
Getting Started Guide

Chapter 1717
  Getting Started with Macros:

Extract from “OpenOffice.org Macros Explained”

OpenOffice.org



Copyright
This document is Copyright © 2005 by its contributors as listed in the section titled Authors. 
You can distribute it and/or modify it under the terms of either the GNU General Public 
License, version 2 or later (http://www.gnu.org/licenses/gpl.html), or the Creative Commons 
Attribution License, version 2.0 or later (http://creativecommons.org/licenses/by/2.0/).

All trademarks within this guide belong to their legitimate owners.

Authors
Andrew Douglas Pitonyak

Feedback
Maintainer: Andrew Douglas Pitonyak
Please direct any comments or suggestions about this document to:
authors@user-faq.openoffice.org

Acknowledgments
This chapter is reprinted, with the permission of the author and the publisher, from Chapter 1 
of Andrew Pitonyak’s book OpenOffice.org Macros Explained, published by Hentzenwerke, 
2004. More information about the book, including a table of contents, is available from 
http://www.hentzenwerke.com/catalog/oome.htm. Very little about macros has changed from 
OOo1.X to Ooo2.0, so the book is still current. 

Publication date and software version
Published 13 March 2006. Based on OpenOffice.org 2.0.

You can download an editable version of this document from 
http://oooauthors.org/en/authors/userguide2/published/

http://www.gnu.org/licenses/gpl.html
http://www.hentzenwerke.com/catalog/oome.htm
mailto:authors@user-faq.openoffice.org
http://creativecommons.org/licenses/by/2.0/
http://oooauthors.org/en/authors/userguide2/published/


Contents

Contents

Copyright......................................................................................................................................i

Authors.........................................................................................................................................i

Feedback......................................................................................................................................i

Acknowledgments........................................................................................................................i

Publication date and software version..........................................................................................i

The OpenOffice.org macro language...............................................................................................1

Storing a macro in a document library.............................................................................................2

Step 1. Create a library................................................................................................................2

Step 2. Create a module...............................................................................................................5

Step 3. Enter your first macro.....................................................................................................7

Storing a macro in the application library......................................................................................11

The Integrated Development Environment....................................................................................12

Using breakpoints......................................................................................................................16

Library management......................................................................................................................17

How libraries are stored............................................................................................................17

Application libraries..................................................................................................................17

Document libraries....................................................................................................................19

Using the Macro Organizer.......................................................................................................20

Renaming modules and libraries....................................................................................................21

Adding libraries.............................................................................................................................22

Conclusion.....................................................................................................................................24

Getting Started with Macros i





The OpenOffice.org macro language

The OpenOffice.org macro language

A macro is a saved sequence of commands or keystrokes that are stored for later use. An 
example of a simple macro is one that “types” your address. Macros support commands that 
allow a variety of advanced functions, such as making decisions (for example, if the balance 
is less than zero, color it red; if not, color it black), looping (if the balance is greater than 
zero, subtract 10 from it), and even interacting with a person (asking the user for a number). 
Some of these commands are based on the BASIC programming language. (BASIC is an 
acronym for Beginner’s All-purpose Symbolic Instruction Code.) It is common to assign a 
macro to a keystroke or toolbar icon so that it can be quickly started.

The OpenOffice.org macro language is very flexible, allowing automation of both simple and 
complex tasks. Although writing macros and learning about the inner workings of 
OpenOffice.org can be a lot of fun, it is not always the best approach. Macros are especially 
useful when you have to do a task the same way over and over again, or when you want to 
press a single button to do something that normally takes several steps. Once in a while you 
might write a macro to do something you can’t otherwise do in OpenOffice.org, but in that 
case you should investigate thoroughly to be sure OOo cannot do it. For instance, a common 
request on some of the OpenOffice.org mailing lists is for a macro that removes empty 
paragraphs. This functionality is provided with AutoFormat (select Tools > AutoCorrect > 
Options tab). It is also possible to use regular expressions to search for and replace empty 
space. There is a time and a purpose for macros and a time for other solutions. This chapter 
will begin to prepare you for the times when a macro is the solution of choice.

Note OpenOffice.org is abbreviated as OOo. “OpenOffice.org Basic” is therefore 
abbreviated as “OOo Basic.”

The OpenOffice.org macro language is based on the BASIC programming language. OOo 
Basic runs one line at a time. However, you usually need more than one line to get anything 
done, so you will typically write routines—also known as procedures—that consist of a 
number of lines that, when all are run, do a particular thing. For instance, you might write a 
routine that deletes a header from a file and inserts your preferred header. In OpenOffice.org, 
routines that are logically related are stored in a module. For example, a module might 
contain routines for finding common mistakes that require editing. Logically related modules 
are stored in a library, and libraries are stored in library containers. The OpenOffice.org 
application can act as a library container, as can any OOo document. Simply stated, the 
OpenOffice.org application and every OpenOffice.org document can contain libraries, 
modules, and macros.

Note A dialog is a window that appears on the screen, usually to request input or present 
information. Dialogs usually disappear after the requested input is entered. User-
created dialogs are stored in dialog libraries in the same way that macros are stored 
in macro libraries. Each library can contain multiple dialogs. Library containers can 
store both macro and dialog libraries. See Chapter 17, “Dialogs and Controls” in  
OpenOffice.org Macros Explained for more about dialogs.

Getting Started with Macros 1



Storing a macro in a document library

Storing a macro in a document library

Each OpenOffice.org document is a library container able to contain macros and dialogs. 
When a document contains the macros that it uses, possession of the document implies 
possession of the macros. This is a convenient distribution and storage method. Send the 
document to another person or location and the macros are still available and usable.

The traditional method of introducing a programming language is by writing a program that 
somehow outputs the message “Hello World.” Entire Web sites exist with the sole purpose of 
showing “Hello World” programs in as many different programming languages as possible 
(for example, see http://www2.latech.edu/~acm/HelloWorld.shtml). Choosing not to break 
with tradition, my first macro shows a variation of “Hello World.”

Step 1. Create a library
All OOo documents, regardless of document type, may contain macros. To add a macro to 
any OOo document, the document must be open for editing. Start by opening a new text 
document, which will be named “Untitled1”—assuming that no other untitled document is 
currently open. When a document is created, OpenOffice.org creates an empty library named 
Standard. The Standard library, however, remains empty until a new module is manually 
created. Use the Macro dialog to organize libraries and modules: select Tools > Macros > 
Organize Macros > OpenOffice.org Basic (see Figure 1).

The “Macro from” list shows the available library containers; this includes every open 
document, your personal macros, and the macros distributed with OOo. Your personal 
macros, shown as “My Macros” in Figure 1, are usually stored in your personal user 
directories. The “OpenOffice.org Macros” are usually stored in a seperate directory with the 
OOo program files. Although your personal macros are stored and displayed seperately than 
the OOo macros, both are considered to be part of the application level library. The document 
library containers are listed using the document’s assigned name. Most library containers 
already have a library named Standard. Double-click a library container icon to toggle the 
display of the contained libraries. Double-click a library to toggle the display of the contained 
modules.

Note Before version 2.0, OOo displayed “My Macros” and “OpenOffice.org Macros” in 
the same list. The new dialogs are more intuitive while retaining a very similar look 
and feel. Support for editing and running macros in languages other than OOo Basic 
have also been added; see Tools > Macros > Organize Macros > JavaScript, for 
example.

Getting Started with Macros 2

http://www2.latech.edu/~acm/HelloWorld.shtml


Storing a macro in a document library

Figure 1. Use the Macro dialog to create new macros and organize libraries.

The Standard library for the untitled document was automatically created when the new 
document was created. The document currently contains no modules—remember that macros 
are stored in modules. Although you could click the New button to create a new module, 
don’t! The point of this section is to create a new library.

TIP Do not store your macros in the Standard library. Create a new library with a 
descriptive name and store your macros there. When a library is appended it will 
overwrite an existing library with the same name. If all of your libraries are named 
Standard, this prevents you from appending your libraries to other library 
containers.

Click the Organizer button to open the Macro Organizer dialog (see Figure 2). As with the 
Macro dialog, all of the library containers are listed. In Figure 2, the Standard library is 
highlighted in the document “Untitled1”; scroll down the list to find “Untitled1” if required. 
The Macro Organizer dialog is a tabbed dialog, and the tab in focus is Modules. As the name 
implies, the Modules tab deals with modules. Here’s a description of the items in this dialog:

• The New Module button creates a new module in the selected library.

• The Delete button deletes the currently selected module; it’s not available unless a 
module is selected.

• The Edit button opens the currently selected module for editing in the IDE (Integrated 
Development Environment; see page 12); it’s not available unless a module is 
selected.

• The Close button closes the Macro Organizer dialog.

Getting Started with Macros 3



Storing a macro in a document library

Figure 2. Use the Macro Organizer dialog to organize modules.

The purpose of this section is to create a meaningfully named library that is contained in the 
“Untitled1” document. Click the Libraries tab to deal with libraries (see Figure 3). 

Figure 3. Use the Macro Organizer dialog to organize libraries.

When this portion of the dialog is displayed, the application library container (My Macros & 
Dialogs) is selected in the Location list. Select the “Untitled1” document so that the changes 
are made to the untitled document. The buttons displayed on the Libraries tab affect libraries, 
not modules. Here are their descriptions:

• The New button creates a new library in the selected document or application.

• The Password button allows you to assign or change the password for the selected 
library. Note that you cannot assign a password to the default library.

• The Delete button deletes the currently selected library; it’s not available unless a 
library is selected.

Getting Started with Macros 4



Storing a macro in a document library

• The Append button provides a mechanism for copying a library from another library 
container (document or application) to the library container selected in the 
Application/ Document list. Library management is discussed later in this chapter.

• The Edit button opens the currently selected library for editing in the IDE (see page 
12).

• The Close button closes the Macro Organizer dialog.

Click the New button to create a new library (see Figure 4). Although the default name is 
“Library1,” it is better to choose a meaningful name such as “MyFirstLibrary” or 
“TestLibrary.” Click OK to create it.

Figure 4. Choose a meaningful name for the library.

The Macro Organizer now contains the newly created library in the Library list (see Figure 5).

Figure 5. The document now contains the library named TestLibrary.

Step 2. Create a module
Macros are stored in a module, so the next step is to create a module in the newly created 
library. Assuming that the Macro Organizer (see Figure 3) is still open, select the Modules tab 
(see Figure 6). 

Getting Started with Macros 5



Storing a macro in a document library

Figure 6. The TestLibrary contains one module named Module1.

The newly created TestLibrary is now displayed in the Macro Organizer. Select TestLibrary or 
any module contained in that library, and then click the New Module button to create a new 
module (see Figure 7). The default name is Module1; choose a more descriptive name for the 
module and click OK to create it.

Figure 7. Choose a meaningful module name.

TIP Use descriptive module names to avoid confusion. This is important when moving 
between modules.

A common mistake is to highlight the wrong library container in either the Macro dialog or 
the Macro Organizer dialog. The most common mistake is to select a library or module in the 
application container (My Macros & Dialogs) rather than a specific document. Find the 
document name in the list. The document name is determined by the title as set in the 
document’s Properties dialog. Use File > Properties to open the document’s Properties 
dialog. The title is set from the Description tab. If no title is set, the file name is used instead.

Note Two documents with the same title in the document’s Properties dialog use the same 
name in the Macro dialog, the Macro Organizer dialog, and the window title. This is 
confusing, so try to avoid it.

Getting Started with Macros 6



Storing a macro in a document library

Step 3. Enter your first macro
If the Macro Organizer dialog is still open, you can highlight the newly created module and 
click the Edit button. This will open the Basic IDE (Figure 9). Another option is to use the 
Macro dialog. If the Macro Organizer dialog is open, click the Close button to open the 
Macro dialog. If the Macro Organizer dialog is not open, select Tools > Macros > Organize 
Macros > OpenOffice.org Basic to open the Macro dialog (see Figure 8).

Figure 8. Select a specific macro.

Here’s a description of the buttons in the Macro dialog:

• The Run button runs the selected macro. The macro is selected in the right-hand list, 
and its name also appears in the top-left input box labeled “Macro name.”

• The Close button closes the Macro dialog.

• The Assign button associates a macro with a specific event. Assigning macros to 
events is discussed later.

• The Edit button opens the IDE and edits the selected macro.

• The Delete button deletes the selected macro. This button is present only if a module is 
selected. If a library or document is selected in the “Macro from” list, the Delete 
button changes to New. The New button creates a new macro in the selected library.

• The Organizer button opens the Macro Organizer dialog.

• The Help button opens the help system.

The purpose of the Macro dialog is to operate on individual macros. Select MyFirstModule 
and click the Edit button to open the Basic IDE; see Figure 9). One empty subroutine, Main, 
is automatically created when a module is created. The IDE shown in Figure 9 was opened by 
clicking MyFirstModule and then clicking the Edit button. Enter the code shown in Listing 1.

Getting Started with Macros 7



Storing a macro in a document library

Figure 9. Develop macros in the IDE.

Listing 1. The “Hello World” routines are found in this chapter’s source code files on 
the Hentzenwerke website.

Sub main

  HelloWorld2()

End Sub

Sub HelloWorld1

  Print "Hello World One"

End Sub

Sub HelloWorld2

  Print "Hello World Two"

End Sub

The IDE contains a Macro toolbar and a Function toolbar as labeled in Figure 9. (Most of the 
icons on the Macro toolbar are identified in Figure 13.) Rest your mouse cursor on a toolbar 
icon for a few seconds to read the text that appears; this provides a hint at what that icon 
does. 

Getting Started with Macros 8



Storing a macro in a document library

Click the Compile icon to check the macro for syntax errors. No message is displayed unless 
an error is found (see Figure 10). The Compile icon compiles only the current module.

Figure 10. Click the Compile icon to find syntax errors such as a 
missing double quotation mark.

Modify the code in Listing 1 to demonstrate an error. Remove the second double quotation 
mark from the Print statement in HelloWorld1 (see Figure 10). Then click the Compile icon. 
A dialog displays a relevant error message for the first error encountered. The error message 
in Figure 10 indicates that a double quotation mark was expected but not found. The first 
double quotation character is highlighted, and a red arrow marks the line with the error. Click 
the OK button to close the error dialog, fix the line by adding a double quotation mark at the 
end, and then compile the code again.

Click the Run icon to run the first routine in the current module. It is not necessary to click 
the Compile icon first, because clicking the Run icon automatically compiles every module in 
the current library. Clicking the Run icon runs only the first routine in the module. For Listing 
1, the Run icon runs the first subroutine, which is named “main.” The main subroutine calls 
the HelloWorld2 subroutine, displaying the dialog shown in Figure 11. Click OK to close the 
dialog, or click Cancel to to stop the macro.

Figure 11. Click OK to close the dialog.

The Run icon always runs the first macro in the current module. As a result, a different 
approach is required to run HelloWorld1. To run HelloWorld1, you can use one of the 
following methods:

• Place HelloWorld1 first in the module and click the Run icon.

• Modify the main subroutine to call HelloWorld1 rather than HelloWorld2.

• Use the Macro dialog (shown in Figure 8) to run any routine in the module.

• Add a button to your OpenOffice.org document that calls HelloWorld1. This method is 
discussed later.

Getting Started with Macros 9



Storing a macro in a document library

• Assign the macro to a keystroke. To do this, click Tools > Customize to open the 
Configuration dialog, and then select the Keyboard tab. Macro libraries are at the 
bottom of the Category list. You can also find this by clicking Tools > Macros > 
Organize Macros > OpenOffice.org Basic, selecting the specific macro, and then 
clicking the Assign button to launch the Configuration window. Various tabs in this 
dialog allow you to assign the macro to execute as a menu item, from a keyboard key, 
a toolbar icon, or a system event.

• Add an icon to the toolbar that calls HelloWorld1.

To use the Macro dialog to run any subroutine in a module, follow these steps:

1) Select Tools > Macros > Organize Macros > OpenOffice.org Basic to open the 
Macro dialog (see Figure 8).

2) Find the document that contains the module in the “Macro from” list.

3) Double-click a library to toggle the display of the contained modules. 

4) Select the module to display the contained subroutines and functions in the “Existing 
macros in: <selected module name>” list.

5) Select the desired subroutine or function to run—for example, HelloWorld1.

6) Click the Run button to run the subroutine or function.

TIP When developing a subroutine, first place it in a module so you can quickly run it 
by clicking the Run icon. Another solution is to use the first subroutine to call 
another, as shown in Listing 1. This is faster than using the Macro dialog.

The code used in this chapter is available in an OpenOffice.org text document named 
SC01.sxw. Download and open this document. When a document containing macros is 
opened, OpenOffice.org issues a warning (see Figure 12). This warning is to help you avoid 
accidentally running a macro containing a virus. Although you can still manually run any 
macro using the Macro dialog, macro buttons in the document will not function. Click Run 
to fully enable the macro buttons added to SC01.sxw.

TIP You can configure a document to run a macro automatically when the document 
loads. This is how a macro virus spreads by using documents. If you don’t expect a 
document to contain a macro, you should always click Do Not Run. This prevents 
any macro from running automatically when the document is loaded.

Getting Started with Macros 10



Storing a macro in a document library

Figure 12. You just opened an OpenOffice.org document that contains a macro.

SC01.sxw contains three buttons: Main, Hello World 1, and Hello World 2. Each button is 
configured to run the corresponding subroutine when the button is clicked. The buttons do 
nothing if you click Do Not Run when the document is loaded.

It is possible to add a directory to the list of “secure paths.” If you are certain that a path 
contains documents that you can safely trust not to contain macro viruses, you can add the 
path to the list of secure paths. Use Tools > Options > OpenOffice.org > Security > Macro 
Security > Trusted Sources and add the appropriate trusted file locations. All documents 
loaded from a trusted location will be considered safe, and macros will always run.

Storing a macro in the application library

The OpenOffice.org application itself is a library container. This is an excellent place to store 
code and dialogs common to multiple documents. Version control is easier if macros are 
stored in one location. If five documents all contain the same macro, not only is storage space 
wasted, but if the macro changes, you must change the macro in five different documents.

To store a macro in the application libraries, use the same methods used for documents.  The 
application-level container uses two names, “My Macros” and “OpenOffice.org Macros”. 
The OOo application includes multiple libraries stored as “OpenOffice.org Macros”. Use the 
Macro Organizer dialog in Figure 3 to add new libraries.

Caution Uninstalling OpenOffice.org may delete libraries stored at the application level, so 
you should always keep a backup of your libraries. Reinstalling or installing a new 
version of OpenOffice.org may overwrite application-level libraries. Back up these 
libraries when you back up your documents. In most cases, the libraries that you 
created are still there, but the configuration files are new and do not reflect the new 
libraries. Therefore, it’s usually possible to restore your libraries from the standard 
library location. For more information, see the section titled “Library 
management,” later in this chapter.

Getting Started with Macros 11



Storing a macro in the application library

Each application library is stored in its own directory. To determine where OpenOffice.org 
stores application libraries, select Tools > Options. In the Options dialog, expand the 
OpenOffice.org branch in the tree menu and select Paths. The Basic entry shows the locations 
of the external libraries.

Before installing a new version of OpenOffice.org, make a copy of all application-level 
libraries. If you install OOo into the same location, it overwrites the configuration file that 
tells OOo where your application-level libraries are. The libraries are usually still there but 
OOo does not know about them. To restore lost libraries, regardless of where they are 
located, use the Libraries tab on the Macro Organizer (see Figure 3). Verify that “My Macros” 
is selected in the Application/Document list, and then click the Append button. Navigate to 
the directory containing the library that you want to add. Select the file script.xlb and click 
Open. Do this for each library that you want to restore. This method can also be used to add 
libraries stored in documents.

TIP Do not use the Standard library if you think you’ll ever want to append your library 
to another location. Store all of your modules in libraries with meaningful names 
that you create. The Standard library is special, and you cannot delete it or overwrite 
it.

To practice adding a macro to the application-level library, open the Macro Organizer. Verify 
that the “My Macros” library container is the current container. Click the New button to add 
new modules to the application-level libraries. To add new libraries, select the Libraries tab. 
Verify that “My Macros” is selected in the Application/Document list, and then click the New 
button.

Libraries stored in documents may be appended to the application library container. When a 
library is appended, it overwrites an existing library with the same name. It is, therefore, a 
good idea to create meaningful library names to hold macros. This limits problems moving 
macros between library containers.

The Integrated Development Environment

An integrated development environment (IDE) is a set of programming tools used to facilitate 
the creation of software. OpenOffice.org includes a very capable IDE with tools that run, edit, 
and find errors in your macros. It is worth the time to become familiar with its features. 
Figure 13 shows the IDE with captions added for many of the icons and display areas. The 
central display area where macro code is listed is the editor window. Many of the features, 
such as Stop, Breakpoint, Single Step, and the Watch pane serve as a simple yet effective 
debugger for macro code.

This section provides a quick overview of the standard functions of the IDE. Do not be 
surprised if you don’t fully understand how to use them all at this point. You will become 
very familiar with these functions as you work through the examples. The first set of 
functions are used for debugging, and the ones described near the end of this section support 
the organization and management of objects in your macro programs, libraries, and 
documents. Following are the icon descriptions.

Getting Started with Macros 12



The Integrated Development Environment

The Compile icon compiles and performs a syntax check of only the current module. The 
Compile icon is useful if you don’t want to run the macro but you want to verify that it’s 
syntactically correct. No message is displayed unless an error is found (see Figure 10). When 
an error is found, a dialog appears, indicating the error. An arrow in the Breakpoint column 
marks the line with the error, and the portion of the code that caused the error is highlighted. 
Click the OK button to close the error dialog.

Note The process of compiling translates OOo macros into machine language, which the 
computer can understand and run.

The Run icon compiles all of the modules in the current library and then runs the first 
subroutine or function in the current module. This is different from the Compile icon, which 
compiles only the current module.

Figure 13. The IDE included with OpenOffice.org is very capable.

The Stop Macro icon stops a running macro. When you click this icon, you can’t resume the 
macro; you must start it again, from the beginning. The Stop Macro icon is enabled only 
while a macro is running. When enabled, the Stop icon resembles a traffic stop sign.

The Procedure Step icon runs the current statement. If the macro is not yet running, the first 
routine in the module is started and marked as the current statement. The current statement 
has an arrow in the Breakpoint column, and the cursor is moved to that line. If, however, the 
macro is already running, the current statement runs and the next runnable statement is 
marked as current. The Procedure Step icon treats calls to other routines as a single statement 
and does not step into them. Notice that the icon has an arrow that curves around the curly 
brackets that represent a subroutine or function call.

Getting Started with Macros 13



The Integrated Development Environment

The Single Step icon runs the current statement. The behavior is the same as the Procedure 
Step icon except that subroutines and functions are not treated as a single statement. Each 
statement in the called routine is considered a statement. Subroutines and functions are 
stepped into, marking the called subroutine or function definition as the current statement. 
Notice that the icon contains an arrow that points into the curly brackets that represent a 
subroutine or function call.

The Step Back icon runs the macro to the end of the current routine and then steps out of it. 
The effect is the same as repeatedly clicking the Procedure Step icon until the last statement 
in the current routine (End Sub or End Function) is current, and then clicking Procedure Step 
one more time to step out of the routine. The statement following the call to the current 
routine becomes the current statement. If you accidentally click Single Step rather than 
Procedure Step, click the Step Back icon once. Notice that the icon contains an arrow that 
leaves the curly brackets that represent a subroutine or function call.

The Breakpoint On/Off icon sets a breakpoint at the statement containing the cursor. A red 
stop sign marks the line in the Breakpoint column. Double-click the Breakpoint column to 
toggle a breakpoint at that statement. Right-click a breakpoint in the Breakpoint column to 
activate or deactivate it.

The Manage Breakpoints icon loads the Manage Breakpoints dialog (see Figure 14).

Figure 14. Manually edit and configure breakpoints.

The Enable Watch icon assumes that the current word (the word that contains the icon) is a 
variable and adds this variable name to the Watch pane.

The Object Catalog icon opens the Objects window (see Figure 15), where you can browse 
all of the currently available library containers. Use this window to see which libraries, 
modules, and subroutines are available. Double-click a subroutine to load it into the IDE. The 
functionality is similar to the Navigator in an OOo Writer document. You must save a file 
before its modules are available in the Object Catalog.

TIP Leave the Objects window open and use it as a navigator to quickly jump between 
modules, libraries, or even subroutines in the same module.

Getting Started with Macros 14



The Integrated Development Environment

Figure 15. You can browse the available libraries 
and modules in the Objects window.

The Select Macro icon loads the Macro dialog. Selecting Tools > Macros > Organize 
Macros > OpenOffice.org Basic also loads the Macro dialog.

The Select Module icon loads the Macro Organizer dialog. This icon has the same effect as 
clicking the Organizer button in the Macro dialog (see Figure 2 and Figure 3).

Select or place the cursor directly to the left of a parenthesis, and then click the Find 
Parentheses icon to find the matching parentheses. When the IDE matches parentheses, it 
selects the matching parentheses and everything that they enclose.

To open the Controls window, click the Controls icon while editing a dialog. (For more 
information about controls, see Chapter 17, “Dialogs and Controls” in OpenOffice.org 
Macros Explained.)

To create a dialog for editing, click the Load Module icon to load the Macro Organizer 
dialog. Select the Dialog tab and click the New Dialog button to create a new dialog. See 
Chapter 17, “Dialogs and Controls” in OpenOffice.org Macros Explained for more about 
using and creating dialogs in macros.

The last two icons, Insert Basic Source and Save Basic, are used to insert text stored in an 
external source file into the current module, and to save the current module to an external text 
file. This is an excellent way to create a backup of a macro or to create a text file that can be 
easily sent to another person. This is different from the Disk icon, which is used to save the 
entire library or document that contains the module.

Getting Started with Macros 15



The Integrated Development Environment

Using breakpoints
If you set a breakpoint in the code, the macro will stop running at that point. You can then 
inspect variables, continue running the macro, or single-step the macro. If a macro fails and 
you don’t know why, single-stepping (running one statement at a time) allows you to watch a 
macro in action. When the macro fails, you’ll know how it got there. If a large number of 
statements run before the problem occurs, it may not be feasible to run one statement at a 
time, so you can set a breakpoint at or near the line that causes the problem. The program 
stops running at that point and you can single-step the macro and watch the behavior.

The Breakpoint On/Off icon sets a breakpoint at the statement containing the cursor. A red 
stop sign marks the line in the Breakpoint column. Double-click in the Breakpoint column to 
toggle a breakpoint at that statement. Right-click a breakpoint in the Breakpoint column to 
activate or deactivate it.

The Manage Breakpoints icon loads the Manage Breakpoints dialog (see Figure 14). All of 
the active breakpoints in the current IDE dialog appear in the lower list. To add a breakpoint, 
enter a line number in the entry field at the top and then click New. To delete a breakpoint, 
select a breakpoint in the list and click the Delete button. Clear the Active check box to 
disable the highlighted breakpoint without deleting it. The Pass Count input box indicates the 
number of times a breakpoint must be reached before it is considered active. If the pass count 
is four (4), then the fourth time that the statement containing the breakpoint is to be run, it 
will stop rather than run. This is extremely useful when a portion of the macro does not fail 
until it has been called multiple times.

There are two things that cause a breakpoint to be ignored: a pass count that is not zero, and 
explicitly marking the breakpoint as “not active” in the Manage Breakpoints dialog. Every 
breakpoint has a pass count that is decremented toward zero when it is reached. If the result 
of decrementing is zero, the breakpoint becomes active and stays active because the pass 
count stays at zero thereafter. The pass count is not restored to its original value when the 
macro is finished or restarted.

It is easy to monitor the value of variables from the IDE while a routine is running. Place the 
cursor next to or in any word in the Edit window and click the Enable Watch icon to add the 
word to the Watch pane. The Watch pane displays the value of variables that are currently in 
scope. The text “<Out of Scope>” is displayed for variables that are not available. Another 
way to add variables to the Watch pane is to type the name into the Watch window and press 
Enter. To delete a name from the Watch pane, select it in the Watch pane or type the name 
into the Watch window and click the Remove Watch icon. Click a name in the Watch pane to 
place its name in the Watch window. The capabilities of the watch window have been 
enhanced in OOo 2.0. For example, you can now watch array or object variables; this is very 
impressive.

Note A variable that is in scope is currently available or visible. For example, if the 
variable “j” is defined inside HelloWorld1, it is not visible (in scope) inside 
HelloWorld2. This is discussed later.

Getting Started with Macros 16



Library management

Library management

This section deals with creating, transferring, and renaming libraries and modules. When 
considering library management, it is important to first understand some basics that have 
already been discussed:

• A library container contains zero or more libraries.

• Each library contains zero or more modules and dialogs.

• Each module contains zero or more macros.

• The application is a library container named “My Macros” and “OpenOffice.org 
Macros”. Libraries stored in the application are globally available to all macros.

• Every document is a library container.

• The library named Standard is special; it always exists and cannot be overwritten. I 
recommend against using the Standard library.

• Always give meaningful names to the libraries and modules that you create. For 
example, Library1 and Module4 are not meaningful names, although 
AXONInvoiceForm1 might be more descriptive and helpful.

How libraries are stored
OpenOffice.org libraries are stored as XML files that are easily editable using any text editor. 
In other words, it is easy for you to poke around and damage your files. Although manually 
editing your external libraries is generally considered foolish, I have had at least one instance 
where this was required, because OOo was unable to load a module that contained a syntax 
error.

TIP Manually editing OOo files is best left to advanced users. Beginning users may want 
to quickly skim through this material or skip to the next section.

Application libraries
Each application library is stored in a single directory, and each module and dialog is 
contained in a single file. The Options dialog (Tools > Options > OpenOffice.org > Paths) 
contains an entry that identifies where libraries are located. The global libraries that are 
included with OpenOffice.org are stored in a shared basic directory under the directory in 
which OOo is installed. Examples:
C:\Program Files\OpenOffice.1.1.1\share\basic  'A Windows installation

/usr/local/OpenOffice.org1.1.1/share/basic     'A Linux installation

Getting Started with Macros 17



Library management

The libraries that you create are stored in different directories. On my Windows computer, I 
have a single-user installation, and on my Linux computer I have a multiple-person network 
installation. The choices that you make while installing OOo affect the location of your 
personal libraries. Here are two examples:
C:\Program Files\OpenOffice.1.1.1\user\basic  'Windows user files

/home/andy/OpenOffice.org1.1.1/user/basic     'Linux user files

Listing the shared directory shows one file for each application library that is included with 
OOo. The user directory, however, is a bit more interesting (see Table 1). 

Table 1. Files and some directories in my user/basic directory.

Entry Description

dialog.xlc XML file that references every dialog file known to this user in 
OpenOffice.org.

script.xlc XML file that references every library file known to this user in 
OpenOffice.org.

Standard Directory containing the Standard library.
Pitonyak Directory containing a library with code that I created.
PitonyakDialogs Directory containing a library with some code and a dialog.

Note Table 1 references the directories Pitonyak and PitonyakDialogs. The Pitonyak 
library and the PitonyakDialogs library are not related; their names are similar 
because I lacked creativity and good sense when I named them. It is not true that the 
library PitonyakDialogs contains the dialogs for the Pitonyak library.

The files dialog.xlc and script.xlc contain a reference to all of the dialogs and libraries that 
are known to OOo. The visible libraries—as seen in the Macro dialog and the Macro 
Organizer dialog (see Figure 16)—are built from the files dialog.xlc and script.xlc. If these 
two files are overwritten, OOo will not know about your personal libraries even if they exist.

Getting Started with Macros 18



Library management

Figure 16. The Macro dialog and the Macro Organizer dialog show available libraries and 
modules.

The Macro Organizer dialog shows that the PitonyakDialogs library contains one dialog; 
select the Modules tab to see the code modules. Table 2 contains a listing of the files in the 
PitonyakDialogs directory. Notice that each module and dialog in a library has a 
corresponding file.

Table 2. Files in the PitonyakDialogs library directory.

File Description

dialog.xlb References the dialogs contained in this library.
script.xlb References the modules contained in this library.
Module1.xba BASIC code in the module named Module1.
SimpleObjectBrowserCode.xba BASIC code in the module named 

SimpleObjectBrowserCode.
SimpleObjectBrowser.xdl A dialog in the module named SimpleObjectBrowser.

The files dialog.xlc and script.xlc in Table 1 reference the files dialog.xlb and script.xlb in 
Table 2. In general, none of these files should be manually modified, but in an emergency, 
they may be modified by hand to correct certain types of errors.

Document libraries
An OpenOffice.org document, when saved to disk, is stored in the standard ZIP format. Any 
program that can view and extract ZIP files can be used to inspect an OOo document—
however, some programs will require you to change the file extension to end with ZIP.

Getting Started with Macros 19



Library management

After unzipping an OOo document, you will find files that contain the primary content, 
styles, and settings. The extracted document also contains three directories. The META-INF 
directory references all of the other files, embedded pictures, code libraries, and dialogs. The 
Dialogs directory contains all of the embedded dialogs, and the Basic directory contains all of 
the embedded libraries. Notice that libraries contained in the application-level container are 
stored in a slightly different configuration than the libraries contained in a document.

As an experiment, I took a document that contained numerous controls that called a specific 
library. I unzipped the document and then used a text-search tool to find all references to a 
specific library named CH03. After manually changing every occurrence of the text “CH03” 
to “CH04”, I zipped the directory back into a single file, and OOo was able to read and use 
the file. I successfully changed the name of a contained library and every reference to the 
controls by editing the XML definitions.

TIP The point of this section is that, in an emergency, you can manually inspect a 
document’s XML and potentially fix problems. This is usually NOT the best way to 
change the name of a document’s libraries.

Using the Macro Organizer
The Macro Organizer (Tools > Macros > Organize Macros > OpenOffice.org Basic > 
Organizer) is able to satisfy most users’ needs in regards to organizing modules and 
libraries. The Modules tab of the Macro Organizer dialog (see Figure 16) provides the 
capability to create and delete modules. The Macro Organizer dialog also has a Libraries tab 
(see Figure 17) used to create and delete libraries. The Libraries tab contains a drop-down 
box at the top that is used to select the library container. In other words, you can select a 
specific open document or the application library.

Figure 17. Use the Macro Organizer to create, add, and delete libraries.

Note A document’s name is the file name, unless the document title is set in the 
document’s Properties dialog (File > Properties > Description). If the Title 

Getting Started with Macros 20



Library management

property is set, it is used as the document name in the window title, the Macro 
dialog, and the Macro Organizer dialog.

Renaming modules and libraries

You can change the name of a module or library from the Macro Organizer dialog. Module 
names are changed from the Modules tab, and library names are changed from the Libraries 
tab. When you change a library or module name, it doesn’t change anything that references 
the contained macros. For example, if I write down your telephone number in my Palm Pilot 
and you change your telephone number, my Palm Pilot is not automatically updated. So, what 
might call a macro?

• When controls are embedded in a document or a dialog, they frequently use macros as 
event handlers.

• Macros call dialogs that are contained in libraries. 

• Macros may be called from programs outside of OpenOffice.org.

Caution When you rename a module or a library, references to the contained macros are not 
updated.

Renaming a library or module isn’t a bad thing to do; just remember that things that reference 
the modules and libraries won’t be updated. If nothing is referencing your code, feel free to 
change the module and library names. You can rename libraries and modules by using the 
Macro Organizer; the procedure is the same for both:

1) Find the library or module in the appropriate tab of the Macro Organizer (see Figure 
16 and Figure 17).

2) Select the library or module.

3) Wait a moment and click on the library or module. The cursor should appear to edit the 
library or module name. I have found this to be a bit sensitive, and sometimes I must 
purposely single-click a few times. Do not accidentally double-click, because this 
opens the library or module contents for editing.

4) Type a new name for the library or module and press the Enter key.

I had a large document that contained numerous buttons. The buttons called macros in a 
library and I had to change the name of the library. Unfortunately, after I changed the name of 
the library, the buttons still pointed to the original library, which no longer existed. Feeling 
particularly daring, I unzipped the document into a temporary directory (remember that an 
OOo document file is really a ZIP file containing numerous files that, as a whole, are the 
document). I then used my favorite text editor to load each file and I changed the old library 
name to the new library name. When I was finished, I zipped all of the files and directories 
back into a single ZIP file and I had successfully changed all of the references.

Getting Started with Macros 21



Renaming modules and libraries

Caution Manually editing an OOo document file by unzipping all of the contained files and 
directories and then zipping them back is an error-prone process. If you do it 
wrong, the document will stop working. In other words, keep a copy of the original 
file.

Adding libraries

The Append button (see Figure 17) in the Macro Organizer dialog opens the Append 
Libraries dialog, which is really a file-selection dialog. This dialog is used to select the file 
that contains the library to append. To add a library contained in a document, start by 
selecting the document. The Open button on the file-selection Append Libraries dialog opens 
the library-selection Append Libraries dialog (see Figure 18). Use the library-selection 
Append Libraries dialog to view the libraries contained in the selected document and select 
the libraries you want to append.

Figure 18. Use the Append Libraries dialog to select the libraries to add.

The library-selection Append Libraries dialog in Figure 18 allows you to append as many 
libraries as you like. Existing libraries are not overwritten unless the “Replace existing 
libraries” box is checked. The “Insert as reference” check box is available only while 
appending libraries that are not contained in a document. Click OK to append the selected 
libraries.

TIP It is not possible to overwrite the Standard library. I recommend against using the 
Standard library because you can’t append it to another document or the application.

Getting Started with Macros 22



Adding libraries

Libraries that are not contained in a document are stored in individual directories. To append 
a library that is not stored in a document, open the file-selection Append Libraries dialog (see 
Figure 19) and select the directory that contains the library files. It doesn’t matter where the 
library files are stored. The files may be on a floppy disk as a backup, or they may be from 
the same directory used by OOo for application-level libraries. When I install a new version 
of OpenOffice.org, I append the libraries from my previous OOo installation.

While appending a library that is not contained in a document, two files are shown: 
dialog.xlb and script.xlb (see Table 2 and Figure 19). Both files are required and 
automatically appended regardless of which file you choose. In other words, you can select 
either dialog.xlb or script.xlb; both will be appended.

Figure 19. It doesn’t matter which file you choose; both are appended.

TIP When I install a new version of OOo, I append my personal libraries from the 
previously installed version. I also move my libraries to other computers and install 
them there.

Chapter 16, “Library Management” in OpenOffice.org Macros Explained contains 
information and examples of manipulating and accessing libraries and modules using OOo 
Basic. 

Conclusion

Macros are stored in modules, modules are stored in libraries, and libraries are stored in 
library containers. The application is a library container, as is every document. The IDE is 
used to create and debug macros and dialogs.

Getting Started with Macros 23



Conclusion

You have just completed one of the most difficult steps in writing macros for OpenOffice.org: 
writing your first macro! You are now ready to explore, try other macro examples, and create 
a few of your own.

Getting Started with Macros 24


	Copyright
	Authors
	Feedback
	Acknowledgments
	Publication date and software version
	The OpenOffice.org macro language
	Storing a macro in a document library
	Step 1. Create a library
	Step 2. Create a module
	Step 3. Enter your first macro

	Storing a macro in the application library
	The Integrated Development Environment
	Using breakpoints

	Library management
	How libraries are stored
	Application libraries
	Document libraries
	Using the Macro Organizer

	Renaming modules and libraries
	Adding libraries
	Conclusion

