server 2007
	Key Scenarios
	Components and Architecture of Office Forms Server 2007
	Client Architecture and Postback Optimization
	The Form Template Converter

	Data Connections and Office Forms Server 2007
	Designing Form Templates
	Controls Supported on Office Forms Server 2007
	Controls Not Supported on Office Forms Server 2007
	Browser Support
	Controlling Postback Behavior When Control Values Change

	Deployment
	Security
	Custom ASP.NET Pages with the InfoPath Form Services Control
	Automating Office Forms Server 2007 Administration Tasks
	Working with InfoPath Forms and Forms Server
	Creating an InfoPath Form to Capture Time Sheet Data
	Publishing a Form to a Windows SharePoint Services Forms Library

	Embedding an InfoPath Form in an Application

